多模高效线性功率放大器的制作方法

文档序号:7537255阅读:186来源:国知局
专利名称:多模高效线性功率放大器的制作方法
多模高效线性功率放大器相关申请的交叉引用本申请要求于2008年2月4日提交的题为"Dual Mode Efficiency Enhanced Linear Power Amplifier (PA) ”的共同未决的美国临时专利申请No. 61/025, 965的优先权, 并在此将其全部公开内容通过参考并入本文。
背景技术
诸如蜂窝式电话、个人数字助理(PDA)、WIFI收发机的便携式通信设备和其它通 信设备以对应于不同通信带的各种频率和变化的功率水平发送和接收通信信号。使用通常 包括一个或多个放大级的功率放大器模块来发送通信信号。射频(RF)功率放大器系统可 以包括多个放大级,而且在一些应用中,可以包括多个放大路径。功率放大器系统的效率通 常由多个因素确定,而且在很大程度上,确定了由功率放大器系统消耗的功率的量。各种测量和确定功率放大器的效率的方法都是可用的。一种功率放大器效率的测 量结果被称为“功率附加效率”,缩写为PAE。功率放大器的PAE取决于多个因素,其包括但 不限于如果功率放大器系统为双模功率放大器,功率放大路径的数量;功率放大路径的 输出端处的负载阻抗;多级之间的阻抗匹配;以及其它因素。在应用两个或多个功率放大 路径以提供变化的功率输出水平的多模功率放大拓扑中,一般能够以高功率水平的功率放 大器线性度为代价来实现改进低功率水平的PAE。因此,期望提高功率放大器系统在功率水平范围内的PAE,而无需牺牲功率放大器 系统在功率输出水平范围内的线性度和性能。

发明内容
功率放大器的实施例包括多个放大路径,其中,选择性地启用和禁用至少一个放 大路径,其中,每个放大路径包括输出阻抗修正元件,以及可独立于所述输出阻抗修正元件 而进行操作的输出相移元件,并且其中,每个放大路径中的输出阻抗修正元件为每个放大 路径提供选择性的阻抗。还提供了其它实施例。在研究了以下附图和具体说明之后,本发明的其它系统、方 法、特征和优势对于本领域技术人员来说将变得显而易见。旨在将所有这种附加的系统、方 法、特征和优势包含在此说明书内和本发明的范围内,并受所附权利要求的保护。


参考以下附图可以更好地理解本发明。不必按比例绘制附图内的部件,反而强调 清楚地说明本发明的原理。此外,在附图中,相同的附图标记代表整个视图中对应的部分。图1是示出了简化的便携式通信设备的框图。图2是示出了多模高效线性功率放大器的实施例的简化框图。图3是示出了图2的多模高效线性功率放大器实施方式的实施例的示意图。图4是示出了图2的多模高效线性功率放大器所实现的增益压缩和增益扩展的图不。图5是示出了图2的多模高效线性功率放大器所实现的消除三阶互调截点(IMD3) 产物(product)的图示。图6是描述了图2的多模高效线性功率放大器的实施例的操作的流程图。
具体实施例方式尽管特别参考诸如便携式蜂窝电话或个人数字助理(PDA)的便携式通信设备进 行描述,多模高效线性功率放大器可以用在通过至少两个放大路径来放大发射信号的设备 或系统中,在替代实施例中,该多模高效线性功率放大器还被称为平衡线性功率放大器。多 模高效线性功率放大器可以被实施为包含其它电路元件的集成模块的一部分,或者可以被 实施为一个分立的功率放大模块。多模高效线性功率放大器可以在硬件、软件或硬件与软件的组合内实施。当在硬 件中实施时,多模高效线性功率放大器可以使用专门的硬件元件和控制逻辑来实施。当多 模高效线性功率放大器部分地在软件中实施时,或是在对各个元件或部件采用软件控制的 系统中实施时,该软件部分可以用来精确地控制多模高效线性功率放大器的各个部件。该 软件可以存储在存储器内,并由适当的指令执行系统(微处理器)来执行。多模高效线性 功率放大器的硬件实施方式可以包括以下本领域公知的技术中任何一种或其组合分立的 电子部件、集成的电子部件、具有逻辑门用于对数据信号实现逻辑功能的分立的逻辑电路、 具有适当的逻辑门的专用集成电路、可编程门阵列(PGA)、现场可编程门阵列(FPGA)等。多模高效线性功率放大器的软件包括用于执行逻辑功能的可执行指令的有序列 表,而且可以体现在任何用于或连接指令执行系统、装置或设备的计算机可读介质,所述指 令执行系统、装置或设备例如是基于计算机的系统、包含处理器的系统或其它可以从指令 执行系统、装置或设备中取出指令并执行该指令的系统。