一种硒化铋超晶格结构及其制备

文档序号:25488041发布日期:2021-06-15 21:51阅读:681来源:国知局
一种硒化铋超晶格结构及其制备

本发明属于拓扑绝缘体与热电材料领域,具体涉及一种硒化铋超晶格结构及其制备,特别地,是利用分子束外延技术在衬底表面依次交替外延生长结晶取向为(001)的硒化铋(化学式为:bi2se3)单晶薄膜与硒化铟铋固溶体(化学式为:(bi1-xinx)2se3,其中0.20≤x≤0.35)单晶薄膜,从而构建出超晶格结构(其中nn,mn分别表示超晶格不同单元中bi2se3层以及(bi1-xinx)2se3层中含有的五原子层厚度单元的数目,n为超晶格中单元的堆叠个数)。



背景技术:

硒化铋(化学式为:bi2se3)既是一种具有较大体能带隙(~0.3ev)的强拓扑绝缘体(拓扑绝缘体是新近发现的一类材料形态,它们的体电子态是有能隙的绝缘体,表面则是无能隙的金属态,且这些表面态为自旋极化的),又是一种性能较优异且不含有毒元素的热电材料。选择合适的垒层材料与bi2se3构成硒化铋超晶格后,与相同厚度的纯化合物bi2se3单晶薄膜相比,硒化铋超晶格的热导率将大幅度下降而热电功率因子却能得到一定程度的提高,因此其总体热电性能提升明显,如文献1报道的bi2se3/ha0.11dmso0.06有机/无机超晶格可以显著提高热电优值,室温下功率因数可达950μwm-1k-2;硒化铋与普通绝缘体形成超晶格后,体电子浓度下降而拓扑电子态浓度提高,因此其拓扑物性得到加强;改变超晶格垒层材料的化学成分与超晶格的周期厚度还可进一步实现拓扑物性的人工调制,如文献2报道的bi2se3/sb2te3超短周期超晶格可以通过改变超晶格周期厚度在保持拓扑表面态的同时降低体电导率,以及文献3报道的bi2se3/znxcd1-xse超晶格可以通过调节杂化结构中非拓扑垒层的电荷转移来控制拓扑输运。目前,由于硒化铟(化学式为:in2se3)与bi2se3具有良好的化学与结构相容性,大部分硒化铋超晶格结构是由in2se3与bi2se3构成,但是,文献4的研究发现,采用in2se3作为垒层的硒化铋超晶格,温升条件下in原子穿过超晶格界面扩散进入bi2se3层的现象十分严重,在温度为250℃时,大量in扩散进入bi2se3层形成(bi1-xinx)2se3固溶体,破坏了bi2se3层的拓扑量子特性以及超晶格理想的界面结构。为了保证bi2se3/in2se3超晶格的结构稳定,通常在制备与使用过程中的温度不能超过250℃,如文献5公布的bi2se3/in2se3超晶格的制备技术中,就将生长温度限定为150℃。另外,垒层材料in2se3目前已知的就有α、β、γ、δ和κ五种主要晶相,且各晶相间的相转变温度处于中低温区较窄的温度范围内,in2se3在较低温度下的结构不稳定特性也进一步限制了bi2se3/in2se3超晶格在拓扑电子学与热电学方面的应用。文献6中还提到,尽管in2se3与bi2se3晶格结构相似,但仍存在3.3%的晶格失配,随着超晶格周期和厚度的增加,失配引入的应变会导致超晶格周期相干性变差,从而严重影响超晶格的各种性能。因此,为了更好地利用硒化铋超晶格在拓扑量子与热电转换器件中的潜力,有必要找寻一种结构更稳定,性能更优异的超晶格结构并开发出经济的制备方案。

参考文献

文献1:zongpa,zhangp,yins,etal.fabricationandcharacterizationofahybridbi2se3/organicsuperlatticeforthermoelectricenergyconversion[j].advancedelectronicmaterials,2019,5(11):1800842.

文献2:levyi,youmansc,garciata,etal.designertopologicalinsulatorwithenhancedgapandsuppressedbulkconductioninbi2se3/sb2te3ultrashort-periodsuperlattices[j].nanoletters,2020,20(5):3420-3426.

