用于数字无线通信的装置和方法

文档序号:7963934阅读:92来源:国知局
专利名称:用于数字无线通信的装置和方法
技术领域
本发明涉及一种用多值调制类型进行数字无线通信的装置和方法。
背景技术
在传统的数字移动无线通信系统中,论文“地面移动通信16QAM(16正交调幅)衰落畸变补偿方法”(Sanbe,TECHNICAL REPORT OF IEICE,B-II,Vol.J-72-B-II,No.1,pp.7-15,Jan.1989)举例描述了一种熟悉的、用于估计频率偏移的帧构造方法。图1示出根据16QAM系统的帧结构。
如图1所示,该帧具有对于每N-1个信息码元插入一个导频码元的结构。利用这种帧结构,通过使用导频码元估计基准相位、频率偏移量和幅度畸变量,进行准相干检测。
然而,在用这种每数个信息码元插入一个导频码元的帧结构进行准相干检测期间,码元同步变得抖动。因此,在用尚未完全建立码元同步的码元进行准相干检测中,使用导频码元估计基准相位、频率偏移量和幅度畸变量的准确度降低。这造成了在信噪比中的位误码率特性的变坏。
用图2A和图2B进行更具体地说明。图2A和图2B是曲线图,说明了接收信号的时间和幅度之间的关系。在图2中,标号1表示用理想判断时间检测导频码元3时的时间,而标号2表示用所产生的时间偏移(抖动)检测导频码元3时的时间。标号4表示紧接导频码元3的前面和后面的信息码元。
为发射机和接收机两者提供与它们相应的时钟产生功能。由于这一点,接收机具有不同的时钟产生源,因此,接收机可以在诸如时间2的定时上检测波形,在该时间上,已发生对理想判断时间的时间偏移。如图2A和图2B所示,在该时刻,时间偏移从信号点出现误差(幅度误差)XI和XQ。这使误码率变坏。此外,接收机从导频码元估计在I-Q平面上的相位、幅度变化和频率偏移。然而,当在发生时间偏移的时间2检测时,导频码元信号对导频码元信号点有误差,因此,估计相位、幅度变化和频率偏移的准确度降低。

发明内容
本发明的目的是提供一种用于数字无线通信的这种和方法,当接收机(解调方)进行准相干检测时,它能够改善估计基准相位和频率偏移量的准确度和改善在信噪比中的位误码率特性。
通过数字无线通信装置实现本目的,该装置使用一种包括QPSK(四相移相键控)的调制类型,并调制紧接导频码元前后的每一个码元的信号点,使用的调制类型和在帧结构中用一个导频码元插入每3个或更多码元中的导频码元的调制类型不同。
这就有可能在用尚未完全建立码元同步的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,并改善在信噪比中的位误码率特性。
此外,还通过数字无线通信装置实现本目的,该装置根据有8或更多值的多值调制类型增加导频码元信号的幅度,使之比在信号点上的最大幅度更大。
本装置不仅能在尚未完全建立码元同步的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,还能改善在信噪比中的位误码率特性,而不降低在发射方的功率放大器的功率效率。
根据本发明的一个方面,提供了一种数字无线通信设备。该设备包括第一调制器,用于根据第一调制类型调制导频码元;第二调制器,用于根据第二调制类型调制特定的码元,所述第二调制类型和所述第一调制类型不同;第三调制器,用于根据第三调制类型调制除所述导频码元和所述特定的码元之外的码元,所述第三调制类型与所述第一调制类型和所述第二调制类型不同;以及控制器,用于进行控制,致使在紧挨着所述导频码元的前后插入所述特定的码元。
在本发明的设备中,所述第三调制类型可以是多值调制类型。
在本发明的设备中,所述第二调制类型可以是一种将信号点放置在同相-正交平面内连接原点和所述导频码元信号点的虚拟线上的调制类型。
在本发明的设备中,所述导频码元的信号点的幅度可以大于同相-正交平面内的根据第三调制类型调制的信号点上的最大幅度。
依照本发明的另一方面,提供了一种数字无线通信方法。该方法包括以下步骤第一调制步骤,用于根据第一调制类型调制导频码元;第二调制步骤,用于根据第二调制类型调制特定的码元,所述第二调制类型和所述第一调制类型不同;第三调制步骤,根据第三调制类型调制除所述导频码元和所述特定的码元之外的码元,所述第三调制类型与所述第一调制类型和所述第二调制类型不同;以及控制步骤,用于进行控制,致使在紧挨着所述导频码元的前后插入所述特定的码元。
在本发明的方法中,所述第三调制类型可以是多值调制类型。
在本发明的方法中,所述第二调制类型可以是一种将信号点放置在同相-正交平面内连接原点和所述导频码元信号点的虚拟线上的调制类型。
在本发明的方法中,所述导频码元的信号点的幅度可以大于同相-正交平面内的根据第三调制类型调制的信号点上的最大幅度。


本发明的上述和其它的目的和特性从结合附图的下述说明中将更为全面,其中,通过示例说明一个例子,其中,图1例示了传统数字无线通信装置的帧结构;图2A是曲线图,示出了当接收到接收信号(I分量)时幅度和时间之间的关系;图2B是曲线图,示出了当接收到接收信号(Q分量)时幅度和时间之间的关系;图3例示了另一种传统数字无线通信装置的帧结构;
