离散时间可编程增益adc输入电路及方法

文档序号:7514060阅读:141来源:国知局
专利名称:离散时间可编程增益adc输入电路及方法
技术领域
本发明主要与离散时间输入电路有关,更具体地说,它与一个具有输 入信号与共模电流调零的离散时间模拟数字转换器(ADC)输入电路有关。
技术背景模数转换器的测量输入电路必须通常能处理输入信号与反馈参考电压 之间较大的共模电压差异,特别是在如AC线路功率或DC测量电路,及在 测试设备如数字电压表(DVM)等应用中。即使使用变压器或电阻分压器, 普遍应用所需的动态范围一般要求一级或多级可编程增益阶段,以便在输 入端保留信噪比(SNR)及一个高输入阻抗缓冲级,从而避免向受测源增加 负载,尤其是在受测源可能有较大输入电压范围,并在模数转换器模拟部 分的第一级要求多次增益调整时。离散时间采样电路,如在基于开关电容器中所使用的delta-sigma调 制器模数转换器已经用于此类测量电路,但仍通常需要输入缓冲器电路, 这是由于输入采样电容器通常必须为足够大,以便能降低在第一级放大器/ 积分器的输入端所引进的热噪声的程度。而且,在可编程增益应用中,由 于调整积分器的反馈电容器将对用于积分器中的放大器造成可变性能要 求,输入采样电容器一般需经过调整。将输入采样电容器的输入电容提高到能保持低热噪声注入所需的水准 降低了输入电路的阻抗,因此此类采样电路中通常要求有上述的缓冲器。
缓冲器的设计必须能处理输入源的共模电压与输入级的共模参考电压之间 通常较大的差异。在某些实施例中,提供一个共模电压参照以抵消测量源 的共模电压,由此简化对缓冲器电路的要求,但此类实施例通常要求一个 外部集成电路端子,及对共模电压源的缓冲。而且,缓冲器电路通常还要 考虑附加的负载功率。因此,需要为一个没有缓冲或外部共模参考的模数转换器提供一种低 功率、高阻抗离散时间的输入电路。发明内容本发明的目的是提供一种低功率、高阻抗离散时间输入电路和方法, 以实现述的没有缓冲或外部共模电压参考的模数转换器。该方法是一种电 路操作的方法。'该电路是一个delta-sigma模数转换器,其具有至少一个用于接收测 量输入电压的输入端子。在第一时钟相位, 一个切换电路将参考反馈电容 器加载于一个量化器(quantizer)依赖的参考反馈电压,相对于供参照的 共模电压。在第二时钟相位,切换电路将参考反馈电容器耦合于输入端子 与一个提供delta-sigma模数转换器环路滤波器的第一级积分器的求和 节点之间,由此施加参考反馈电压以抵消输入电压,并使求和节点保持输 入端子的共模电压。切换电路在第三时钟相位使参考反馈电容器放电,这 样就可去除在第二时钟相位末存在的依赖于输入端子电压的电压。通过提 取大部分依赖于参考反馈电压的量化误差的电荷与任何输入噪声,从而提 高了在输入端子的阻抗。可以对一个附加的输入增益调整采样电容器进行放电,方法是在第一 时钟相位期间通过将两个端子耦合于输入端的共模电压,并在第二时钟相 位期间并联于参考反馈电容器,从而设定积分器相对于输入端子的增益, 但不改变相对于参考反馈电压的增益。参考反馈电容器可以是一个有多个 选择性耦合于一个正或负的参考电压源电容器的电容器组,所选的组合根据量化器(quantizer)输出值进行确定。
一个双工切换电路,可包括增 益调整采样电容器与参考电容器组,以提供一个差分模数转换器输入电路。


上述有关本发明及其它目的、特征及优点在以下实施例中将显而易见, 特别是本发明的优选实施例的描述,如附图中的说明。图1是本发明的一个实施例所描述的一个模数转换器集成电路10的结 构图;图2是输入采样器电路11与模数转换器集成电路10的反馈电容器组 15详细的原理图;图3是图1中模拟数字转换器集成电路10内部的各信号之间的关系的 信号时间/电压图;图4是描述一个单端输入采样器电路与一个可以替代或选择性地应用 于模数转换器集成电路10的反馈电容器组详细的原理图。
具体实施方式
