一种驱动器与内置式永磁同步电机的匹配方法与流程

文档序号:16628606发布日期:2019-01-16 06:21阅读:496来源:国知局
一种驱动器与内置式永磁同步电机的匹配方法与流程

本发明涉及电机控制领域,具体是一种驱动器与内置式永磁同步电机的匹配方法。



背景技术:

永磁同步电机(简称pmsm)的转子磁场由永磁体产生,故因此得名。按照永磁体结构分类,永磁同步电机可分为表贴式永磁同步电机(简称spmsm)和内置式永磁同步电机(简称ipmsm)。与表贴式永磁同步电机相比,内置式永磁同步电机的转子结构可以充分利用转子磁路不对称所产生的磁阻转矩,提高电机的功率密度,使得电机的动态性能较表贴式转子结构有所改善,单位电流转矩大,有较强的过载能力,因此适合作为驱动电机应用于电动汽车等。

在实际应用中,驱动系统的驱动效率成为研究者关心的一个重要问题。其中电机驱动器作为执行部件,其控制精确度和驱动效率直接影响整个驱动系统的优劣。因此实现驱动器与电机的最优匹配显得尤为重要。

在工程实际应用中永磁同步电机的电感参数随电流变化明显,电机电磁转矩的计算准确性也受电机电感参数准确性的影响。在现存电机控制原理中,无论是矢量控制、直接转矩控制还是最大转矩电流比控制等原理,应用这些原理时都没有注重永磁同步电机的电感参数随电流变化对控制系统的影响,也没有实现电机的效率最优,因此有待改进。申请号201810204955.7的文献公开了一种基于查表方式的永磁同步电机的弱磁控制方法,由定子电压方程、电磁转矩方程、最大定子电流等公式得到电流数据表格,能够对电机转矩在恒转矩区域和弱磁区域均能进行较准确的控制。但由于生成电流数据表格的过程中使用的电感参数为定值,使得电机控制精度受到影响。同时生成的满足最大转矩电流比(mtpa)控制的电流数据表,只能减小永磁同步电机定子绕组铜耗,却不能实现电机的效率最优。



技术实现要素:

针对现有技术的不足,本发明拟解决的技术问题是,提供一种驱动器与内置式永磁同步电机的匹配方法。

本发明解决所述技术问题的技术方案是,提供一种驱动器与内置式永磁同步电机的匹配方法,其特征在于该方法包括以下步骤:

步骤1、在台架上使用离线方式标定出内置式永磁同步电机在不同模拟工况下的若干组d-q轴电感参数,生成电感参数表;

步骤2、根据步骤1生成的电感参数表,通过效率优化策略获取不同模拟工况下内置式永磁同步电机高效工作点

步骤3、根据步骤2得到的高效工作点对内置式永磁同步电机进行标定,生成电流指令表;驱动器控制板根据电流指令表生成驱动电路驱动信号,实现驱动器与内置式永磁同步电机的匹配。

与现有技术相比,本发明有益效果在于:

1、在计算损耗数学模型方面,不同于常规将d-q轴电感视为定值的处理方法,本方法根据d-q轴电感随内置式永磁同步电机运行工况变化而变化的实际情况,使用离线方式标定出若干组d-q轴电感参数,并通过查表法将(ld,lq)应用于效率优化计算中,使损耗数学模型更加贴近实际情况,减小电机电感参数随电流变化对控制精度的影响。

2、在运用查表法控制电机方面,不再使用最大转矩电流比(mtpa)控制,改用最小损耗策略,以实现电机效率最优化为目的,得到适用于大部分内置式永磁同步电机的电流指令表达式,将复杂的电机损耗问题简单化,替换为精细高效工作点的指令表,通过离线计算获得一系列内置式永磁同步电机高效工作点生成满足最小损耗控制的电流指令表,再通过查表法应用到控制中。

3、本方法从驱动电流角度进行研究,以降低电机功率损耗为目的,可动态调整电机的励磁电流,降低电机功率损耗,提高电机效率,使驱动器与电机处于一个较优的匹配状态,从而提升驱动器控制性能,更好的发挥驱动器的控制功能。

附图说明

图1为内置式永磁同步电机d-q轴等效电路图;

图2为本发明驱动器与内置式永磁同步电机的匹配原理图;

图3为本发明驱动器与内置式永磁同步电机的匹配原理细化图;(图中:1、电感参数表模块,2、效率优化策略模块,3、电流指令表模块,4、pi控制器模块,5、坐标变换模块,6、svpwm模块,7、电压源逆变器模块,8、位置转速检测模块,9、内置式永磁同步电机)

具体实施方式

下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明,不限制本申请权利要求的保护范围。

本发明提供了一种驱动器与内置式永磁同步电机的匹配方法(简称方法),其特征在于该方法包括以下步骤:

步骤1、在台架上使用离线方式标定出内置式永磁同步电机在不同模拟工况下的若干组d-q轴电感参数,生成电感参数表;

具体是,在搭建好的台架上测量若干组反电动势与带载后的相电压之间的相位差,根据交直轴电压公式,使用离线方式标定出若干组交直轴(d-q轴)电感参数,形成电感参数表;