在此文件语境中,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传 送用于或连接指令执行系统、装置或设备的程序的装置。计算机可读介质可以是例如但不 限于电子、磁性、光学、电磁、红外或半导体系统、装置、设备或传播介质。计算机可读介质更 具体的示例(非穷尽列表)包括以下具有一个或多个导线的电连接(电子的)、便携式计 算机磁盘(磁性的)、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器 (EPR0M或闪存)(磁性的)、光纤(光学的)和便携式紧凑光盘只读存储器(CDROM)(光学 的)。应该注意,计算机可读介质甚至可以是在其上打印了程序的纸或另一适当的介质,因 为可以通过比如对纸或其它介质的光学扫描来电子地捕获该程序,然后编译、解释该程序, 否则就在必要的情况下以适当的方式来处理该程序,然后将其存储在计算机存储器内。图1是示出了简化的便携式通信设备100的框图。在实施例中,便携式通信设备 100可以是便携式蜂窝电话。多模高效线性功率放大器的实施例可以在具有RF发射机的 任何设备中实施,在此实例中,可以在便携式通信设备100中实施。图1所示的便携式通 信设备100旨在简化为蜂窝式电话的示例并且示出了许多可以在其中实施多模高效线性 功率放大器的可能的应用中的一个应用。本领域普通技术人员将理解便携式蜂窝电话的 操作,因此忽略实施细节。便携式通信设备100包括基带子系统110、收发机120和前端模 块(FEM) 130。尽管为了简明而未显示,但是收发机120—般包括用于为放大和发送基带信变频电路,并且包括用于接收RF信号并将其下变频为基带 信息信号以恢复数据的过滤和下变频电路。收发机120的操作细节为本领域技术人员所公 知。基带子系统一般包括通过系统总线112耦合的处理器102(可以是通用或专用微 处理器)、存储器114、应用软件104、模拟电路元件106、数字电路元件108和功率放大器软 件155。系统总线112可以包括物理和逻辑连接以将上述元件耦合在一起并实现它们的互 用性。输入/输出(I/O)元件116通过连接124连接至基带子系统110,存储器元件118 通过连接126耦合至基带子系统110,电源通过连接128连接至基带子系统110。I/O元件 116可以包括例如麦克风、键盘、扬声器、定位设备、用户接口控制元件和其它任何允许用户 提供输入指令并接收来自便携式通信设备100的输出的设备或系统。存储器118可以是任何类型的易失性或非易失性存储器,而且在实施例中,存储 器118可以包括闪存。存储器元件118可以永久性地安装在便携式通信设备110内,或者 可以是可移动存储器元件,例如可移动存储卡。电源122可以是例如电池或其它可充电的电源,或者可以是将AC电源转换成正好 能为便携式通信设备100使用的电压的适配器。处理器102可以是任何执行应用软件104以控制便携式通信设备100的操作和功 能的处理器。存储器114可以是易失性或非易失性存储器,在实施例中,存储器114可以是 存储了应用软件104的非易失性存储器。如果多模高效功率放大器的一部分在软件中实 施,则基带子系统110还包括功率放大器软件155,其与可由微处理器102或另一处理器执 行的控制逻辑合作,以控制下面将要描述的功率放大器200的操作。模拟电路106和数字电路108包括将由I/O元件116所提供的输入信号转换成要 发送的信息信号的信号处理、信号转换和逻辑。类似地,模拟电路106和数字电路108包括 将由收发机120所提供的接收信号转换成包含了恢复的信息的信息信号的信号处理、信号 转换和逻辑。数字电路108可以包括例如数字信号处理器(DSP)、现场可编程门阵列(FPGA) 或其它任何处理设备。因为基带子系统110包括模拟和数字元件,所以它有时被称为混合 信号设备(MSD)。在实施例中,前端模块130包括发射/接收(TX/RX)开关142和功率放大器200。 TX/RX开关142可以是双工器、同向双工器或其它任何将发射信号和接收信号进行分离的 物理或逻辑设备或电路。