本发明涵盖了离散时间采样积分器电路与delta-sigma基于调制器的 模拟数字转换器(ADC)电路,其中提供一个同时配合共模与信号电压的高
输入阻抗,其方法是参考电容器(或电容器组),该参考电容器(或电容器组)通过使用作为一个输入采样电容器,提供量化器(quantizer)依赖的 反馈参考电压值。由于量化器(quantizer)依赖的反馈参考电压值匹配低 频率的输入信号,除了量化误差及噪声,从输入端获取一个非常小的信号 电流,可以得到一个高信号输入阻抗。此外,由于参考反馈电压相对于参 考共模电压已经过采样,且相对于积分器的求和节点所提供的虚地端,输 入端已经过采样,并保持了输入端的共模电压,从而保持了高共模输入阻 抗。
附加的输入增益调整采样电容器可用于对相对于积分器的求和点进行 采样,并且并联耦合于参考电容器。输入增益调整采样电容器不加载至参 考电压,这样模数转换器的增益相对于输入电压就可以得到提高,但相对 于参考电压的增益保持固定,以备参考电压自动进行调整。因此,可以使 用一个较大的输入电容器以提供更高的增益,并且无需一个输入缓冲器来 保持高输入阻抗,就可以在环路滤波器的第一级更容易设置一个可编程增 益积分器。
图1所示为根据本发明制作的一个模数转换器集成电路10的实施例。 一个模拟环路滤波器12接收一个差分输入电压信号V^并向一个为数字滤 波器14提供数字采样值的量化器(quantizer) 13的输入端提供一个噪声 整形输出信号,其反过来提供一个模数转换器转换数字输出值Digital 0ut。 量化器(quantizer) 13的输出Q
也被提供给一个反馈电容器组15, 其中电容器经选择使其中每个耦合于由 一个电压参考电路16所提供的一个
正与负电压参照(+VREF, -VREF)信号中的一个,相对于电压参考电路16的 共用电压信号^^=(+7,+-r^)/2,其也作为一个输出端而提供,并对应 于由量化器(quantizer)输出端所选择的参考反馈电压的共模值。如上所述,反馈电容器组15用于对差分输入电压信号V^采样,同时加 载在先前时钟相位中由量化器(quantizer)输出端Q
所选择的反馈电 荷。由于输入电压信号V^参照输入信号的共模电压,且在第二时钟相位中 反馈电荷仅被加载一个差分电荷,在模拟环路滤波器中第一级积分器的求 和节点保持为输入端子的共模电压。 一个输入增益调整电路11,同时采样 输入电压信号V^除了在最低的增益设定,因其仅使用反馈电容器组15来 对差分输入电压信号V^采样。输入增益调整电路11的输出端被耦合于模拟 环路滤波器12中的第一级积分器,反馈电容器组15所提供的输出端子也 是如此。 一个时钟发生器17控制了反馈电容器组15内的切换电路及输入 增益调整电路11,以控制输入信号Vw的采样并将量化器(quantizer)依 赖的反馈参考电压施加于模拟环路滤波器12的第一级积分器,下文将参照 图2对此做详细描述。时钟发生器17提供三个连续而非重叠时钟相位9l,Cp2禾口 (p3。图2是对输入增益调节电路11与反馈电容器组15的详细说明。输入 增益调整电路11是一个由多个输入采样器电路21A-21C组成的差分电路, 其设计都基本相同,除了在典型实施例中,电容采样电容器d+, C厂根据二 次幂进行加权,以按照一个二进制值gain
提供可编程增益。其它实施 例可能根据其它加权方法为采样电容器d+,C厂加权,或者采样电容器dd-都可以被等量加权。如图所示,典型的输入采样器电路21A包括两个采样电容器C一,C厂与由晶体管Nl-N8组成的一对切换电路构成,具有由时 钟相位9l与cp2控制的门电路,根据增益控制输入位gain
