具有降低的噪声的电容测量装置的制作方法

文档序号:14651793发布日期:2018-06-08 21:58阅读:185来源:国知局
具有降低的噪声的电容测量装置的制作方法

本申请案主张于2015年10月7日提出申请的共同拥有的第62/238,318号美国临时专利申请案的优先权,所述美国临时专利申请案出于所有目的特此以引用的方式并入本文中。

技术领域

本发明涉及用于电容测量、明确地说具有降低的噪声的电容测量的方法及系统。



背景技术:

投射电容式传感器通常并入在触摸屏、触摸垫或按钮中。类似传感器用于非触摸三维位置检测传感器布置中。此类传感器使用接收电极,且在一些实施例中还使用发射电极。当使用两个电极时,一个电极充当发射器且另一电极充当接收器。可形成矩阵以允许多个键共享发射线及接收线。实际上,则通常以时间多路复用方式使用连接到所述接收电极的测量系统。为了保持对用户输入的良好响应性,投射电容式装置必须迅速地扫描电极网的数个位置。

举例来说,标准化测试“IEC61000-4-6对传导干扰的抗扰性(Immunity to Conducted Disturbances)”揭露投射电容式传感器的常见问题:当干扰噪声以稍微不同频率与信号重叠时,以给定频率从接收电极获取弱信号。此外,对短扫描时间的要求加剧了对信号与占用邻近频率的噪声进行区分这一问题。



技术实现要素:

根据一实施例,一种用于运用包括发射电极及接收电极的至少一个电容式传感器来提供电容式传感器检测的方法可包括以下步骤:在所述发射电极处产生刺激,从所述接收电极接收信号且产生数据包,每一包包括多个样本;通过相对于每一包的中心在每一包的开头与结尾处提供较小增益而对所述多个样本进行加权;及对所述经加权样本求积分以针对每一包产生输出信号。

根据另一实施例,刺激可包括脉冲序列。根据另一实施例,每一脉冲可在接地与供应电压之间交替。根据另一实施例,增益分布可相对于每一包的中心对称且增益分布曲线选自由高斯(Gaussian)曲线、汉明(Hamming)窗、汉宁(Hanning)窗及布莱克曼(Blackman)窗组成的增益曲线群组。根据另一实施例,可通过将增益应用于从列或行接收的模拟信号而执行加权。根据另一实施例,可通过在每一包的后处理期间将增益应用于数字信号而执行加权。根据另一实施例,电容式传感器可为触摸传感器。根据另一实施例,多个触摸传感器可布置成包括列及行的矩阵,且从每一列或行对样本包进行并行取样。根据又一实施例,多个触摸传感器可布置成包括列及行的矩阵,且使用多路复用对不同列/行的样本包进行循序取样。根据另一实施例,多个触摸传感器可由布置成矩阵的水平及垂直电极形成。根据另一实施例,多个触摸传感器可布置成矩阵,且其中所述矩阵的水平及垂直电极布置在不同层中。根据另一实施例,四个接收电极可与发射电极相关联且形成三维位置检测传感器。根据另一实施例,所述四个接收电极可以框架状方式布置。根据另一实施例,所述四个接收电极可环绕显示器或触摸垫传感器。

根据另一实施例,一种具有至少一个电容式传感器的传感器布置可包括:发射电极,其经配置以接收刺激;接收电极,其与所述发射电极以电容方式耦合且经配置以从所述发射电极接收信号;及评估电路,其与所述接收电极耦合且经配置以产生数据包,每一包包括多个样本,其中通过相对于每一包的中心在每一包的开头与结尾处提供较小增益而对所述多个样本进行加权,且其中所述评估电路进一步经配置以对所述经加权样本求积分以针对每一包产生输出信号。

根据传感器布置的另一实施例,刺激的包可包括脉冲序列。根据传感器布置的另一实施例,每一脉冲可在接地与供应电压之间交替。根据传感器布置的另一实施例,增益分布可相对于每一包的中心对称,且增益分布曲线选自由高斯曲线、汉明窗、汉宁窗及布莱克曼窗组成的增益曲线群组。根据传感器布置的另一实施例,可将增益应用于从接收电极接收的模拟信号。根据传感器布置的另一实施例,可在每一包的后处理期间将增益应用于数字信号。根据传感器布置的另一实施例,多个触摸传感器可布置成包括列及行的矩阵,且从每一列或行对样本包进行并行取样。根据传感器布置的另一实施例,电容式传感器可为触摸传感器。根据传感器布置的另一实施例,多个触摸传感器可布置成包括列及行的矩阵,且使用多路复用对不同列/行的样本包进行循序取样。根据传感器布置的另一实施例,多个触摸传感器可由布置成矩阵的水平及垂直电极形成。根据传感器布置的另一实施例,传感器布置可包括布置成矩阵的多个触摸传感器,且其中所述矩阵的水平及垂直电极布置在不同层中。根据传感器布置的另一实施例,四个接收电极可与发射电极相关联且形成三维位置检测传感器。根据传感器布置的另一实施例,所述四个接收电极可以框架状方式布置。根据传感器布置的另一实施例,所述四个接收电极可环绕显示器或触摸垫传感器。