图4示出了本发明数字无线通信装置发射机方的结构;图5是示出本发明的数字无线通信装置接收机方的结构;图6A例示了本发明数字无线通信装置的帧结构;图6B是曲线图,示出了当接收到接收信号(I分量)时幅度和时间之间的关系;图6C是曲线图,示出了当接收到接收信号(Q分量)时幅度和时间之间的关系;图7例示了在本发明的数字无线通信装置中根据16APSK调制类型的信号空间图;图8例示了在本发明数字无线通信装置中根据16APSK调制类型的帧结构;图9例示了在本发明数字无线通信装置中根据具有8或更多值的多值QAM系统的信号空间图;图10例示了在本发明数字无线通信装置中根据具有8或更多值的多值QAM系统的帧结构;图11例示了在本发明数字无线通信装置中根据64QAM系统的信号空间图;图12例示了在本发明数字无线通信装置中根据64QAM系统的帧结构;图13例示了在本发明数字无线通信装置中根据64QAM系统的另一个信号空间图;图14例示了在本发明数字无线通信装置中根据64QAM系统的又一个信号空间图;图15例示了在本发明数字无线通信装置中根据32QAM系统的信号空间图;图16例示了在本发明数字无线通信装置中根据32QAM系统的帧结构;图17例示了在本发明数字无线通信装置中根据16QAM系统的信号空间图;图18例示了在本发明数字无线通信装置中根据16QAM系统的帧结构;图19例示了在本发明数字无线通信装置中根据16QAM系统的另一个信号空间图;图20例示了在本发明数字无线通信装置中根据16QAM系统的又一个信号空间图;图21例示了根据QPSK调制类型的信号点、导频码元信号点和紧接在导频码元前后的每个码元的信号空间图;图22例示了QPSK调制码元和导频码元的帧结构;图23例示了π/4偏移DQPSK调制类型的信号点、导频码元信号点和紧接在导频码元前后的每个码元的信号空间图;图24例示了π/4偏移DQPSK调制码元和导频码元的帧结构;图25示出了在本发明数字无线通信装置中根据16QAM系统的信号空间图;以及图26是曲线图,示出了数字无线通信装置中放大器之输入功率和输出功率之间的关系。
具体实施例方式
如图2A和2B所示,如果在产生时间偏移的时刻2检测到接收信号,则产生导频码元相对信号点3的误差,因此可能产生幅度误差XI和XQ。由于这一点,在I-Q平面上估计相位、幅度变化和频率偏移的准确度降低。
此时,最简单的导频码元结构是如图3所示具有3个连续的导频码元。在这种结构中,即使发生时间偏移,但因为存在3个连续导频码元,所以相对导频码元信号点的误差减小。
然而,由于在紧接导频码元前后没有发射导频码元以发射信息,其结果是造成传输效率的问题。因此,本发明根据与导频码元调制类型不同的调制类型,通过调制紧接导频码元之前后的码元,来抑制信息传输效率的降低,并且抑制当发生时间偏移时相对导频码元信号点的误差。因此,本发明可以通过在I-Q平面上估计相位、幅度变化和频率偏移时抑制准确度的降低,来抑制误码率的变坏。
作为多值调制类型,本说明书包括64QAM系统、32QAM系统、16QAM系统、8PSK调制类型、QPSK调制类型、16APSK调制类型和π/4偏移DQPSK调制类型。
现在参考附图,在下面详细地说明本发明的实施例。
(实施例1)
图4是一方框图,示出本发明数字无线通信装置的发射机方的结构。图5是一方框图,示出本发明数字无线通信装置的接收机方的结构。图6A示出了在本发明数字无线通信装置中使用的帧结构。
以下说明所用调制类型为多值调制类型的情况。
在如图4所示的发射机方,将传输数据发送到正交基带信号产生部分(用于多值调制类型)101和正交基带信号产生部分(用于针对紧接PL前后之码元的调制类型)102。帧定时信号产生部分108在表示图6A所示帧结构的定时上产生帧定时信号,并将帧定时信号输出到正交基带信号产生部分(用于多值调制类型)101、正交基带信号产生部分(用于针对紧接PL前后之码元的调制类型)102和正交基带信号产生部分(用于PL)103。
正交基带信号产生部分(用于多值调制类型)101接收传输数据和帧定时信号作为输入,如果帧定时信号表示多值调制码元,则正交基带信号产生部分(用于多值调制类型)101将用于多值调制类型的正交基带信号I分量输出到I分量切换部分104,并将用于多值调制类型的正交基带信号Q分量输出到Q分量切换部分105。
正交基带信号产生部分(用于针对紧接PL前后之码元的调制类型)102接收传输数据和帧定时信号作为输入,如果帧定时信号表示紧接导频码元前后的码元,则正交基带信号产生部分(用于针对紧接PL前后之码元的调制类型)102将用于针对紧接PL前后之码元的调制类型的正交基带信号I分量输出到I分量切换部分104,并将用于针对紧接PL前后之码元的调制类型的正交基带信号Q分量输出到Q分量切换部分105。
正交基带信号产生部分(用于PL)103接收帧定时信号作为输入,如果帧定时信号表示导频码元,则正交基带信号产生部分(用于PL)103将导频码元正交基带信号的I分量输出到I分量切换部分104,并将导频码元正交基带信号的Q分量输出到Q分量切换部分105。
I分量切换部分104接收用于多值调制类型的正交基带信号I分量、用于紧接PL前后之码元的正交基带信号I分量、PL正交基带信号的I分量,以及帧定时信号作为输入,并根据帧定时信号在用于多值调制类型的正交基带信号I分量、用于紧接PL前后之码元的正交基带信号I分量以及导频码元正交基带信号的I分量之间切换,并将它们作为传输正交基带信号的I分量输出到射频部分(无线电部分)106。