而启用。当 时钟相位c(h有效时,晶体管N3, N4与N7, N8被导通,使采样电容器d+ 与d-的两端短路接地。当时钟相位q)2有效时,晶体管N1, N2与N5, N6被 导通,从而使采样电容器d+与d-耦合于输入端子V^与一个由放大器Al 和一对积分器电容器CF+, CF-组成的可编程增益积分器的相应的求和节点之 间。反馈电容器组15包括一个对时钟相位91, q)2与q)3会做出响应的切换电 路20,这样当时钟相位qh为有效时,参考电容器(V-CR9—与0(1+-0 9+被耦合 于参考共模电压L及一个相应的转换触排S1A或S1B之间。转换触排S1A与 S1B受一个接收量化器(quantizer)输出信号Q
的级别解码器18输 出端的控制,并针对特殊量化器(quantizer)输出级别选择哪个参考电压 V,+或VREF—以加载于每个电容器CR1--CR9—与CR1+-CR9+。参考电压V,或V,的位 置由于SIB相对于转换触排S1A颠倒,因此从电容器(V-C^中选中一个互 补电容器组,以加载参考电压V,或V,。因此,在时钟相位91末,会提供 一个介于电容器Ou--CV的电荷总数与电容器C^-Cb9+的电荷总数之间的一个 差分电荷。虽然此处所描述的实施例使用了一个4位量化器(quantizer) 13,但是此量化器(quantizer) 13只是一个实施例,在本发明的实施例中 还可以使用其它位数的量化器(quantizer),包括一位的量化器 (quantizer)。
在时钟相位(p2期间,切换电路20使所有电容器CR1--CR9-耦合于积分器 的lr入端,该积分器由一个放大器A1构成,该放大器并联于在输入采样器 电路21A-21C中由相应的gain[n]信号而启用的任何电容器C厂。由于启用 的输入采样器电路21A-21C,与加载于电容CR1--(V的反馈参考电容相对应 的净电荷被分配给所有并联连接的电CV-CV以及所有被gain[n]信号启用 的输入采样电路21A-21C中的电容C厂。而升高的采样电容将提高由于输入 电压VIN-而注入积分器反馈电容器"+的电荷,而不是由于反馈参考电压所 带来的电荷。结果就是随着输入增益的增加,反馈参考电压自动按比例縮 小以匹配相同的输入电压范围。加入积分器反馈电容器Cp-的电荷仅由并联电容器(V-(V的电压所提供 的反馈参考电压与输入电压VIN-之间的差而决定,并联的电容器CV-(^-与 启用的输入采样器电路21A-21C中的电容器d-按比例分配电荷,对于大幅 低于采样率的频率,电压差只有量化误差与输入噪声。因此,信号输入阻 抗保持在一个高的数值。此外,由于电容器(V-(V的并联连接,且在启用 的输入采样器电路21A-21C中电容器C「总是参照第二时钟相位中的输入电 压V^,放大器A1的求和节点保持输入信号Vw的共模电压,进而保持一个 高共模输入阻抗。通过d-放电与d+接地,连接于放大器Al的求和节点的电容器d-与 d+的端子的电位保持输入共模电压,如图2所示,且通过特殊设计技术确 保在其耦合点至放大器Al的求和节点之间,电容器d-与d+端子的寄生电 容大幅高于参考电容器组CR1--(V与CR1+-(^+的寄生电容。寄生电容的此种关
系可以通过提高电容器C厂与d+电极的尺寸以增加寄生电容和/或通过添加 可选电容器CP-与Cp+以增加耦合于放大器Al的求和节点的C「和d+端子与地之间的电容来实现。电容器CR1+-CR9+,电容器d+与反馈电容器G+的工作与 开关,和上述电容器CR1—-CR9-,电容器C厂与反馈电容器CF-相同,但极性相反。 尤其应将电容器d+与C广的端子连接于晶体管N2, N4, N6与N8的电路节 点之间的"飞驰(flying)"寄生电容(耦合电容)最小化,且在电路中, 连接到开关电路20的CR1--CR9—端子组和"1+-0!9+端子组之间的寄生电容也应 最小化,该开关电路20将电容器CR1—-(V和电容器CR1+-CK9+耦合到放大器Al 的求和点。电容器d+与d-的相对电容在典型实例中被设定为电容器CV-(V (或 G^-Cb9+)的总电容的G-l倍,其中G是与由一个放大器A1构成的积分器相 对于输入信号V^的增益相应的换算因子,其相对于反馈参考增益。因此,每 个输入端子与放大器Al的相应求和节点之间的总电容为参照组电容的G 倍。