附图说明

图1展示触摸传感器布置的电极矩阵;

图2展示根据第一实施例的刺激及所接收信号的时序图;

图3展示根据第二实施例的刺激及所接收信号的时序图;

图4展示应用于所接收信号的加权函数的第一实施例;

图5展示根据一实施例的触摸传感器的示范性电路布置;

图6展示根据图5的各种信号的时序图;

图7展示根据一实施例的解调及加权;

图8展示根据各种实施例的在使用及不使用加权的情况下的频谱分析;

图9展示非触摸传感器布置的实施例;且

图10展示组合式非触摸与触摸传感器布置的实施例。

具体实施方式

根据各种实施例,所提议解决方案为针对作用接收电极或作用发射电极的给定选择而获取多个测量样本且运用不同增益对此类样本求积分。举例来说,一个样本是通过A/D电路转换的电压样本,但概念不限于数字,其还适用于如切换式电容器电路及电荷积分电路的模拟离散时间电路。这多个样本形成一包;且包由对作用电极的选择的改变定界。

举例来说,根据各种实施例,提议以下方法:在作用电极改变之后,系统逐渐增加所测量样本的重要性直到包的中间为止,且接着在电极的下一改变之前逐渐减小其重要性。因此,在改变之后或之前收集的样本对总结果贡献较少。

当与A/D转换器一起工作时,可用所收集样本的经加权平均数来实施解决方案,其中权数值来自查找表。令人惊讶且值得注意的是,作为纯数学后处理操作,在完成测量之后可实现噪声与信号的频率分离。可通过针对每一样本使A/D转换器的参考电平变化而在模拟域中实行相同操作:更一般来说,具有位于信号积分之前的可变增益的放大器还可用于允许恰当实施。

在场或投射电容式感测中,噪声与灵敏度缺乏是普遍担忧。常见措施是在更多ADC样本内对结果求平均。由于获取更多ADC样本会花费电力及时间,因此直觉是使用每一样本的完全贡献,同时希望获得更多总信号。然而,违背直觉,各种实施例提议极力减小(但不完全取消)头尾样本的贡献。

图1展示具有一或多个接收器电极(rxi)及一或多个任选刺激节点(txj)的典型示范性投射电容式装置。通常,发射线txn及接收线rxn布置成矩阵,使得其中发射线与接收线交叉的节点形成用作实际传感器的电容器。矩阵减小否则可能需要的线的数目。图1中所展示的实例使用两个接收线及四个发射线。然而,取决于设计可使用任何其它数目个线。在图1的示范性实施例中的测量或评估电路RX连接到两个接收器电极rx0及rx1,且在此实例中,例如微控制器的I/O端口的刺激电路TX连接到四个发射电极tx0、tx1、tx2及tx3

作为一实例,图2展示以扫描序列施加到(举例来说)三个发射电极tx0、tx1、tx2的刺激脉冲的突发以及作用发射电极tx0、tx1、tx2在时间t0、t1、t2…处的对应改变,所述改变定界样本包。注意,样本未必与刺激脉冲同步。四个发射线在此处不仅用于更好的概述。在图2中,假设每一接收电极(rx0、rx1)具有其自身的测量电路,因此可并行进行测量。

然而,具有多路复用器电路的单个测量电路也可为可能的,但将需要针对每一线的重复刺激。图3展示图2的此替代方案。测量电路在此处经多路复用到不同接收电极,且样本包p0、pl、p2由作用接收电极rx0、rx1以及作用发射电极tx0、tx1的改变定界。

图4展示在分别为开始时间ti与停止时间ti+1之间获取的样本包。在此处,通过增益a(a0、a1...m、ae)对每一样本进行加权。所得输出经展示为经加权总和。展示在转变ti及ti+1附近应用于样本的权数如何获得与在包中间的样本(am、an)相比较重要性较小的绝对值(a0、ae)。根据一些实施例,可应用高斯权数曲线。其它分布权数曲线也可适用,例如汉明曲线、汉宁曲线、布莱克曼曲线等,只要首次测量及最后一次测量接收比中心值小的增益即可。

图5展示(举例来说)当在一个包的获取期间由手指550触摸时具有单个电容式传感器530、540的投射电容式系统的实例。在非触摸实施例中,进入检测空间将影响在一或多个电极处接收的信号。根据一些实施例,传感器电极530、540可为电极矩阵的部分。电容式传感器530、540与包括(举例来说)多路复用器505、取样与保持电路Ss 510、模/数转换器520及处理单元570的评估电路耦合。在单个传感器的情形中,当然不需要多路复用器505,除非ADC 520用于对其它模拟信号进行取样。将发射电极530或来自矩阵的选定发射电极连接到产生刺激tx的源,且选择接收电极540或来自矩阵的接收电极中的一者,信号rx(举例来说)通过模拟多路复用器505从接收电极540或来自矩阵的接收电极中的所述一者馈送到具有开关Ss及取样电容器510的取样与保持电路。所述刺激可为一系列脉冲,其中,举例来说,每一脉冲在接地与供应电压之间变化。50%的工作周期可用于脉冲序列。然而,其它工作周期也可适用。根据一个实施例,脉冲可与充电/放电开关Sp、Sn同步,如下文将更详细地阐释。

