一种共振隧穿二极管及其制作方法与流程

文档序号:22551662发布日期:2020-10-17 02:28阅读:156来源:国知局
一种共振隧穿二极管及其制作方法与流程

本发明涉及纳米半导体器件技术领域,尤其涉及一种共振隧穿二极管及其制作方法。



背景技术:

以gan(氮化镓)为代表的第三代半导体材料,具有较大的禁带宽度、较高的导带断续以及高热导率、高临界场强、高载流子饱和速率和高异质结界面二维电子气浓度等优良特性,因而备受关注。

采用gan材料的gan基共振隧穿二极管(势阱层由gan材料制成),继承了gan基化合物半导体材料异质结的优点,具有高工作频率、大功率及耐高温等特性,成为了纳米器件领域的研究热点。

目前,gan基共振隧穿二极管中常用的材料有algan材料和inaln材料。在晶格匹配度来看的话,在gan材料的势阱层上最容易生长的势垒材料确实是algan材料和inaln材料。但是algan材料的禁带宽度是随着al组分的变化而变化的,这会导致共振隧穿二极管的共振隧穿效应不稳定,进而导致共振隧穿二极管的功率不足。而inaln材料由于in原子与其原子相比具有较大的原子半径,而且其活性差异较大,因此在inaln材料中容易出现相分离等问题,这会直接导致共振隧穿二极管的性能缺陷。



技术实现要素:

鉴于现有技术存在的不足,在本发明的一方面提供了一种共振隧穿二极管,该共振隧穿二极管包括衬底以及在所述衬底上形成的外延部,所述外延部包括依序层叠在所述衬底上的第一势垒层、势阱层和第二势垒层,所述第一势垒层和所述第二势垒层均由aln材料制成,所述势阱层由gan材料制成。

优选地,所述外延部还包括第一欧姆接触层和第二欧姆接触层,所述第一欧姆接触层设置于所述衬底与所述第一势垒层之间,所述第二欧姆接触层设置于所述第二势垒层背向所述势阱层的表面上;其中,所述第一欧姆接触层和所述第二欧姆接触层均由gan材料制成。

优选地,所述外延部还包括第一隔离层和第二隔离层,所述第一隔离层设置于所述第一欧姆接触层与所述第一势垒层之间,所述第二隔离层设置于所述第二欧姆接触层与所述第二势垒层之间;其中,所述第一隔离层由algan材料制成,所述第二隔离层由gan材料制成。

优选地,所述第一隔离层、所述第一势垒层、所述势阱层、所述第二势垒层、所述第二隔离层和所述第二欧姆接触层在所述衬底上的正投影均位于所述第一欧姆接触层在所述衬底上的正投影内。

优选地,所述外延部的表面上包覆有钝化膜,位于所述第一欧姆接触层面向所述第一隔离层的表面上的所述钝化膜上设有第一通孔,所述第一通孔内设置有第一电极,位于所述第二欧姆接触层上的所述钝化膜上设有第二通孔,所述第二通孔内设置有第二电极。

在本发明的另一方面提供了一种共振隧穿二极管的制作方法,该制作方法包括:

采用分子束外延工艺在衬底上依序层叠形成第一势垒层、势阱层和第二势垒层;

其中,所述第一势垒层和所述第二势垒层的生长材料为aln材料,所述势阱层的生长材料为gan材料。

优选地,在形成所述第一势垒层之前,所述制作方法还包括:在所述衬底上形成第一欧姆接触层;其中,所述第一势垒层在所述第一欧姆接触层形成之后,形成在所述第一欧姆接触层上。

优选地,在形成所述第一欧姆接触层后,所述制作方法还包括:在所述第一欧姆接触层上形成第一隔离层;其中,所述第一势垒层在所述第一隔离层形成之后,形成在所述第一隔离层上。

优选地,在形成所述第二势垒层之后,所述制作方法还包括:在所述第二势垒层上依序层叠形成第二隔离层和第二欧姆接触层。

优选地,在形成所述第二欧姆接触层后,所述制作方法还包括:

对所述第二欧姆接触层、所述第二隔离层、所述第二势垒层、所述势阱层、所述第一势垒层、所述第一隔离层和所述第一欧姆接触层进行部分刻除,以形成台面结构;

在所述台面结构的表面上形成钝化膜,并对所述钝化膜进行部分刻除,以暴露部分所述第二欧姆接触层和部分所述第一欧姆接触层;

在暴露的所述部分第二欧姆接触层和所述部分第一欧姆接触层上分别生长金属材料,以形成第一电极和第二电极。

与现有技术相比,本发明中选择了与gan材料的晶格失配度较大的aln(氮化铝)材料作为共振隧穿二极管的势垒材料,利用了gan材料与aln材料之间较大的带隙差来形成较高的共振隧穿二极管的势垒高度,以此来提高了共振隧穿二极管的功率。与此同时,采用分子束外延工艺来生长由gan材料制成的势阱层和由aln材料制成的势垒层,以此来克服了gan材料与aln材料之间晶格失配的问题。