因为连接于电压参考16的每个参考电压输出V,, VBEF-的电容器(V-Cb9+与(V-CV的总数是相等的,在开关S1A与S1B输出的有效的直流电 压为V④没有从电压参考16中提取共模电荷。在时钟相位(()3期间,切换 电路20中的晶体管使所有电容器CR1+-C^与C^-Ck9-短路,以去除电容器 CV-G9+与Cf(V上的电压,假设放大器A1的求和节点输入端接地,该电压 等于电容器CR1+-C映的输入电压V胁与电容器C^-CR9-的输入电压VIN—。现在参照图3,模数转换器集成电路10内的电路操作在信号时间/电压图中进行了说明。如图所示,时钟相位qh, q)2与cp3为分离的逻辑信号,它 包括非重叠脉冲,以及代表一个输入增益调整采样电容器电压的电压VCI, 例如,图l的d-上的电压,及电压V①其代表在相应参考电容器组中并联 于电容器(V-CV的有效电压。如图所示,在时钟相位cpi期间,电压VcB被 设定为Q(VREF - Vcm),其中Q是一个带符号的量化器(quantizer)输出值, 且归一化为l。 Vu被设定接地。在时钟相位cp2中,电容器C厂与CR1_-(V并联耦合,且因此根据q=CV 为总电容电荷进行再分配,得到q=Q(VREF-Vc )C,其中C为总参考电容器 CR1_-(V的电容。因此,总电压为V=Q(VREF-VCM)C/G,其中G是上述d的增益 比例因数。有效负端子输入电压因此为V-Q0U-VJC/G,表示相对于输入 信号V^的电压的一个增益G,及相对于参考反馈信号的一个统一增益,假 设积分器增益为G。现在参照图4,该图显示了另一个增益调整电路与反馈电容器组15A的 细节,可以用于测量提供给图1的集成电路10的一个单端信号。该拓扑变 化可以由附加的开关提供,这样可以根据逻辑信号选择图4的电路与图2 的电路。图4的电路类似于图2中的电路,因此下文只讨论两者之间的差 异。输入增益调整电路11与图2中所示的相同,除了在图4的电路中,只 有一个单端输入信号V^提供给晶体管Nl且晶体管N5接地,作为输入共模 参考级。虽然晶体管N7与N5都接地,为了电荷注入与输入通路电阻匹配, 晶体管N7与N5保留于电路中并参照图2按如上所说明方式进行切换。当 时钟相位qh有效时,晶体管N3, N4与N7, N8被导通,使采样电容器d+
与C广的两端短路接地。当时钟相位cp2为有效时,晶体管N1与N2被导通, 从而将采样电容器C广耦合于输入端子V^及由放大器Al与积分器电容器 CF+, CF-所形成的可编程增益积分器的反相求和节点之间。在(p2期间,晶体 管N5与N6也是导通的,将采样电容器d+耦合于地与放大器Al的非反相 的求和节点之间。反馈电容器组15A包括一个应对时钟相位cp" q)2和(()3的切换电路20A, 如上所述参照图2。然而,反馈电容器组进一步包括一套耦合于转换触排 S1B,而不是将转换触排S1B连接至参考电容器CR1+-(^+的虚拟电容器 CD1-CD9,如图2所示。由于输入信号为单端输入,在时钟相位cp2期间,在电 容器d+上没有信号可供抵消。因此,当时钟相位qh有效时,参考电容器 CV-CK9+的两端都耦合于参考共模电压V-,且在时钟相位cp2期间,参考电容 器CR1+-Cb9+被親合于放大器Al的非反相的求和节点与地之间,在d-(V的 每个端头匹配共模电压,在时钟相位9l中对参考电压采样,参考电容CR1+-CR9+ 还串联加载于输入信号VIN,如图2中的电路所示。由于参考电容器CRHC卵+在时钟相位化期间未被耦合于参考源,提供虚 拟电容器Gn-CD9加载于参考源,这样参考源的对称负载就得到保持。级别解 码器18的输出控制了转换触排S1B如图2的电路所示,但虚拟电容器Gn-CD9 是用于在时钟相位cp2期间将虚拟电容器CD1-C。9的两端接地,这样在时钟相 位cp3期间发生短路时,虚拟电容器CD1-C。g两端的电位仍保持接地。虚拟电 容器的动作因此模仿了参考电容器CR1+-C,在图2中对参考源的动作,并对 参考电容器(V-(V提供了与参考源相反的负载,如图2与图4所示的电路 中,其原因是放大器A1的求和节点与图2和图4的输入信号节点保持接地。本文对本发明做了特殊说明并参照其优选实施例进行了描述,熟悉本 领域的技术人员能够领会本发明,并可以在不超出本发明的构思与范围的 前提下对上述实施例的细节做出其它形式的变更。