经取样信号接着由模/数转换器520转换成馈送到处理单元570以用于进一步处理的数字值。在此实施例中,手指550触摸电极530、540上面的覆盖材料560且还表现为将影响所接收电压(Vrx)的噪声(Vnoise)源。然而,(举例来说)具有经暴露电极的其它布置是可能的。下文将论述针对三维位置检测使用相同原则的应用。根据一些实施例,接收电极540还可通过开关Sn、Sp暂时连接到Vdd或Gnd以产生一对样本值,如下文将更详细地阐释。

图6展示可(举例来说)使用图5中所展示的布置的一个实施例的各种信号的时序图。图6展示切换序列及获取过程的一个实施例。在每一取样周期中,首先,接收电极540通过开关Sn暂时连接到接地且信号Sn为高,同时取样与保持跟踪信号Ss何时为高。当在信号Sn返回到低之后将Sn切断连接时,正刺激tx施加在发射电极530上,从而致使Vrx上升。除由刺激tx导致的电压改变之外,Vrx还由于手指的电位相对于接地的变化而改变(只要Sp或Sn开关关断即可)。当信号Ss变低时取样与保持阻挡信号,且获取并转换第一或奇数样本。接着,在tx仍为高时且在Ss的下降边缘之后,开关Sp通过信号Sp的正脉冲闭合达短周期。信号Ss接着返回高,从而将跟踪与保持电路再次置于跟踪模式中。此后不久,刺激tx返回到接地,且此后随着Ss的下降边缘,获取第二或偶数样本。在此实例中,值包括在0与4095之间。2048处的任意枢轴值用于指代样本的振幅。图6展示所获取的信号在接地与Vdd之间交替地切换且通过刺激rx及噪声Vnoise从此类起点变更。因此,通过将接收电极540交替地充电到接地或Vdd,获取奇数及偶数样本。取决于噪声信号在Sn或Sp的下降边缘与Ss的下降边缘之间上升还是下降,加上或从电压信号Vrx减去其贡献,如图6中所展示。

图7展示在解调之后根据图6的时序图获取的信号。在此实例中通过用等于2048值的新值替换奇数样本且用等于+值2048的新值替换偶数样本而对测量样本进行解调。此解调操作校正以下事实:施加在发射电极530上的刺激tx使正边缘与负边缘交替。最后,此图图解说明在包的开头与结尾附近的样本与在包的中间中的样本相比如何在数学上乘以较小权数,如用在图7的基准曲线中进行加权之后的结果所展示。

解调过程对于施加刺激tx的方式是特定的。其它取样方案可适用。然而,其展示尽管发生一些样本的正负号的改变,但其重要性或权数仍遵循逐渐增加且接着减小的重要性。

图8展示在不使用各种实施例的原则(点划线)的情况下记录的以及使用各种实施例的原则(实线)记录的噪声水平的实验比较结果。如可见,噪声基底得以显著改善。

如关于图1及图5所论述,各种实施例的原则可适用于各种电容测量方法,例如如在许多触摸传感器应用中所使用的自电容测量及互电容测量。图9展示可在非触摸传感器应用中使用的测量传感器布置的实例。在此处,衬底900可包括发射电极920及多个(在此处为四个)接收电极910a、910b、910c、910d。虽然图9展示可(举例来说)布置在显示器、键盘或轨迹板周围的框架状支撑结构900,但衬底的其它形状及形式可适用。发射电极920可覆盖衬底900的整个背侧且接收电极910a、910b、910c、910d可布置在顶侧上。此布置可由双侧印刷电路板提供,其中电极由铜层形成。然而,还可使用单侧印刷电路板,其中发射电极可仅仅环绕接收电极。所有电极均可与手势检测控制器940耦合,手势检测控制器940检测预定义手势及触摸,且产生馈送到主处理系统930的命令。

图10展示与触摸垫1020组合的类似系统1000的另一实施例。在此处,电极A、B、C及D环绕触摸垫1020,此可类似于图1中所展示的实施例。触摸垫1020可与触摸控制器1010耦合,而电极A、B、C、D可与3D手势控制器1030耦合。发射电极(未展示)可布置在传感器布置1000下面且与3D手势控制器1030耦合。

可并行或在相应控制器内使用时间多路复用方案接收并转换从图9的各种电极910a、910b、910c、910d或图10的电极A、B、C、D接收的信号。然而,如上文所论述的用于评估循序样本的相同各种原则还适用于这些非触摸电容式电极传感器布置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1