文献3:chenz,zhaol,parkk,etal.robusttopologicalinterfacesandchargetransferinepitaxialbi2se3/ii–visemiconductorsuperlattices[j].nanoletters,2015,15(10):6365-6370.

文献4:xuc,yinx,hej,etal.thegrowthandcharacteristicsofin2se3/(bi1-xinx)2se3superlatticeswithasymmetricgradedinterfacesbymolecularbeamepitaxy[j].appliedphysicsletters,2020,116(25):251605.

文献5:李含冬等,一种铋层状化合物超晶格的制备方法,中国发明专利,zl201610054544.5。

文献6:wangy,laws.opticalpropertiesof(bi1-xinx)2se3thinfilms[j].opticalmaterialsexpress,2018,8(9):2570-2578.



技术实现要素:

本发明的目的在于克服现有硒化铋超晶格结构存在的缺点,提供一种新的采用硒化铟铋固溶体单晶薄膜作为硒化铋超晶格垒层材料的超晶格结构及其分子束外延制备方法。该bi2se3/(bi1-xinx)2se3超晶格相对于传统的bi2se3/in2se3超晶格具有更为优异的结构稳定性,避免了采用in2se3垒层容易出现的相变和应力问题,充分保护了超晶格的拓扑物性。该超晶格结构简单,可以大幅简化制备工艺,在整个生长过程中无需反复改变温度、束流等关键性生长条件,便于生长多周期超晶格,使得通过改变超晶格周期来调制拓扑和热电物性的目的实现起来更为容易。

为了实现上述目的,本发明提供如下技术方案:

一种硒化铋超晶格结构,其特征在于,所述超晶格结构为多层膜结构,多层膜结构中硒化铋(化学式为:bi2se3)薄膜和硒化铟铋(化学式为:(bi1-xinx)2se3)固溶体薄膜交替堆叠;

进一步地,所述硒化铋超晶格结构的膜结构由通式表示(简称为bi2se3/(bi1-xinx)2se3超晶格),其中连加符号σn表示超晶格为由1到n个不同的单元依次堆叠而成,n为正整数且1≤n≤1000;nn为第n个单元中bi2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi-se-bi-se-)作为一个厚度单元的单元数目,nn为正整数且1≤nn≤100;mn为第n个单元中(bi1-xinx)2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi(in)-se-bi(in)-se-)作为一个厚度单元的单元数目,mn为正整数且1≤mn≤100;x为(bi1-xinx)2se3固溶体薄膜中in掺杂原子的原子百分比含量,由纯小数表示。

进一步地,所述bi2se3薄膜和(bi1-xinx)2se3固溶体薄膜均为单晶结构。

进一步地,所述(bi1-xinx)2se3固溶体薄膜中in掺杂原子的原子百分比x范围为:0.20≤x≤0.35。当x小于0.20时,(bi1-xinx)2se3固溶体薄膜不表现为理想绝缘体;当x大于0.35时,(bi1-xinx)2se3固溶体薄膜中in含量过饱和将导致杂相析出,影响结晶质量。因此(bi1-xinx)2se3固溶体中in掺杂原子的原子百分比含量x取值在0.20~0.35之间超晶格性能为优。

进一步地,所述硒化铋超晶格结构每一个单元中的nn、mn值可以任意取1~100范围内任意正整数的组合。由此实现对超晶格周期结构参数的任意调整。

本发明还提供一种硒化铋超晶格结构的制备方法,其特征在于,包括以下步骤:

步骤(1):将衬底材料进行清洗、干燥,并传入分子束外延系统;

步骤(2):将衬底加热至生长温度并保持不变,将铋源、铟源、硒源升温至等效束流压强(bep)分别为bepbi:4×10-8~8×10-8mbar,bepin:1×10-8~2×10-8mbar,bepse:5×10-7~1×10-6mbar后保持不变;

步骤(3):依次生长每个单元中的bi2se3单晶薄膜与(bi1-xinx)2se3固溶体单晶薄膜至需要的nn、mn与n值,生长结束后将衬底自然降温至室温即得到硒化铋超晶格结构。