根据便携式通信设备100的实施方式,可以实施TX/RX开关142 以提供半双工或全双工功能。收发机120通过连接136所提供的发射信号引导至功率放大 器200。正如下面将详细描述地,功率放大器200可以实施为多模高效线性功率放大器,在 下面将要描述的实施方式中,功率放大器200将示出为使用两个放大路径来实施。通过连 接138向TX/RX开关142提供功率放大器200的输出,然后通过连接144提供给天线146。通过连接144向TX/RX开关142提供由天线146接收的信号,该TX/RX开关142 通过连接134向收发机120提供所接收的信号。在实施例中,基带子系统110通过连接152向功率放大器200提供功率或模式选 择、信号。模式选择信号判断是否启用功率放大器200内的一个或多个放大路径。图2是示出了多模高效线性功率放大器的实施例的简化框图。在图2中,多模高
6效线性功率放大器示出为使用两个放大路径来实施。然而,多模高效线性功率放大器的其 它实施例可以使用多于两个的放大路径来实施。功率放大器200通常被称为“平衡放大器”。在被转让给本申请的受让人并在此将 其通过参考并入本文的题为“Load Variation Tolerant Radio Frequency(RF)Amplifier” 的美国专利No. 6,954,623中可以发现平衡放大器的设计、构造和操作示例。在2007年3 月 9 日提交的题为“High-Efficiency Load Insensitive Power Amplifier”的共同未决、 共同受让的美国专利申请No. 11/684,431中还描述了平衡放大器,其均被转让给本申请的 受让人,并在此将其通过参考并入本文。功率放大器200包括第一放大路径210和第二放大路径220。出于例示的目的仅 示出了两个放大路径。具有多于两个放大路径的多模高效线性功率放大器的其它实施例是 可能的。通过连接136向第一放大路径210和第二放大路径220提供射频(RF)输入信号。 正如下面将详细描述的,在双模功率放大器系统中,当选择高功率模式时,放大路径210和 220都启用,在选择低功率模式时,可以只启用一个放大路径,例如第一放大路径210。每个放大路径包括各自的相移元件。第一放大路径210包括相移元件202,第二放 大路径220包括相移元件204。在实施例中,相移元件202提供+45°相移,相移元件204 提供-45°相移。在这一实施例中,第一放大路径210相对于第二放大路径220为90°异 相。然而,可以在放大路径210和放大路径220之间建立其它相移关系,这取决于应用。通过连接206向驱动器电路212提供相移元件202的输出,通过连接208向驱动 器电路214提供相移元件204的输出。驱动器电路212和驱动器电路214可以使用各种晶 体管技术来实施,例如包括但不限于双极结型晶体管(BJT)技术、异质结双极晶体管(HBT) 技术、金属氧化物半导体场效应晶体管(MOSFET)技术、互补金属氧化物半导体(CMOS)技术 或其它任何晶体管技术。通过连接216向功率放大器222提供驱动器电路212的输出,通过连接218向功 率放大器224提供驱动器电路214的输出。功率放大器222和功率放大器224可以包括一 个或多个功率放大级,为简单起见,在图2中仅显示为单个元件。功率放大器222和功率放 大器224可以使用各种技术来实施,例如包括但不限于双极结型晶体管(BJT)技术、异质结 双极晶体管(HBT)技术、金属氧化物半导体场效应晶体管(MOSFET)技术、互补金属氧化物 半导体(CMOS)技术或其它任何晶体管技术。在实施例中,模式选择元件252在基带子系统110的控制下来控制驱动器电路214 和功率放大器224是否可用。例如,在低功率模式中,由于只有第一放大路径210可用,所 以模式选择元件252通过连接254使驱动电路214不可用,并通过连接255使功率放大器 224不可用,从而使第二放大路径220不可用。在高功率模式中,模式选择元件252响应于 从基带子系统110通过连接152接收的信号,启用驱动器电路214和功率放大器224,从而 除了第一放大电路210之外还启用第二放大电路220。通过连接226向阻抗模块232提供功率放大器222的输出,通过连接228向阻抗 模块234提供功率放大器224的输出。阻抗模块232和阻抗模块234有时被称为“匹配元 件”、“输出匹配元件”或者“输出阻抗修正元件”,这是因为它们分别变换连接226和228上 的阻抗。阻抗模块232和阻抗模块234分别改变其输入连接226和228处的阻抗,以匹配例 如因连接138上的放大器的输出处的负载条件变化而引起连接236和238上变化的阻抗。