标定出的电感参数数据需尽量包含不同模拟工况下的测量数据。

步骤2、根据步骤1生成的电感参数表,通过效率优化策略获取不同模拟工况下内置式永磁同步电机高效工作点效率优化策略具体是:

当电机转速低于弱磁基速时,依照电机最小损耗原则,根据步骤1生成的电感参数表与电机需求转矩和电机转速进行运算,生成电机高效工作点

步骤2中,通过最小损耗原则生成电机高效工作点的具体步骤如下:

a.通过等效电路法得到内置式永磁同步电机的功率损耗表达式:

式(1)中,ploss为电机功率损耗,rs为电机定子绕组等效电阻,rc为电机等效铁损电阻,id为电机定子电流d轴分量,iq为电机定子电流q轴分量,icd为电机d轴等效铁损电流分量,icq为电机q轴等效铁损电流分量,n为电机转速,pm为电机额定功率;

b.结合等效电路将功率损耗表达式代换为关于未知量d轴气隙电流分量iod的表达式:

等效电路表达式:

式(2)和(3)中,iod为电机d轴气隙电流分量,ioq为电机q轴气隙电流分量,ω为电机转动角速度,ld为电机d轴电感分量,lq为电机q轴电感分量,为电机永磁体磁链;

将式(2)和式(3)带入式(1),得到关于未知量d轴气隙电流分量iod的表达式(4):

其中:iod为电机d轴气隙电流分量,t为电机需求转矩;

c.通过求偏导和降阶等数学方法求得电机功率损耗最小时的d轴气隙电流分量iod,并生成电机工作点(iod,ioq),具体如下:

将步骤b中的ploss对iod进行求偏导处理,得到一个关于iod的一元四次方程,当电感参数数量级≤10-3(h)的时候可以舍弃高次项,便于方程的求解,得到一个一元二次方程,通过求解,得到iod解的表达式,进而生成电机工作点(iod,ioq);

d.再次结合等效电路获取电机高效工作点作为输出控制指令;

式(5)和(6)中,ioq为电机q轴气隙电流分量。

最小损耗原则适用于固定电感参数数量级≤10-3(h)的内置式永磁同步电机。

当电机转速高于弱磁基速时,根据电机运行速度受逆变器电压极限制约的规律,添加逆变器容量限制条件与电机需求转矩约束条件进行运算,生成电机高效工作点

步骤2中,通过逆变器容量限制条件与电机需求转矩约束条件生成电机高效工作点的具体步骤如下:

a.将式(7)和式(8)联立计算得到电机工作点(iod,ioq):

式(7)和(8)中,vmax为极限电压,np为电机极对数;

b.结合等效电路获取电机高效工作点作为输出控制指令。此步骤与最小损耗原则中的步骤d相同。

步骤3、根据步骤2得到的高效工作点对内置式永磁同步电机进行标定,生成电流指令表;驱动器控制板根据电流指令表生成驱动电路驱动信号,实现驱动器与内置式永磁同步电机的匹配。

具体是:在电机转速从零到最大转速区间内,每间隔xrpm标定一组需求输出转矩区间内每隔yn.m标定一组来生成电流指令表,其中x和y的值视具体情况而定。根据步骤2得到的高效工作点对内置式永磁同步电机进行标定,电流标定为-1~1间的q格式。

本发明同时提供了一种驱动器与内置式永磁同步电机的匹配方法的应用,其特征在于将本方法应用到通过控制内置式永磁同步电机的电流来改变电机的转速和转矩,进而实现驱动器与内置式永磁同步电机的匹配中(参见图2-3),具体方法是:电感参数表模块1为效率优化策略模块2提供电感参数,用于效率优化计算;效率优化策略模块2根据电机需求转矩和电感参数,借助最小损耗原则或逆变器容量限制条件与电机需求转矩约束条件,获取电机高效工作点信息,再根据高效工作点生成电流指令表模块3;电流指令表模块3的电流指令与反馈电流通过pi控制器模块4进行pi(比例积分)调节,输出电压信号;电压信号经过坐标变换模块5进行坐标变换处理,再经过svpwm模块6产生定子驱动电流,并使电流波形接近正弦波形;定子驱动电流经电压源逆变器模块7将输入端的直流电变为输出端的交流电,用于驱动永磁同步电机9;位置转速检测模块8实时检测内置式永磁同步电机9的转速n和旋转角度θ,为效率优化策略模块2与坐标变换模块5分别提供计算所需的转速n和旋转角度θ。

坐标变换模块5根据输入的旋转角度θ,用于自然坐标系、静止坐标系、同步旋转坐标系间的相互变换。

pi控制器模块4、坐标变换模块5、svpwm模块6、电压源逆变器模块7和位置转速检测模块8均为现有技术;

效率优化策略模块2的算法流程如下:

a.输入t、n、ld和lq信号;

b.通过效率优化策略计算求得电机功率损耗最小时的d-q轴气隙电流分量iod和ioq:

c.通过判断的大小进行决策;当时,获得iod和ioq,输出时,获得i′od和i′oq,输出其中

d.获得d-q轴电流表达式:

e.生成电机高效工作点

其中:

本发明未述及之处适用于现有技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1