附图说明

图1是根据本发明的实施例的共振隧穿二极管的结构示意图;

图2a至图2j是根据本发明的实施例的共振隧穿二极管的制程图。

具体实施方式

在当前的gan基共振隧穿二极管领域中,根据与gan材料的晶格匹配度来选择的algan材料和inaln材料在实际制成势垒层时,出现了不同程度的缺陷。例如:由于algan材料的禁带宽度是随着al组分的变化而变化,因此采用algan材料来制作势垒层时,共振隧穿二极管会发生共振隧穿效应不稳定的情况,这种情况会直接导致共振隧穿二极管的功率不足。而inaln材料由于in原子与其原子相比具有较大的原子半径,而且其活性差异较大,因此在inaln材料中容易出现相分离等问题,这会直接导致共振隧穿二极管的性能缺陷。

针对上述问题,本申请人在实验过程中发现,虽然aln材料与gan材料之间的晶格失配度较大,但是该较大晶格失配度是由于aln材料与gan材料之间较大的带隙差导致的。然而,在共振隧穿二极管领域中势阱层与势垒层之间具有越大的带隙差就可以形成越高的势垒高度,较高的势垒高度有利于提高共振隧穿二极管的功率。由此可知,虽然aln材料与gan材料之间的晶格失配度较大,但是只要克服了两者之间的晶格失配,就可以采用aln材料和gan材料形成一种功率较高的共振隧穿二极管。本申请人在后续的研究中还发现了在aln材料层上生长gan材料层,或者在gan材料层上生长aln材料层时,采用分子束外延工艺来进行生长的话可以有效地克服aln材料与gan材料之间的晶格失配的问题。

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。将理解的是,当诸如层、膜、区域或基底等的元件被称作“在”另一元件或者另一元件的表面“上”时,该元件可以直接在所述另一元件上或者所述另一元件的表面上,或者也可以存在中间元件。可选择地,当元件被称作“直接在”另一元件或者另一元件的表面“上”时,不存在中间元件。

实施例1

本实施例提供了一种共振隧穿二极管,如图1所示,所述共振隧穿二极管包括衬底1以及在所述衬底1上形成的外延部a。所述外延部a包括依序层叠在所述衬底1上的第一势垒层2、势阱层3和第二势垒层4。其中,本实施例的势阱层3由gan材料制成,所述第一势垒层2和所述第二势垒层4均由aln材料制成。在本实施例中为了克服gan材料和aln材料之间晶格失配较大的问题,生长所述势阱层3和所述第一势垒层2和所述第二势垒层4时采用了分子束外延工艺。

具体地,所述外延部a还包括用于与外界电子器件导通的第一电极10和第二电极11。为了提供良好的电流传输和传入环境,所述外延部a还包括第一欧姆接触层5和第二欧姆接触层6。如图1所示,所述第一欧姆接触层5设置于所述衬底1与所述第一势垒层2之间,所述第二欧姆接触层6设置于所述第二势垒层4背向所述势阱层3的表面上。其中,所述第一电极10与所述第一欧姆接触层5接触,所述第二电极11与所述第二欧姆接触层6接触。所述第一欧姆接触层5和所述第二欧姆接触层6均由gan材料制成。

较佳地,为了防止所述第一欧姆接触层5和所述第二欧姆接触层6等重掺杂层的杂质向势垒层扩散,本实施例的外延部a还包第一隔离层7和第二隔离层8。所述第一隔离层7设置于所述第一欧姆接触层5与所述第一势垒层2之间,所述第二隔离层8设置于所述第二欧姆接触层6与所述第二势垒层4之间。所述第一隔离层7由algan材料制成,所述第二隔离层8由gan材料制成。其中,所述第一隔离层7包括第一子隔离层71、第二子隔离层72和第三子隔离层73,所述第一子隔离层71、所述第二子隔离层72和所述第三子隔离层73沿着背向所述第一欧姆接触层5的方向依序层叠形成在所述第一欧姆接触层5与所述第一势垒层2之间。由于gan材料制成的第一欧姆接触层5与aln材料制成的第一势垒层2之间存在较大的晶格失配,本实施例中,所述第一子隔离层71、所述第二子隔离层72和所述第三子隔离层73中的al组分以此递增,以此缓冲了所述第一欧姆接触层5与所述第一势垒层2之间的晶格失配,保障了外延部的稳定生长。