Q分量切换部分105接收用于多值调制类型的正交基带信号Q分量、用于紧接PL前后之码元的正交基带信号Q分量、PL正交基带信号的Q分量,以及帧定时信号作为输入,并根据帧定时信号在用于多值调制类型的正交基带信号Q分量、用于紧接PL前后之码元的正交基带信号Q分量以及导频码元正交基带信号Q分量之间切换,并将它们作为传输正交基带信号的Q分量输出到无线电部分106。
无线电部分106接收传输正交基带信号的I分量和Q分量作为输入,对基带信号进行预定的无线电处理,然后输出传输信号。由功率放大器107放大该传输信号,并从发射天线109输出经放大的传输信号。
在如图5所示的接收机方,无线电部分202接收来自天线201的信号作为输入,正交调制输入信号,并输出接收正交基带信号的I分量和Q分量。
帧定时信号产生部分205接收所接收的正交基带信号的I分量和Q分量作为输入,检测图6A所示的帧结构,并将帧定时信号输出到多值调制类型检测部分207、频率偏移量估计部分204和调制类型检测部分(用于紧接PL前后的码元)208。
幅度畸变量估计部分203接收所接收的正交基带信号的I分量和Q分量以及帧定时信号作为输入,抽取导频码元,根据导频码元正交基带信号的I分量和Q分量估计幅度畸变量,并将幅度畸变量估计信号输出到多值调制类型检测部分207和调制类型检测部分(用于紧接PL前后的码元)208。
频率偏移量估计部分204接收所接收的正交基带信号的I分量和Q分量以及帧定时信号作为输入,抽取导频码元,根据导频码元正交基带信号的I分量和Q分量估计频率偏移量,并将频率偏移量估计信号输出到多值调制类型检测部分207和调制类型检测部分(用于紧接PL前后的码元)208。
多值调制类型检测部分207接收所接收的正交基带信号的I分量和Q分量、帧定时信号、幅度畸变量估计信号和频率偏移估计信号作为输入,当输入是多值调制类型码元时进行检测,并根据多值调制类型输出接收数字信号。
调制类型检测部分(用于紧接PL前后的码元)208接收所接收的正交基带信号的I分量和Q分量、帧定时信号、幅度畸变量估计信号和频率偏移估计信号作为输入,当输入是紧接导频码元前后的码元时进行检测,并根据用于紧接导频码元前后之码元的调制类型输出接收数字信号。
在以上结构的数字无线通信装置中,发射和接收具有图6A所示帧结构的信号。即,调制导频码元的调制类型与调制紧接导频码元前的码元301和紧接导频码元后的码元302的调制类型不同。特别希望用于调制紧接导频码元前后之码元的调制类型的多值数小于用于调制导频码元的调制类型的多值数。
例如,如图6B和6C所示,如果导频码元305的调制类型是QPSK调制,而紧接导频码元前后的码元306的调制类型是16QAM,那么当发生相对理想判断时间303的时间偏移(抖动)时(时刻304),由于时间偏移,所以相对信号点产生误差(幅度误差)YI和YQ。这些误差(幅度误差)YI和YQ比图2A和图2B所示的幅度误差XI和XQ要小许多。
因此,由于用于调制导频码元的调制类型与用于调制紧接导频码元前后之码元的调制类型不同,所以当发生时间偏移时有可能抑制相对导频码元信号点的误差,同时抑制信息传输效率的降低。结果,可能抑制在I-Q平面上估计相位、幅度变化和频率偏移时准确度的降低,以及抑制误码率的变坏。
例如,在本发明中,用于调制导频码元的调制类型和用于调制紧接导频码元前后之码元的调制类型的区别方法包括将每个紧接导频码元前后的码元的两个或多个信号点放置在同相I正交Q平面上连接导频码元信号点和原点的虚拟线上。在该情况下,希望采用较少多值的调制类型,而不是采用用于紧接导频码元前后的码元的、具有8个或更多值的导频码元调制类型。
本发明的数字无线通信装置具有图4所示的发射机方的结构和图5所示的接收机方的结构两者。图4和图5的结构仅作为例子,本发明不只限于这些例子。
(实施例2)图7示出了同相I-正交Q平面上根据16APSK调制类型的信号空间图,它是一例具有8个或更多值的多值调制类型,表示导频码元信号点以及导频码元前后一个码元的信号点。在图7中,标号401表示根据16APSK调制类型的信号点,标号402表示导频码元信号点,而标号403表示紧接导频码元前后的一个码元的信号点。此外,标号404是一虚拟线,它连接I-Q平面上的导频码元信号点和原点,并且将紧接导频码元前后每一码元的两个或更多个信号点403放置在连接导频码元信号点402和原点的虚拟线404上。
图8例示了码元和根据16APSK调制类型调制的导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。此时,将紧接导频码元前一个码元301以及紧接导频码元后一个码元302的两个或更多个信号点放置在同相I-正交Q平面内连接导频码元信号点402和原点的虚拟线404上。
如果传输数据是根据图7和图8所示调制类型调制的数字信号,那么即使码元同步没有完全建立,导频码元也能在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化,因此,本实施例证明了图6B和图6C所示的效果,使之可能在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在载波噪声比中的位误码率特性。