7
通过连接236向相移元件242提供阻抗模块232的输出,通过连接238向相移元 件244提供阻抗模块234的输出。在该示例中,相移元件242提供-45°相移,其与相移元 件202提供的相移互补;相移元件244提供+45°相移,其与相移元件204提供的相移互补。 因此,在连接138处的RF信号的相位关系与连接136处的RF信号的相位关系相同。通过 连接138组合相移元件242的输出和相移元件244的输出,并提供功率放大器200的输出。根据多模高效线性功率放大器的实施例,由阻抗模块232所提供的阻抗匹配与由 相移元件242所提供的相移分开,由阻抗模块234所提供的阻抗匹配与由相移元件244所 提供的相移分开。通过具有输出阻抗匹配和通过分开提供的相移以及针对每个放大路径的 阻抗结构,可以同时并独立地最大化输出阻抗匹配和两个路径的相位平衡。此外,可以取消 对昂贵且无效的Wilkinson功率组合器的使用。取消Wilkinson功率组合器消除了通常 出现在Wilkinson功率组合器内至少一个电感和至少一个固有损耗的电阻,因而减少了部 件总数和成本,同时提高了功率放大器在现有实施方式中的效率。现有实施方式以单一结 构组合输出阻抗匹配和相移,并使用Wilkinson功率组合器来组合放大路径。功率放大器 200的构架减少了信号损耗,提高了每个放大路径的阻抗匹配,在每个放大路径之间以及在 每个放大路径当中提供了精确的相位平衡,并提高了功率放大器200在所有功率水平的功 率附加效率(PAE)。此外,在实施例中,第一放大路径210提供增益扩展,而第二放大路径220提供增 益压缩。通过这种方式,功率放大器200的构架本质上消除了三阶互调截点(IMD3)产物, 因而提供了良好的功率放大器线性度,从而在放大路径210和220都可用时,提供了在峰值 功率水平的功率附加效率。在使第二放大路径220不可用的低功率模式操作时,第一放大路径210中的阻抗 模块232在连接226处提供高阻抗,因而提高了在低功率水平的功率附加效率。然而,当选 择高功率模式时,其中第一放大路径210和第二放大路径220都可用,由第一放大路径210 所提供的增益扩展和由第二放大路径220所提供的增益压缩共同具有独立地改变连接226 和连接228上的阻抗的能力,提高了功率放大器200在高功率输出的功率附加效率。具体 而言,在连接226处的阻抗可以不同于在连接228处的阻抗。然而,可以按标称的50欧姆 水平来保持连接236、238和138处的阻抗。通过这种方式,分离输出阻抗匹配与每个放大 路径的相移提供了用于在每个放大路径处提供不同阻抗的灵活性,同时在连接138处允许 预期的50欧姆,还在第一放大路径210与第二放大路径220之间保持精确的相位平衡。图3是示出了图2的多模高效线性功率放大器的实施方式的实施例的示意图。实施方式300是图2的功率放大器200的实施方式的示例。其它实施方式也是可 能的。实施方式300包括移相器202和移相器204,每一个移相器通过连接136接收RF输 入信号。移相器202包括电容302,移相器204包括电感304。在图3所示的实施方式中, 电容302对连接136上的输入信号提供+45°相移,电感304对连接136上的输入信号提 供-45°相移。正如在此所使用的,术语“电容”指的是电容器或其它任何提供电容的元件。 类似的,术语“电感”指的是电感器或其它任何提供电感的元件。此外,术语“电阻”包括电 阻器或其它任何可以提供电阻的设备。电容302耦合到电容306。电容306耦合到电感308。电感308耦合到晶体管316 的基极端。晶体管316是图2的驱动器202的异质结双极晶体管(HBT)实施方式。晶体管