权利要求
1. 一个离散时间采样电路,其特征在于,包括一个用于接收一个输入电压的输入端子;一个放大器,其具有一个从放大器的一个输出端连接至放大器的一个输入端的反馈电容器,从而形成一个积分器;一个用于在积分器输出端调整一个相对于输入信号之增益的增益调整电容器;一个参考反馈电容器;及一个切换电路,用于在第一时钟相位将参考反馈电容器耦合于一个反馈参考电压源并使输入增益调整电容器放电,并在第二时钟相位使参考反馈电容器与输入增益调整电容器并联耦合于放大器的输入端与输入端子之间。
2. 根据权利要求1所述的离散时间采样电路,其特征在于,还包括一 个量化器,其具有一个耦合于一个放大器的输出端的输入端,且其中在第 一时钟相位期间加载于参考电容器上的电荷根据量化器的输出端而设置, 其中加载于参考反馈电容器上的电荷大致抵消了输入电压,除去一个量化 误差与输入噪声,而输入端子在低频时提供了一个高阻抗。
3. 根据权利要求1所述的离散时间采样电路,其特征在于,还包括多 个其它增益调整电容器,由此输入增益调整电容器与其它增益调整电容器 形成了一个可选电容组,供针对一个或多个增益选择控制信号选择性地变 换积分器的输出端相对于输入信号的增益。
4. 根据权利要求1所述的离散时间采样电路,其特征在于,所述输入增益调整电容器的一个电容值与参考反馈电容器的一个电容值之间的比值 被设定为一个增益因子减去一的值,增益因子是离散时间采样电路相对于 输入电压的增益与离散时间采样电路相对于反馈参考电压源的增益之间的 一个比值。
5. 根据权利要求1所述的离散时间采样电路,其特征在于,在第三时 钟相位中,切换电路使参考反馈电容器放电,以便从参考电容器中去除信 号依赖电荷,从而防止了反馈参考电压源上的信号依赖失真。
6. 根据权利要求1所述的离散时间采样电路,其特征在于,所述参考 电容器是一个包括多个参考电容器的参考电容器组,在第一时钟相位期间, 多个参考电容器中每个第一端子被选择性地耦合于一个正电压参考源或一 个负电压参考源,且多个参考电容器中每个第二端子被耦合于一个共模参 考电压源,其值基本等于正电压参考源或一个负电压参考源的电压的一个 中间值。
7. 根据权利要求1所述的离散时间采样电路,其特征在于,所述放大器是一个差分放大器,输入端为第一输入端,参考反馈电容器是一个第一参考反馈电容器,并进一步包括一个互补第二输入端子,用于提供一个相对于第一输入端子上所存在 电压的差分输入电压;一个第二参考反馈电容器,其电容与第一参考反馈电容器的电容等值, 且其中切换电路在第一 时钟相位期间进一步将第二参考反馈电容器耦合于 互补参考电压源,并在第二时钟相位中将第二参考反馈电容器耦合于互补 第二输入端子与放大器的互补输入端之间。
8. 根据权利要求7所述的离散时间采样电路,其特征在于,所述输入 增益调整电容器是一个第一输入增益调整电容器,还包括一个第二输入增 益调整电容器,用于变更在积分器的输出端相对于输入信号的一个增益, 且其中切换电路进一步在第一时钟相位期间使第二输入增益调整采样电容 器放电,并在第二时钟相位期间将第二输入增益调整采样电容器并联耦合 于第二参考反馈电容器。
9. 根据权利要求7所述的离散时间采样电路,其特征在于,所述第一与第二参考反馈电容器分别为第一与第二参考电容器组,每个都包括多个 参考电容器,且其中在第一时钟相位中,多个参考电容器中的每个电容器 的第一端子被选择性地耦合于一个正电压参考源或一个负电压参考源,且 多个参考电容器中的每个电容器的第二端子被耦合于一个共模参考电压 源,其值大致等于正电压参考源或一个负电压参考源之间电压的一个中间 值,且其中在第一时钟相位中,第二参考电容器组中的多个参考电容器被 耦合于正电压参考源或负电压参考源中,与耦合到第一参考电容器组中相 应的参考电容器的参考电压相反的参考源。