此外,导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图7。帧结构也不限于图8。本实施例说明下述情况,即具有8个或更多值的多值调制类型是16APSK调制类型,但是具有8个或更多值的多值调制类型并不限于此。
如上所示,根据实施例2的数字无线通信装置将紧接导频码元前后每一个码元的信号点放置在同相-正交平面内连接原点和导频码元信号点的虚拟线上,其帧结构,根据具有8个或更多个值的多值调制类型,每隔3个码元插入一个导频码元。用这种方法,在码元同步还未完全建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,从而改善了在信噪比中的位误码率特性。
(实施例3)图9示出了同相I-正交Q平面上根据具有8个或更多个值的多值正交幅度调制(QAM)系统的信号空间图,并且图9示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图9中,标号501表示根据多值QAM系统的信号点,标号502表示导频码元信号点,而标号503表示紧接导频码元前后每一个码元的信号点。标号504是一虚拟线,它连接I-Q平面上的导频码元信号点和原点。将紧接导频码元前后每一个码元的两个或更多个信号点503放置在连接导频码元信号点502和原点的虚拟线504上。
图10例示了码元和根据具有8个或更多个值的多值QAM系统调制的导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。此时,将紧接导频码元前的两个或更多个码元301以及紧接导频码元后的码元302放置在同相I-正交Q平面内连接导频码元信号点502和原点的虚拟线504上。
当检测到根据这种调制类型调制的数字信号时,即使如前一实施例的情况一样,尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,使之可能在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点的位置不限于图9。此外,帧结构不限于图10。
如上所示,根据实施例3的数字无线通信装置将紧接导频码元前后每一个码元的两个或更多个信号点放置在同相-正交平面内连接原点和导频码元信号点的虚拟线上,其帧结构是,根据包括具有8个或更多个值的多值QAM系统的调制类型,每隔3个或更多个码元插入一个导频码元。用这种方法,在码元同步还未完全建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,从而改善了在信噪比中的位误码率特性。
(实施例4)图11示出了同相I-正交Q平面上根据16QAM系统的信号空间图,并且示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图11中,标号601表示根据16QAM系统的信号点,标号602表示导频码元信号点,而标号603表示紧接导频码元前后每一个码元的信号点。标号604是一虚拟线,它连接I-Q平面内的导频码元信号点和原点。将紧接导频码元前后每一个码元的两个或更多个信号点603放置在连接导频码元信号点602和原点的虚拟线604上。
图12例示了根据64QAM系统调制的码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。在此时,将紧接导频码元前一个码元301和紧接导频码元后的一个码元302的两个或更多个信号点603放置在同相I-正交Q平面内连接信号点602和原点的虚拟线604上。
当检测到根据这种调制类型调制的数字信号时,与上述实施例的情况一样,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C中的效果,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图11。此外,帧结构不限于图12。
图13例示了同相I-正交Q平面上依照64QAM系统的另一个信号空间图,并示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图13中,标号701和701-A表示根据64QAM系统的信号点,标号701-A表示紧接导频码元前后每一个码元的信号点,标号702表示导频码元信号点,而标号703表示一虚拟线,它在I-Q平面上连接导频码元信号点和原点。
如果将基于64QAM的信号点中具有最大信号点功率的信号点指定为导频码元信号点702,并且将连接该信号点和原点的虚拟线703上的信号点701-A指定为紧接导频码元前之码元301的信号点和紧接导频码元后之码元302的信号点,则即使尚未完全地建立码元同步,导频码元也会在I-Q平面内连接导频码元和原点的虚拟线上变化。因此,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。此外,这种情况有一个优点,即通过使用基于64QAM的判断方法,有可能判断紧接导频码元前的码元301和紧接导频码元后的码元302。
在图13中,标号702用作导频码元信号点,但是导频码元信号点并不限于此,如果该信号点具有基于64QAM信号点的最大信号点功率,那么它可以是任何信号点。