8316的基极端通过电感324在节点332处偏置,电感324由电感322去耦合。电感304耦合到电容312和电感314。电感314耦合到晶体管318的基极端。晶 体管318示出了图2的驱动电路214的HBT实施方式。场效应晶体管(FET)328耦合到晶 体管318的基极以提供模式选择。场效应晶体管328还通过电感326耦合到节点332。FET 328的栅极端与连接152上的模式选择信号相连以控制晶体管318的基极的偏置提供,从而 启用或禁用第二放大路径。晶体管316的集电极端耦合到电容323两端的电压源317。晶体管316的集电极 端还通过电容337耦合到晶体管334的基极端。晶体管334表示图2的功率放大器222的 HBT实施方式。晶体管334的基极端通过电感336偏置到偏置节点321。电容325连接到 偏置节点321。晶体管318的集电极端连接至电容319两端的电压源317。晶体管318的集电极端 还通过电容339耦合到晶体管338的基极端。晶体管338是图2的功率放大器224的HBT 实施方式。晶体管338的基极端通过场效应晶体管342和电感341偏置到偏置节点321。 FET 342的栅极端与连接152上的模式选择信号相连以启用或禁用晶体管338。晶体管334的集电极端连接至阻抗模块232。阻抗模块232包括电感346和电容 347。阻抗模块232的输出通过电容354耦合至相移元件242。相移元件242包括电感356。 晶体管334的集电极端还与连接345上的电压源相连。晶体管338的集电极端连接至阻抗模块234。阻抗模块234包括电感351和电容 352。阻抗模块234的输出耦合至相移元件244。相移元件244包括电容358。晶体管338 的集电极端连接至连接349上电容348两端的电压源。电感356提供-45°相移,电容358提供+45 °相移。由相移元件242所提供 的-45°相移与由相移元件202所提供的+45°相移互补。由相移元件244所提供的+45° 相移与由相移元件204所提供的-45°相移互补。相移元件242中的电感356和相移元件 244中的电容358形成单个节点组合器350,其中该单个节点通过连接138提供射频输出。根据多模高效线性功率放大器的实施例,组合器350包括形成相移元件242的单 个电感356、形成相移元件244的单个电容358。组合器350并不包括会增加信号损耗的电 阻。因此,功率放大器实施方式300的输出使用最小数量的部件提供了较高的相位平衡、输 出阻抗匹配和功率附加效率。 针对每个放大路径,分离由阻抗模块232和234提供的阻抗匹配和由相移元件242 和244提供的相移,以在每个路径的阻抗匹配和放大路径当中提供了较高的相位平衡。可 以单独地选择阻抗模块232中电感346和电容347的值,以在晶体管334的集电极端提供 可选且可变的阻抗。类似地,可以单独地选择阻抗模块234中电感351、电容348以及电容 352的值,以在晶体管338的集电极端提供可选且可变的阻抗。在实施例中,可以适当地在 晶体管334的集电极端和晶体管338的集电极端处提供6-8欧姆的阻抗,这取决于输出功 率水平。 此外,出现在晶体管334的集电极端的阻抗与出现在晶体管338的集电极端的阻 抗相同或不同。然而,相移元件242的输入处的阻抗、在相移元件244的输入处的阻抗和在 连接138的输出处的阻抗可以保持在标称值,在本实施例中,该标称值可以为大约50欧姆。 通过这种方式,分离每个放大路径的输出阻抗匹配和相移提供了在每个放大路径具有不同的阻抗值的灵活性,同时在连接138处允许预期的标称50欧姆阻抗,同时还通过独立的相 移元件242和244的实施方式,在第一放大路径210和第二放大路径220之间保持精确的 相位平衡。图4是示出了由图2的多模高效线性功率放大器的两路径所实现的增益压缩和增 益扩展的图示400。水平轴402表示以ClBm(PoutdBm)为单位的放大器输出功率,左垂直轴 404表示以dB为单位的功率放大器增益,右垂直轴406表示功率附加效率(% PAE)。轨迹412表示第一放大路径210(图2)的增益,轨迹414表示第二放大路径 220 (图2)的增益,轨迹416表示两个放大路径210和220的总增益。轨迹416上的点422 表示在27. 173dBm的功率输出处的增益为28. 673dB。轨迹424示出了两个放大路径的功率 附加效率,点426示出了在27. 173dBm的功率输出处的PAE 50. 575%。