进一步地,所述步骤(1)中衬底材料为硅(si)、磷化铟(inp)、硫化镉(cds)、碳化硅(sic)、砷化镓(gaas)、云母(mica)、蓝宝石(al2o3)、定向裂解石墨(hopg)以及石墨烯(graphene)。

进一步地,保持生长过程中的铋源与铟源的等效束流压强比范围为2~5(bepbi:bepin=2~5)。根据实验可知,保持(bi1-xinx)2se3薄膜中in百分比含量为0.20~0.35所需铋源与铟源等效束流比压强范围正好为2~5。

进一步地,保持生长过程中的硒源与铋源、铟源之和的等效束流压强比范围为10~20(bepse:bepbi+in=10~20)。实验证明分子束外延生长硒化物薄膜时必须保证一定的富se条件,否则由于se的掺入率不足将导致硒化物薄膜偏离理想化学计量比以及引入其它类型体缺陷;而生长过程中se蒸气压过高时,将会影响bi、in元素在表面外延生长时的掺入效率;因此bepse:bepbi+in压强比范围在10~20之间所得超晶格质量为优。

进一步地,硒源可以采用普通束流源或者裂解束流源。

进一步地,所述生长温度为150℃~300℃之间任意温度。在此温度范围内可获得质量优良的超晶格结构。若衬底温度低于150℃会导致薄膜表面迁移率降低,使得生长模式由理想的层状生长模式改变为岛状生长模式,从而无法获得陡峭的超晶格界面;而衬底温度高于300℃则表面se原子脱附严重,导致薄膜内出现较高的缺陷密度。因此生长温度在150℃~300℃之间制备得到的超晶格质量为优。

本发明与现有技术相比,具有如下的优点和有益效果:

本发明提供的bi2se3/(bi1-xinx)2se3超晶格结构采用(bi1-xinx)2se3固溶体作为垒层材料,这样的有益效果是,(bi1-xinx)2se3固溶体在与bi2se3形成超晶格时,由于其为理想的电绝缘体,对超晶格中bi2se3层的电输运不会带来影响且能提高超晶格中拓扑电子的浓度占比;(bi1-xinx)2se3固溶体的晶体结构与bi2se3相一致,二者形成超晶格时晶格失配小,利于获得应变小、缺陷密度低的优良超晶格;该bi2se3/(bi1-xinx)2se3超晶格中in原子穿过超晶格界面的扩散现象得到抑制,结构稳定性优异,因此在其制备和使用过程中都可以采用较高的温度,增强了其在微热电器件和拓扑绝缘体器件应用方面的鲁棒性;本发明采用常规的分子束外延方法进行材料的生长制备,超晶格生长过程中不存在升降温等生长间断过程,仅需要进行铟源的挡板切换,有利于在生长过程中保持平整的表面状态,保证材料的高质量生长,并且整个生长过程具有工艺流程精简,参数控制方便,成本低,对环境友好等优点,不仅适合小批量科研样品制备,也适合大规模工业化生产。

附图说明

此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:

图1为本发明提供的一种硒化铋超晶格结构示意图,其中,bi2se3层和(bi1-xinx)2se3层顺序可交换,每一个单元中的nn、mn值可以任意调整;

图2为本发明提供的实施例1一种硒化铋等周期型超晶格结构(结构通式为:∑5{[bi2se3]3/[(bi0.76in0.24)2se3]8})分子束外延生长制备时,样品表面反射式高能电子衍射强度随时间的变化情况(其中横坐标为生长时间,单位为秒;纵坐标为强度,取任意单位);

图3为本发明实施例1所制∑5{[bi2se3]3/[(bi0.76in0.24)2se3]8}超晶格的x射线衍射图(其中横坐标为衍射角度2θ,单位为度;纵坐标为表示对数化后的衍射峰强度,取任意单位);

图4为本发明图3xrd衍射图中(0015)晶面衍射峰的局部放大图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。

实施例1:

本发明提供一种硒化铋等周期型超晶格结构,其特征在于,所述超晶格结构为多层膜结构,多层膜结构中硒化铋(化学式为:bi2se3)薄膜和硒化铟铋(化学式为:(bi1-xinx)2se3)固溶体薄膜交替堆叠;

优选地,所述硒化铋等周期型超晶格结构的膜结构通式可表示为其中nn=3表示每个单元中bi2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi-se-bi-se-)作为一个厚度单元的单元数目均为3;mn=8表示每个单元中(bi1-xinx)2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi(in)-se-bi(in)-se-)作为一个厚度单元的单元数目均为8;n=5表示单元的堆叠个数为5。

优选地,所述bi2se3薄膜和(bi1-xinx)2se3固溶体薄膜均为单晶结构。

优选地,所述(bi1-xinx)2se3固溶体薄膜中in掺杂原子的原子百分比x=0.24,介于所述范围0.20≤x≤0.35。

优选地,所述硒化铋等周期型超晶格结构每一个构成单元中的nn、mn值均分别为3、8。由此构成等周期型超晶格结构。

优选地,所述的一种硒化铋等周期型超晶格结构的制备方法,其特征在于,包括以下步骤:

步骤(1):将衬底材料进行清洗、干燥,并传入分子束外延系统;

步骤(2):将衬底加热至生长温度并保持不变,将铋源、铟源、硒源升温至等效束流压强(bep)分别为bepbi:4×10-8mbar,bepin:1×10-8mbar,bepse:5×10-7mbar后保持不变;

步骤(3):依次生长单元中的(bi0.76in0.24)2se3固溶体单晶薄膜与bi2se3单晶薄膜至需要的nn=3、mn=8,并重复以上过程5次(n=5),生长结束后将衬底自然降温至室温即得到硒化铋等周期型超晶格结构。

优选地,所述的一种硒化铋等周期型超晶格结构的制备方法,其特征在于:所述步骤(1)中衬底材料为氟晶云母(f-mica)。

优选地,所述的一种硒化铋等周期型超晶格结构的制备方法,其特征在于:保持生长过程中的铟源与铋源的等效束流压强比为4(bepbi:bepin=4,介于所述范围2~5)。

优选地,所述的一种硒化铋等周期型超晶格结构的制备方法,其特征在于:保持生长过程中的硒源与铋源、铟源之和的等效束流压强比为10(bepse:bepbi+in=10)。

优选地,所述硒源采用了裂解束流源。

优选地,所述的一种硒化铋等周期型超晶格结构的制备方法,其特征在于:所述生长温度为250℃。

图2是通过反射式高能电子衍射仪对实施例1∑5{[bi2se3]3/[(bi0.76in0.24)2se3]8}硒化铋等周期型超晶格结构生长过程进行原位观测获得的衍射强度随时间的变化规律,反映了样品的外延生长模式和表面平整度。衍射强度出现了周期性振荡即说明在此生长条件下超晶格为理想的层状生长模式,而一个完整的振荡周期对应于bi2se3或者(bi1-xinx)2se3层沿(001)晶体取向完成一个五原子层厚度单元生长所需的时间。图示中(bi0.76in0.24)2se3层平均振荡周期为~175s;生长到第8层,即第8个振荡周期且强度达到最大值时,迅速关闭in束流源,开始生长bi2se3层,可以观察到振荡周期变长(~230s)。在bi和in的表面掺入效率为100%的情况下,由于bi2se3或者(bi1-xinx)2se3层的生长速率决定于单位时间内bi或者bi(in)原子在表面的总掺入量,则根据bi2se3及(bi1-xinx)2se3层生长时振荡周期的比值(175/230≈0.76)可确定出(bi1-xinx)2se3固溶体薄膜中bi原子百分含量为0.76,从而可知in原子百分含量x=0.24;同样地,在bi2se3层生长到第3层且振荡强度达到最大值时,超晶格第一周期生长完成(n=1);随后迅速打开in束流源,开始生长超晶格第二周期(n=2)的第一个(bi0.76in0.24)2se3层,重复上述过程直至生长结束。