图14例示了同相I-正交Q平面上又一个基于64QAM的信号空间图,并示出导频码元信号点和紧接导频码元前后每一个码元的信号点。在图14中,标号801表示基于64QAM的信号点,标号802表示导频码元信号点,而标号803表示紧接导频码元前后每一个码元的信号点。
信号点是在同相I-正交Q平面内基于64QAM的信号点,如果基于64QAM的信号点的最大信号点功率是r2,而导频码元的信号点功率是R2,那么两者之间的关系是R2=r2。如果将虚拟线或连接位于I轴上的导频码元信号点802和原点的I轴,与从基于64QAM的信号点801引出的垂直于I轴的虚拟线的交叉点指定为紧接导频码元前的码元301和紧接导频码元后的一个码元302的信号点,则即使未完全建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
此外,该结构具有一个优点,它可以用基于64QAM的判断方法,判断紧接导频码元前的一个码元301和紧接导频码元后的一个码元302。
顺便说,在图14中假设R2=r2,但是该限制并不固定。此外,要放置在I轴上的导频码元信号点可以是不同于信号点802之外的任何信号点。
如上所示,根据实施例4的数字无线通信装置,在包括64QAM系统的调制类型中,将紧接导频码元前后每一个码元的两个或更多个信号点放置在同相I-正交Q平面内连接原点和导频码元信号点的虚拟线上。用此法,在码元同步还未完全建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,从而改善在信噪比中的位误码率特性。
(实施例5)图15示出同相I-正交Q平面内根据32QAM系统的信号空间图,并示出导频码元信号点和紧接导频码元前后每一个码元的信号点。
在图15中,标号901表示根据32QAM系统的信号点,标号902表示导频码元信号点,而标号903表示紧接导频码元前后每一个码元的信号点。标号904是一虚拟线,它在I-Q平面上连接导频码元信号点和原点。将紧接导频码元前后每一个码元的两个或更多个信号点903放置在连接导频码元信号点902和原点的虚拟线904上。
图16例示了基于32QAM的码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。
在此时,如图16所示,将紧接导频码元前一个码元301和紧接导频码元后一个码元302的两个或更多个信号点放置在同相I-正交Q平面内连接信号点902和原点的虚拟线904上。
在实施例5中,与上述实施例的情况一样,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图15。此外,帧结构不限于图16。
如上所示,根据实施例5的数字无线通信装置将紧接导频码元前后每一个码元的两个或更多个信号点放置在同相-正交平面内连接原点和导频码元信号点的虚拟线上。用这种方法,在码元同步还未完全建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,从而改善了在信噪比中的位误码率特性。
(实施例6)图17是同相I-正交Q平面上基于16QAM的信号空间图,并示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图17中,标号1001表示基于16QAM的信号点,标号1002表示导频码元信号点,而标号1003表示紧接导频码元前后每一个码元的信号点。标号1004是一虚拟线,它在I-Q平面上连接导频码元信号点和原点。将紧接导频码元前后每一个码元的两个或更多个信号点1003放置在连接导频码元信号点1002和原点的虚拟线1004上。
图18例示了基于64QAM的码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。在此时,将紧接导频码元前一个码元301和紧接导频码元后一个码元302的两个或更多个信号点放置在同相I-正交Q平面内连接导频码元信号点1002和原点的虚拟线1004上。
在根据实施例6的数字无线通信装置中,与上述实施例的情况一样,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图17。此外,帧结构不限于图18。
图19例示了同相I-正交Q平面上根据16QAM系统的另一个信号空间图,并示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图19中,标号1101和1101-A表示基于16QAM的信号点,标号1101-A表示紧接导频码元前后每一个码元的信号点,标号1102表示导频码元信号点,而标号1103表示连接导频码元信号点和原点的虚拟线。
如果将基于16QAM的信号点中具有最大信号点功率的信号点指定为导频码元信号点1102,而将连接该信号点和原点的虚拟线1103上的信号点1101-A指定为紧接导频码元前的码元301和紧接导频码元后的一个码元301的信号点,那么即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,并在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这使改善在信噪比中的位误码率特性成为可能。