10. 根据权利要求1所述的离散时间采样电路,其特征在于,所述放大器是一个差分放大器,参考反馈电容器是一个第一参考反馈电容器,输入增益调整电容器是一个第一输入增益调整电容器,并进一步包括一个第二参考反馈电容器,其电容与第一参考反馈电容器的电容相等, 且其中切换电路在第一时钟相位期间进一步将第二参考反馈电容器耦合于 互补参考电压源,并在第二时钟相位中将第二参考反馈电容器耦合于一个 具有与输入端子的一个共用电压的值大致相等的共模参考电压源及放大器的一个互补输入端之间;一个第二输入增益调整电容器,用于变更在积分器的输出端相对于输 入信号的增益,且其中切换电路在第一时钟相位期间进一步对第二输入增 益调整采样电容器放电,并在第二时钟相位期间将第二输入增益调整采样 电容器并联耦合于第二参考反馈电容器。
11. 一种对输入电压进行采样的方法,其特征在于,包括 在第一时钟相位期间,将一个参考反馈电容器加载于一个参考电压; 在第一时钟相位期间,将一个输入增益调整电容器放电;及 在第二时钟相位期间,将并联于输入增益调整电容器的参考电容器耦合于一个带有输入电压的输入电压端子及一个积分器的一个求和节点之 间。
12. 根据权利要求11所述的对输入电压进行采样的方法,其特征在于, 还包括根据输入电压的一个量化表述确定参考电压,且其中加载于参考反 馈电容器上的电荷基本抵消输入电压,除去一个量化误差与输入噪声,由 此在输入端子以低频率提供一个高阻抗。
13. 根据权利要求11所述的对输入电压进行采样的方法,其特征在于, 还包括在第三时钟相位期间,使参考电容器放电,从而防止了留存于参考 电容器上的信号依赖电压影响参考电压的一个来源。
14. 根据权利要求11所述的对输入电压进行采样的方法,其特征在于, 还包括从多个可选输入增益调整电容器的组合中选择输入增益调整电容 器。
15. 根据权利要求11所述的对输入电压进行采样的方法,其特征在于, 还包括向输入增益调整电容器提供一个第一电容值;并且向参考电容器提供一个以第一电容值除以一个增益值减去一的值的第 二电容值,其中增益因子是相对于输入电压的积分器增益与相对于参考电 压的积分器增益之间的一个比值。
16. 根据权利要求11所述的对输入电压进行采样的方法,其特征在于, 还包括量化一个来自积分器输出端的模拟信号,以生成模拟信号的一个数字 表述;并且选择性地将用于提供参考反馈电容器的参考电容器组中的多个电容器 中的每个电容器以组合方式耦合于一个正或负参考电压源,其中所选的组 合根据量化的结果而做出。
17. 根据权利要求11所述的对输入电压进行采样的方、法,其特征在于, 所述积分器具有差分输入,且其中为了参照与输入增益调整电容器的互补 对而进行放电与耦合。
18. —种模数转换器集成电路,其特征在于,包括: 一个环路滤波器,其具有一个用于接收一个输入电压的输入端子; 一个量化器,具有一个耦合于一个环路滤波器输出端的输入端,用于提供输入电压的一个噪声整形数字表述;一个耦合于一个量化器输出端的数字滤波器,用于输入电压的过滤噪 声整形数字表述,从而提供一个数字输出值;一个输入增益调整电容器;及一个反馈参考电压源,其具有一个耦合于量化器输出端的输入端,用 于向具有一个根据输入信号的噪声整形数字表述的参考电压值的环路滤波 提供一个反馈信号,其中环路滤波器的第一级包括一个含有切换电路的离 散时间积分器,反馈参考电压源包括一个参考电容器,切换电路加载参考 电容器至参考电压值并在一个第一 时钟相位期间使输入增益调整电容器放 电,并在第二时钟相位中将参考电容器与输入增益调整电容器并联耦合于 一个输入端子与积分器的求和节点之间,其中在第一时钟相位期间加载于 参考电容器上的一个电荷大幅减少了在第二时钟相位期间从输入端子处转 移来的电荷。