图3是通过高分辨x射线衍射仪对实施例1硒化铋等周期型超晶格结构制备完成后所得xrd衍射图。图中标有▼为云母衬底的衍射峰,其余衍射峰分别对应于bi2se3的(003)、(006)、(009)、(0012)、(0015)、(0018)及(0021)晶面,未观察到in2se3杂相峰,表明in原子有效掺入到bi2se3中且薄膜整体均为单晶结构,未出现相分离。

图4是对图3中(0015)晶面衍射峰的局部放大图,图示箭头位置可以观测到超晶格高阶衍射峰,表明了所制硒化铋超晶格结构优良、界面陡峭,相较于bi2se3/in2se3超晶格在较高温度下未发生in穿过界面的扩散行为。

通过电输运测试发现,所制∑5{[bi2se3]3/[(bi0.76in0.24)2se3]8}等周期型超晶格室温电阻率为80mω·cm,相较于同厚度的bi2se3单晶薄膜电阻率(~1mω·cm)得到了显著提高,反映了超晶格中体电子浓度的明显降低。

实施例2:

本发明提供一种硒化铋非周期型超晶格结构,其特征在于,所述超晶格结构为多层膜结构,多层膜结构中硒化铋(化学式为:bi2se3)薄膜和硒化铟铋(化学式为:(bi1-xinx)2se3)固溶体薄膜交替堆叠;

优选地,所述硒化铋非周期型超晶格结构的膜结构通式可表示为其中nn表示第n个单元中bi2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi-se-bi-se-)作为一个厚度单元的单元数目;mn表示第n个单元中(bi1-xinx)2se3沿(001)晶体取向上以每五个单原子层(重复顺序为:-se-bi(in)-se-bi(in)-se-)作为一个厚度单元的单元数目;n=10表示共有10个堆叠单元。

优选地,所述bi2se3薄膜和(bi1-xinx)2se3固溶体薄膜均为单晶结构。

优选地,所述(bi1-xinx)2se3固溶体薄膜中in掺杂原子的原子百分比x=0.24,介于所述范围0.20≤x≤0.35。

优选地,所述超晶格从第一个单元开始至最后一个结束(n=1,2,…,10),nn、mn值分别为10、1;9、1;8、1;7、1;6、1;5、1;4、1;3、1;2、1;1、1。由此构成硒化铋非周期型超晶格结构。

优选地,所述的一种硒化铋非周期型超晶格结构的制备方法,其特征在于,包括以下步骤:

步骤(1):将衬底材料进行清洗、干燥,并传入分子束外延系统;

步骤(2):将衬底加热至生长温度并保持不变,将铋源、铟源、硒源升温至等效束流压强(bep)分别为bepbi:4×10-8mbar,bepin:1×10-8mbar,bepse:5×10-7mbar后保持不变;

步骤(3):依次首先生长第一个单元至n1=10,m1=1;再生长第二个单元至n2=9,m2=1;……共生长十个单元至n10=1,m10=1为止;生长结束后将衬底自然降温至室温即得到硒化铋非周期型超晶格结构。

优选地,所述的一种硒化铋非周期型超晶格结构的制备方法,其特征在于:所述步骤(1)中衬底材料为硅(si)。

优选地,所述的一种硒化铋非周期型超晶格结构的制备方法,其特征在于:保持生长过程中的铟源与铋源的等效束流压强比为4(bepbi:bepin=4,介于所述范围2~5)。

优选地,所述的一种硒化铋非周期型超晶格结构的制备方法,其特征在于:保持生长过程中的硒源与铋源、铟源之和的等效束流压强比为10(bepse:bepbi+in=10)。

优选地,所述硒源采用了裂解束流源。

优选地,所述的一种硒化铋非周期型超晶格结构的制备方法,其特征在于:所述生长温度为250℃。

通过热电性能测试发现,所制bi2se3/(bi0.76in0.24)2se3非周期型超晶格在垂直于界面方向的中低温区热导率相较于同厚度的bi2se3单晶薄膜热导率下降超过一个数量级,在热电功率不变的前提下意味着超晶格获得了增强的热电性能。

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1