此外,这种结构有一个优点,即可以用基于16QAM的判断方法,判断紧接导频码元前的一个码元301和紧接导频码元后的一个码元302。
在图19中,将信号点1102指定为导频码元信号点,但导频码元信号点不限于此,如果信号点具有基于16QAM信号点的最大信号点功率,那么它可以是任何信号点。
图20例示了同相I-正交Q平面上基于16QAM的另一种信号空间图,并示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图20中,标号1201表示基于16QAM的信号点,标号1202表示导频码元信号点,而标号1203表示紧接导频码元前后每一个码元的信号点。
在这种情况下,如果基于16QAM的信号点的最大信号点功率是p2,并且导频码元的信号点功率是P2,那么假定P2=p2。如果将虚拟线或连接I轴上导频码元信号点1202和原点的I轴,与从基于16QAM的信号点1201引出的垂直于I轴的虚拟线的交叉点,指定为紧接导频码元前的码元301的信号点和紧接导频码元后的一个码元302的信号点,则即使未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。此外,该结构具有一个优点,它可以用基于16QAM的判断方法,判断紧接导频码元前的一个码元301和紧接导频码元后的一个码元302。
顺便说,在图20中假设P2=p2,但是此限制并不固定。此外,要放置在I轴上的导频码元信号点可以是不同于信号点1202的任何信号点。
(实施例7)图21是在同相I-正交Q平面上根据QPSK调制类型的信号空间图,并示出了导频码元信号点和紧接导频码元前后每一个码元的信号点。在图21中,标号1301和1301-A表示根据QPSK调制类型的信号点,标号1301-A表示紧接导频码元前后每一个码元的信号点。标号1302是连接导频码元信号点和原点的虚拟线。
图22例示了在时刻t时QPSK调制码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。
图21示出在同相I-正交Q平面上根据QPSK调制类型的信号点、导频码元信号点和紧接导频码元前后每一个码元的信号点1301-A的位置。将紧接导频码元前后每一个码元的两个信号点1301-A放置在连接导频码元信号点1301-A和原点的虚拟线1302上。
图22示出了在时刻t时,QPSK调制码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。
在此时,将紧接导频码元前的一个码元301和紧接导频码元后的一个码元302的两个信号点放置在同相I-正交Q平面内连接导频码元信号点1301-A和原点的虚拟线1302上。
这样,当估计基准相位和相对导频码元的频率偏移量时,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面内连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,使之可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图21。此外,帧结构不限于图22。
如上所示,根据实施例7的数字无线通信装置,根据包括QPSK调制类型的调制类型,将紧接导频码元前后每一个码元的两个信号点放置在同相I-正交Q平面内连接原点和导频码元信号点的虚拟线上,在所述QPSK调制类型中,每隔3个或更多个码元插入一个导频码元。以此方法,可以在码元同步尚未建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。这改善了信噪比中的位误码率特性。
(实施例8)图23是在同相I-正交Q平面上根据π/4相移DQPSK(差分正交相移键控)调制类型的信号空间图,并示出导频码元信号点和紧接导频码元前后每一个码元的信号点。在图23中,标号1401和1401-A表示根据π/4相移DQPSK调制类型的信号点,尤其标号1401-A表示紧接导频码元前后每一个码元的信号点。标号1402是连接导频码元信号点和原点的虚拟线。
图24例示了π/4相移DQPSK调制码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。
图23示出了根据π/4相移DQPSK调制类型的信号点1401和1401-A、导频码元信号点1401-A和紧接导频码元前后每一个码元的信号点1401-A在同相I-正交Q平面上的位置。将紧接导频码元前后每一个码元的两个信号点1401-A放置在连接导频码元信号点1401-A和原点的虚拟线上。
图24例示了π/4相移DQPSK调制码元和导频码元的帧结构。标号301表示紧接导频码元前的一个码元,而标号302表示紧接导频码元后的一个码元。
在此时,将紧接导频码元前的一个码元301和紧接导频码元后的一个码元302的两上信号点放置在同相I-正交Q平面上连接导频码元信号点1401-A和原点的虚拟线1402上。
这样,当估计基准相位和相对导频码元的频率偏移量时,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面上连接导频码元和原点的虚拟线上变化。因此,本实施例证实了图6B和图6C所示的效果,使之可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图23。此外,帧结构不限于图24。