19. 根据权利要求18所述的模数转换器集成电路,其特征在于,所述 加载于参考电容器上的电荷基本抵消了输入电压,减去一个量化误差与输 入噪声,当输入端子在低频时提供一个高阻抗。
20. 根据权利要求18所述的模数转换器集成电路,其特征在于,所述 切换电路在第三时钟相位期间进一步释放参考电容器的电荷。
21. 根据权利要求18所述的模数转换器集成电路,其特征在于,还包 括至少另一个选择性地并联耦合于输入增益调整电容器的输入增益调整电 容器,同时根据一个或多个增益选择控制信号设定相对于输入电压的积分 器的增益。
22. 根据权利要求18所述的模数转换器集成电路,其特征在于,所述 参考电容器是一个包括多个参考电容器的参考电容器组,且在第一时钟相 位中,每个参考电容器中的第一端子选择性地耦合于一个正电压参考源或 一个负电压参考源,且每个参考电容器中的第二端子耦合于一个共模参考电压源,该电压源的值大致等同于正电压参考源或一个负电压参考源之间 电压的中间值。
23. 根据权利要求18所述的模数转换器集成电路,其特征在于,所述 输入增益调整电容器的电容除以多个参考电容器的总电容等于输入增益值 减去一,而向积分器提供的相对于一个提供给积分器的信号依赖电荷的一 个参考依赖电荷以一个等于输入增益值的因数按比例縮小。
24. —种对输入电压进行采样的方法,其特征在于,包括-在一个第一时钟相位期间,将一个参考反馈电容器加载于一个参考电压;在一个第二时钟相位期间,将参考电容器耦合于一个带有输入电压的 输入端子及一个积分器的求和节点之间,其中一个被加载于参考反馈电容 器上的电荷大幅降低了在第二时钟相位期间从输入端子转移来的电荷,其 中在积分器的求和节点处的共模电压保持为输入端子的共模电压,而其中 输入端子的共模电压与参考电压的共模电压表现出很大差异。
25. —种模数转换器集成电路,其特征在于,包括 一个环路滤波器,其具有一个用于接收输入电压的输入端子; 一个量化器,具有一个耦合于环路滤波器输出端的输入端,用于提供输入电压的一个噪声整形数字表征;一个耦合于一个量化器输出端的数字滤波器,用于对输入电压的过滤 噪声整形数字表述进行滤波,从而提供一个数字输出值;一个具有耦合于量化器输入端的反馈参考电压源,用于向环路滤波器 提供一个反馈信号,该环路滤波器具有一个依赖输入信号的噪声整形数字 表征的参考电压值,其中环路滤波器的第一级包括一个含有切换电路的离 散时间积分器,反馈参考电压源包括一个参考电容器,切换电路在第一时 钟相位期间将参考电压值加载于参考电容器,并在第二时钟相位将参考电 容器耦合于一个输入端子与积分器的求和节点之间,在第一时钟相位期间 加载于参考电容器上的一个电荷大幅减少了在第二时钟相位期间从输入端 子转移而来的电荷,在积分器的求和节点的共模电压保持于输入端子一个 的共模电压,且输入端子的共模电压与参考电压的共模电压表现出很大差 升°
全文摘要
本发明公开了一种具有输入信号与共模电流调零的离散时间可编程增益模拟数字转换器(ADC)输入电路,提供一个完全独立于输入电容器大小与输入信号增益设置的高输入阻抗级别。使用一个或多个参考电容器对一个输入电压进行采样,参考电容器已在先前的一个时钟相位被加载相应的一个受量化器(quantizer)控制的参考电压的净电荷。由于提取自输入电压源的电荷很大程度上仅取决于量化误差与输入噪声电压,所以电路具有高信号输入阻抗。参考电容器可以在第三时钟相位放电,这样输入信号依赖电压从电容器被释放。可以在第一时钟相位中对一个附加的采样电容器进行放电,并在第二时钟相位期间使其并联耦合于参考电容器,以便设定相对于输入电压的增益。
文档编号H03M3/02GK101399550SQ20081016921
公开日2009年4月1日 申请日期2008年9月28日 优先权日2007年9月28日
发明者普拉尚特·德拉克沙利, 约翰·保罗斯 申请人:美国思睿逻辑有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1