优选地,本实施例中,所述第一隔离层7、所述第一势垒层2、所述势阱层3、所述第二势垒层4、所述第二隔离层8和所述第二欧姆接触层6在所述衬底1上的正投影均位于所述第一欧姆接触层5在所述衬底上1的正投影内。也就是说,所述第一欧姆接触层5与其他层叠的功能层形成了台阶结构。其中,所述外延部a的表面(这里所述的外延部的表面是指构成所述外延部的多个功能层之间连续相接的表面)上包覆有钝化膜9。位于所述第一欧姆接触层5面向所述第一隔离层7的表面上的所述钝化膜9上设有第一通孔(图中未示出),所述第一通孔内设置有第一电极10,位于所述第二欧姆接触层6上的所述钝化膜上9设有第二通孔(图中未示出),所述第二通孔内设置有第二电极11。

在本实施例中选择了与gan材料的晶格失配度较大的aln材料作为共振隧穿二极管的势垒材料,利用了gan材料与aln材料之间较大的带隙差来形成较高的共振隧穿二极管的势垒高度,以此来提高了共振隧穿二极管的功率。与此同时,采用分子束外延工艺来生长由gan材料制成的势阱层3和由aln材料制成的势垒层,以此来克服了gan材料与aln材料之间晶格失配的问题。

实施例2

本实施例提供了实施例1的共振隧穿二极管的具体制作方法。所述制作方法包括:采用分子束外延工艺在衬底1上依序层叠形成第一势垒层2、势阱层3和第二势垒层4;其中,所述第一势垒层2和所述第二势垒层4的生长材料为aln材料,所述势阱层3的生长材料为gan材料。

具体地,如图2a至图2g所示,所述制作方法具体包括:

提供一衬底1,所述衬底1优选为gan基片。

在所述衬底1上形成第一欧姆接触层5。具体地,采用分子束外延工艺在所述衬底1上生长所述第一欧姆接触层5。其中,生长材料为重掺杂si的gan材料,该gan材料的si掺杂浓度为1×1019cm-3~9×1019cm-3,所述第一欧姆接触层5的生长厚度为200nm~500nm。

形成所述第一欧姆接触层5后,在所述第一欧姆接触层5上形成第一隔离层7。具体地,采用分子束外延工艺在所述第一欧姆接触层5上生长所述第一隔离层7。其中,生长所述第一隔离层7的过程具体包括:以无掺杂的aln材料为生长材料,在所述第一欧姆接触层5上依序形成厚度均为1nm的第一子隔离层71、第二子隔离层72和第三子隔离层73。其中,所述第一子隔离层71、所述第二子隔离层72和所述第三子隔离层73中的al组分以此递增。

形成所述第一隔离层7后,在所述第一隔离层7上形成第一势垒层2。具体地,采用分子束外延工艺在所述第一隔离层7上生长所述第一势垒。其中,生长材料为无掺杂的aln材料,生长厚度为1.2nm。

形成所述第一势垒层2后,在所述第一势垒层2上形成势阱层3。具体地,采用分子束外延工艺在所述第一势垒层2上生长所述势阱层3。其中,生长材料为无掺杂的gan材料,生长厚度为1.2nm。

形成所述势阱层3后,在所述势阱层3上形成第二势垒层4。具体地,采用分子束外延工艺在所述势阱层3上生长所述第二势垒层4。其中,生长材料为无掺杂的aln材料,生长厚度为1.2nm。

形成所述第二势垒层4后,在所述第二势垒层4上形成第二隔离层8。具体地,采用分子束外延工艺在所述第二势垒层4上生长所述第二隔离层8。其中,生长材料为无掺杂的gan材料,生长厚度为2nm。

形成所述第二隔离层8后,在所述第二隔离层8上形成第二欧姆接触层6。具体地,所述第二欧姆接触层6的生长材料为重掺杂si的gan材料,该gan材料的si掺杂浓度为1×1019cm-3~9×1019cm-3,所述第二欧姆接触层6的生长厚度为200nm~500nm。

如图2h至图2j所示,生长共振隧穿二极管的外延部a之后,所述制作方法还包括:

对所述第二欧姆接触层6、所述第二隔离层8、所述第二势垒层4、所述势阱层3、所述第一势垒层2、所述第一隔离层7和所述第一欧姆接触层5进行部分刻除,以形成台面结构b。

形成所述台面结构b后,在所述台面结构b的表面上形成钝化膜9,并对所述钝化膜9进行部分刻除,以暴露部分所述第二欧姆接触层6和部分所述第一欧姆接触层5。

在暴露的所述部分第二欧姆接触层6和所述部分第一欧姆接触层5上分别生长金属材料,形成第一电极10和第二电极11,使得所述共振隧穿二极管能够与其他外界器件形成电子回路。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1