如上所示,根据实施例8的数字无线通信装置,根据每隔3个或更多个码元插入一个导频码元的π/4相移DQPSK调制类型,将紧接导频码元前后每一个码元的两个信号点放置在同相I-正交Q平面上连接原点和导频码元信号点的虚拟线上。以此方法,在码元同步尚未完全建立的码元准相干检测中,可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。这改善了在信噪比中的位误码率特性。
(实施例9)在一种无线通信设备中,消耗大量功率的一种设备是功率放大器。图25示出在I-Q平面上对16QAM正交基带信号之I分量和Q分量的跟踪。此时,假定同相信号是I,正交信号是Q,于是由I2+Q2的最大值max(I2+Q2)和平均值aveI2+Q2)确定了可用的功率放大器。
图26是一曲线图,示出了功率放大器的输入/输出特性。在图26中,标号1501表示具有大输出功率的功率放大器的特性曲线,标号1502表示具有小输出功率的功率放大器的特性曲线,标号1503表示平均输出功率,标号1504表示I2+Q2变化较小的调制类型,而标号1505表示I2+Q2变化较大的调制类型。
此时,当用标号1503表示平均输出功率时,可以根据标号1504表示的调制类型,用具有标号1502所示特性曲线的功率放大器进行放大,然后不可能根据标号1505表示的调制类型,用具有标号1502所示特性曲线的功率放大器进行放大。因此,应该采用具有标号1501特性曲线的功率放大器。
此时,具有标号1501所示特性曲线的功率放大器比具有标号1502所示特性曲线的功率放大器有较大的功率损耗。这样,I2+Q2最大max(I2+Q2)较小的调制类型可以使用功率损耗较小的功率放大器。当着重于导频码元信号点在I-Q平面上的位置时,离原点的距离越远,接收机方有越强的导频码元的抗噪声能力,因而改善了位误码率。
然而,当着重于发射机中的功率放大器时,不希望通过增加导频码元来增加I2+Q2的最大值max(I2+Q2)。
因此,在I-Q平面上,本实施例增加了导频码元离原点的距离,但没有增加I2+Q2的最大值max(I2+Q2)。这使得在接收机中改善位误码率,但不增加发射机中功率放大器的功率损耗。
于是,本实施例中改善接收机的位误码率但不增加发射机之功率放大器的功率损耗的方法是作为一个例子来说明的,在该情况下,采用16QAM系统作为调制类型。在图25中,根据16QAM系统,I2+Q2的最大值max(I2+Q2)到达标号1601在其从信号点A到信号点A的路线上所表示的位置。
根据图17和图18,根据导频码元信号点,紧接导频码元前后每一个码元的信号点301和302之间的关系,即使在I-Q平面上使导频码元信号点离开原点的距离大于图25所示16QAM系统中信号点上的最大幅度,也可以在16QAM系统中,保持该距离小于I2+Q2的最大值max(I2+Q2)。通过把I-Q平面上导频码元信号点处的幅度增加到大于16QAM系统中信号点上的最大幅度,可以改善接收机的位误码率,但不增加发射机之功率放大器的功率损耗。
假定导频码元信号点处的幅度大于I-Q平面上多值调制信号点处的最大幅度。此外,由于增加了导频码元信号点处的幅度,所以可以在接收方改善在估计幅度畸变量和频率偏移量时的准确度。结果,可以改善位误码率特性。
接下来,参考图9和图10,详细地说明本发明的效果。
如图9所示,等式1给出了同相I-正交Q平面上的多值QAM信号空间图IQAM=r(2m-1a1+2m-2a2+…+20am)QQAM=r(2m-1b1+2m-2b2+…+20bm) (1)其中,根据多值QAM系统的信号点表示为(IQAM,QQAM),m是整数,(a1,b1)(a2,b2)…,(am,bm)是1,-1组成的二进制代码,以及r是常数。
将紧接导频码元前后每一个码元的两个或更多个信号点503放置在连接导频码元信号点502和原点的虚拟线上。如图10所示,将紧接导频码元前的一个码元301和紧接导频码元后的一个码元302的两个或更多个信号点位于同相I-正交Q平面内连接导频码元信号点502和原点的虚拟线504上。这样,即使尚未完全地建立码元同步,导频码元也会在同相I-正交Q平面上连接导频码元和原点的直线上变化。由此,可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低。在检测接收信号期间,这改善了在信噪比中的位误码率特性。
此外,如果同相I-正交Q平面内多值QAM信号点功率的最大值是a,而同相I-正交Q平面内导频码元信号点功率是b,那么保持b>a可以改善接收机方由幅度畸变估计部分估计幅度畸变时的准确度,以及由频率偏移量估计部分估计频率偏移量时的准确度,如上所述,不会降低发射方功率放大器的功率效率。在检测接收信号期间,这改善了信噪比中的位误差率特性。
顺便说,导频码元信号点和紧接导频码元前后每一个码元的信号点在同相I-正交Q平面上的位置不限于图9,但是当将导频码元信号点放置在轴上时,可获得特别大的效果。帧结构不限于图10。