图5是示出了由图2的多模高效线性功率放大器所实现的消除三阶互调截点 (IMD3)产物的图示。水平轴502代表放大器负载输出功率(Pload_dBm),左垂直轴表示以 dBm为单位的三阶互调截点(IMD3)。轨迹512表示第一放大路径210 (图2)的IMD3,轨迹514表示第二放大路径 220 (图2)的IMD3,轨迹516表示第一放大路径210和第二放大路径220的组合IMD3。由 于第一放大路径210 (图2)所提供的增益扩展与第二放大路径220 (图2)所提供的增益压 缩生成具有相对相位的互调(IM)信号,所以它们相互抵消。因此,在轨迹516上显示的整 个IMD3比第一放大路径210的IMD3水平和第二放大路径220的IMD3水平具有显著提高的 IMD3水平。如图所示,在大约24dBm的输出负载处,最小化了这两个放大路径的组合IMD3。图6是描述了图2的多模高效线性功率放大器的实施例的操作的流程图。可以按 照所示顺序或不按照所示顺序来执行流程图中的块。在块602中,向相移元件提供输入RF信号,该相移元件用来将输入信号划分成具 有相位关系的两个信号。在块604中,改变输入RF信号的相位以生成正⑴相移输入信号 和负(_)相移输入信号。在块606处,向第一放大路径提供正(+)相移输入信号。在块608 中,向第二放大路径提供负(_)相移输入信号。在块612中,对所述正(+)相移输入信号和负(_)相移输入信号进行放大。在块 614中,可以独立地调节出现在放大的正(+)相移输入信号的阻抗和出现在放大的负(_)相 移输入信号的阻抗。在块616中,与阻抗调节分离地,对放大的正⑴相移输入信号的相位和放大的负 (-)相移输入信号的相位进行移位,以形成放大的RF输出信号。相移还使用单个阻抗和单 个电容组合放大的正(+)相移输入信号和放大的负(_)相移输入信号,无需使用损耗的电 阻。与输出相移分离地,为每个放大路径提供独立的输出阻抗匹配允许对阻抗与两个放大 路径之间的相位关系进行独立调节,因而允许独立地优化这些参数中的每个参数。此外,在以禁用第二放大路径220(图2)的低功率模式操作时,第一放大路径210 中的阻抗模块232在连接226处提供了高阻抗,因此提高了在低功率水平的功率附加效率。 然而,当选择高功率模式时,其中第一放大路径210和第二放大路径220都被启用,第一放 大路径210所提供的增益扩展和第二放大路径220所提供的增益压缩共同具有改变连接 226和连接228上的阻抗和提高在高功率输出处的功率附加效率的能力。虽然描述了本发明的各个实施例,但是在本发明范围内许多更多的实施例和实施方式对于本领域普通技术人员来说是显而易见的。例如,本发明并不限于专用通信设备或 收发机。本发明的实施例还适用于不同类型的通信设备和收发机。
权利要求
一种功率放大器,包括多个放大路径,其中选择性地启用和禁用至少一个放大路径,其中每个放大路径包括输出阻抗修正元件以及可独立于所述输出阻抗修正元件进行操作的输出相移元件,并且其中每个放大路径中的所述输出阻抗修正元件为每个放大路径提供选择性的阻抗。
2.根据权利要求1所述的功率放大器,还包括组合器,其中所述组合器包括每个放大 路径的所述输出相移元件。
3.根据权利要求2所述的功率放大器,其中与第一放大路径相关联的所述输出相移元 件还包括电感,并且其中与第二放大路径相关联的所述输出相移元件还包括电容。
4.根据权利要求3所述的功率放大器,其中所述组合器利用单个电感进行操作而无需 电阻。
5.根据权利要求4所述的功率放大器,其中无论启用或禁用所述第二放大路径,所述 第一放大路径进行操作,并且其中当禁用所述第二放大路径时,与所述第一放大路径相关 联的所述输出阻抗修正元件在所述第一放大路径中提供高阻抗。
6.根据权利要求4所述的功率放大器,其中无论启用或禁用所述第二放大路径,所述 第一放大路径进行操作,其中当启用所述第二放大路径时,与所述第一放大路径相关联的 所述输出阻抗修正元件和与所述第二放大路径相关联的所述输出阻抗修正元件在所述第 一放大路径中提供低阻抗并且在所述第二放大路径中提供低阻抗。
7.根据权利要求4所述的功率放大器,其中由与所述第一放大路径相关联的所述输出 阻抗修正元件提供的阻抗不同于由与所述第二放大路径相关联的所述阻抗修正元件提供 的阻抗。