此外,如果路由滚降滤波器(它是限带滤波器)的频率特性如下面等式2所示,那么下述方法可以在进行准相干检测时,改善在估计频率偏移量和幅度畸变量时的准确度,所述方法是根据多值QAM系统,使滚降系数从0.1变化到0.4,并且设置导频码元的信号点幅度值,使之大于1.0乘最大信号点幅度和小于1.6的数乘最大信号点幅度。这极大地改善了信噪比中的位误码率特性。在等式2中,ω是以弧度表示的频率,α是滚降系数,ω0是以弧度表示的奈奎斯特频率,而H(ω)是路由滚降滤波器的幅度特性。
H(ω)=1ω≤ω0(1-α)12[1-sin{π2αω0(ω-ω0)}]ω0(1-α)≤ω≤ω0(1+α)0ω≥ω0(1+α)---(2)]]>本实施例将多值QAM系统作为有8个或更多个值的多值调制类型的例子来进行说明,但具有8个或更多个值的多值调制类型不限于此。此外,64QAM系统、32QAM系统、16QAM系统、8PSK调制类型和QPSK调制类型也能够产生类似于多值QAM系统的效果。
如上所示,根据实施例9的数字无线通信装置在每隔3个或更多个码元插入一个导频码元多值且具有8个或更多个值的调制类型中,将紧接导频码元前后每一个码元的两个或更多个信号点放置在同相I-正交Q平面内连接原点和导频码元信号点的虚拟线上,并根据具有8个或更多个值的多值调制类型,增加了导频码元信号点处的幅度,使之比在信号点上的最大幅度更大。这样,在码元同步尚未完全建立的码元准相干检测中,可以在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,可以改善在信噪比中的位误码率特性,还可以改善在信噪比中的位误码率特性,但不降低发射方功率放大器的功率效率。
如上所示,本发明可以区别紧接在导频码元前后的调制类型和导频码元的调制类型,因此可以在码元同步尚未完全建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,从而改善在信噪比中的位误码率特性。本发明还可以根据多址调制类型通过使导频码元信号点上的幅度增加到大于在信号点上的最大幅度,来改善信噪比中的位误码率特性,但不降低发射方功率放大器的功率效率。
本发明不限于实施例1到9,还能以各种变更的形式实现。此外,可以合适地组合实施例1到9。
本发明不限于上述实施例,可以有各种变化和变更而不偏离本发明的范围。
本申请基于1999年1月19日提出的日本专利申请HEI 11-010146号,和1999年7月28日提出的日本专利申请HEI 11-213264号,在此明确地引用其全部内容以供参考。
权利要求
1.一种数字无线通信设备,其特征在于,包括第一调制器,用于根据第一调制类型调制导频码元;第二调制器,用于根据第二调制类型调制特定的码元,所述第二调制类型和所述第一调制类型不同;第三调制器,用于根据第三调制类型调制除所述导频码元和所述特定的码元之外的码元,所述第三调制类型与所述第一调制类型和所述第二调制类型不同;以及控制器,用于进行控制,致使在紧挨着所述导频码元的前后插入所述特定的码元。
2.如权利要求1所述的数字无线通信设备,其特征在于,所述第三调制类型是多值调制类型。
3.如权利要求1所述的数字无线通信设备,其特征在于,所述第二调制类型是一种将信号点放置在同相-正交平面内连接原点和所述导频码元信号点的虚拟线上的调制类型。
4.如权利要求1所述的数字无线通信设备,其特征在于,所述导频码元的信号点的幅度大于同相-正交平面内的根据第三调制类型调制的信号点上的最大幅度。
5.一种数字无线通信方法,其特征在于,包括以下步骤第一调制步骤,用于根据第一调制类型调制导频码元;第二调制步骤,用于根据第二调制类型调制特定的码元,所述第二调制类型和所述第一调制类型不同;第三调制步骤,根据第三调制类型调制除所述导频码元和所述特定的码元之外的码元,所述第三调制类型与所述第一调制类型和所述第二调制类型不同;以及控制步骤,用于进行控制,致使在紧挨着所述导频码元的前后插入所述特定的码元。
6.如权利要求5所述的数字无线通信方法,其特征在于,所述第三调制类型是多值调制类型。
7.如权利要求5所述的数字无线通信方法,其特征在于,所述第二调制类型是一种将信号点放置在同相-正交平面内连接原点和所述导频码元信号点的虚拟线上的调制类型。
8.如权利要求5所述的数字无线通信方法,其特征在于,所述导频码元的信号点的幅度大于同相-正交平面内的根据第三调制类型调制的信号点上的最大幅度。
全文摘要
本发明涉及一种数字无线通信设备和方法。在本发明中,第一调制器根据第一调制类型调制导频码元。第二调制器根据第二调制类型调制特定的码元,其中第二调制类型与第一调制类型不同。第三调制器根据第三调制类型调制除导频码元和特定的码元之外的码元,其中第三调制类型与第一调制类型和第二调制类型不同。控制器进行控制,致使在紧挨着导频码元的前后插入特定的码元。由此可以在码元同步尚未完全地建立的码元准相干检测中,在估计基准相位和相对导频码元的频率偏移量时抑制准确度的降低,并改善信噪比的位误码率特性。
文档编号H04L7/06GK1913516SQ200610095899
公开日2007年2月14日 申请日期2000年1月19日 优先权日1999年1月19日
发明者村上丰, 高林真一郎, 折桥雅之, 松冈昭彦 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1