8.—种功率放大器,包括第一放大路径,所述第一放大路径包括 输入相移元件,配置为对射频(RF)输入信号施加正(+)相移; 功率放大元件,配置为接收并放大相移RF输入信号; 输出阻抗修正元件,配置为改变所述功率放大元件的输出处的阻抗; 输出相移元件,配置为对所述射频(RF)输入信号施加负(_)相移; 第二放大路径,所述第二放大路径包括 输入相移元件,配置为对射频(RF)输入信号施加负(_)相移; 功率放大元件,配置为接收并放大相移RF输入信号; 输出阻抗修正元件,配置为改变所述功率放大元件的输出处的阻抗; 输出相移元件,配置为对所述射频(RF)输入信号施加正(+)相移; 其中,每个放大路径中的所述输出相移元件可独立于每个放大路径中的所述输出阻抗 修正元件进行操作,并且其中每个放大路径中的所述输出阻抗修正元件为每个放大路径提 供选择性的阻抗。
9.根据权利要求8所述的功率放大器,还包括组合器,其中所述组合器包括每个放大 路径的所述输出相移元件。
10.根据权利要求9所述的功率放大器,其中与第一放大路径相关联的所述输出相移 元件还包括电感,并且其中与第二放大路径相关联的所述输出相移元件还包括电容。
11.根据权利要求10所述的功率放大器,其中所述组合器利用单个电感进行操作而无需电阻。
12.根据权利要求11所述的功率放大器,其中无论启用或禁用所述第二放大路径,所 述第一放大路径进行操作,并且其中当禁用所述第二放大路径时,与所述第一放大路径相 关联的所述输出阻抗修正元件在所述第一放大路径中提供高阻抗。
13.根据权利要求11所述的功率放大器,其中无论启用或禁用所述第二放大路径,所 述第一放大路径进行操作,并且其中当启用所述第二放大路径时,与所述第一放大路径相 关联的所述输出阻抗修正元件和与所述第二放大路径相关联的所述输出阻抗修正元件在 所述第一放大路径中提供低阻抗并且在所述第二放大路径中提供低阻抗。
14.根据权利要求11所述的功率放大器,其中由与所述第一放大路径相关联的所述输 出阻抗修正元件提供的阻抗不同于由与所述第二放大路径相关联的所述阻抗修正元件提 供的阻抗。
15.一种用于放大射频(RF)信号的方法,包括向相移元件提供输入RF信号;改变所述输入RF信号的相位,以向第一放大路径提供正(+)相移输入信号并向第二放 大路径提供负(_)相移信号;放大所述正(+)相移信号和所述负(_)相移信号;独立地调节出现在所放大的正(+)相移信号和所放大的负(_)相移信号的阻抗;与所述阻抗调节分离地,对所放大的正(+)相移信号进行移相且对所放大的负(_)相 移信号进行移相,以形成放大的RF输出信号。
16.根据权利要求15所述的方法,还包括在所述第一放大路径中提供增益扩展;以及在所述第二放大路径中提供增益压缩,从而本质上消除所述第一放大路径和所述第二 放大路径中的三阶互调截点(IMD3)产物。
17.根据权利要求15所述的方法,还包括组合所放大的正(+)相移信号和所放大的负 (-)相移信号,其中通过移相来进行所述组合。
18.根据权利要求17所述的方法,其中利用单个电感和单个电容来进行所述移相。
19.根据权利要求18所述的方法,还包括无论启用或禁用所述第二放大路径,对所述第一放大路径进行操作;以及当禁用所述第二放大路径时,在所述第一放大路径中提供高阻抗。
20.根据权利要求18所述的方法,还包括无论启用或禁用所述第二放大路径,对所述第一放大路径进行操作;以及当启用所述第二放大路径时,在所述第一放大路径中提供低阻抗且在所述第二放大路 径中提供低阻抗。
21.根据权利要求18所述的方法,还包括在所述第一放大路径中提供与所述第二放大 路径中所提供的阻抗不同的阻抗。
全文摘要
一种功率放大器,包括多个放大路径,其中选择性地启用和禁用至少一个放大路径。其中每个放大路径包括输出阻抗修正元件以及可独立于所述输出阻抗修正元件进行操作的输出相移元件,并且其中每个放大路径中的所述输出阻抗修正元件为每个放大路径提供选择性的阻抗。
文档编号H03F1/56GK101939908SQ200980104155
公开日2011年1月5日 申请日期2009年2月4日 优先权日2008年2月4日
发明者S·W·张, 孙静, 章国豪, 陈雪军 申请人:天工方案公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1