控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备与流程

文档序号:15848178发布日期:2018-11-07 09:24阅读:232来源:国知局
控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备与流程

本发明实施例涉及图像拍摄技术领域,尤其涉及一种控制拍摄装置的拍摄角度的方法、拍摄装置的拍摄角度的控制装置,以及可穿戴设备。

背景技术

随着科技的进步,拍摄装置,如具有拍摄功能的无人飞行器(unmannedaerialvehicle,uav),也称无人机得到了越来越广泛的应用。无人机是一种处在迅速发展中的新概念装备,其具有体积小、造价低、使用方便、对作战环境要求低、战场生存能力较强等优点。无人机通过云台搭载多类图像采集装置,如相机、摄影机等,可以使用户实时看到无人机拍摄的视频、影像或画面等。其中,为了获得不同视角的图像、视频、影像或画面,需要通过控制或调节飞行器等拍摄装置的拍摄角度来实现。

目前通常采用以下两种方式来控制或调节拍摄装置的拍摄角度:1、通过拨动遥控器上的滑轮(左表示度数越来越小,右越来越大,pitch轴范围-90度至0度)来控制或调节拍摄装置的拍摄角度;2、通过手动调节终端设备的终端界面进度条或手动输入具体的角度值来控制或调节拍摄装置的拍摄角度。

在实现本发明过程中,发明人发现相关技术中至少存在如下问题:需要通过手动拨动遥控器上的滑轮,或者,手动调节终端设备的终端界面进度条或手动输入具体的角度的方式调节拍摄装置的拍摄角度,以获取不同视角的图像、视频、影像或画面,无法实现体感式控制,用户体验差。



技术实现要素:

本申请发明实施例提供一种控制拍摄装置的拍摄角度的方法、拍摄装置的拍摄角度的控制装置及可穿戴设备,可以实现体感式控制,提高用户体验。

本发明实施例公开了如下技术方案:

第一方面,本发明实施例提供了一种控制拍摄装置的拍摄角度的方法,遥控器,所述遥控器分别与所述拍摄装置和可穿戴设备相连,所述可穿戴设备显示所述拍摄装置所拍摄的图像,所述方法包括:

在所述可穿戴设备运动的过程中,获取所述可穿戴设备的加速度;

根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数;

获取所述拍摄装置的拍摄角度信息;

根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令,所述拍摄角度调节指令用于调节所述拍摄装置的拍摄角度;

根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度。

在一些实施例中,所述可穿戴设备的姿态参数包括可穿戴设备的姿态角;

所述根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数,包括:

将所述可穿戴设备的加速度转换为第一四元数;

根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,所述预设的第二四元数用于表示绕所述可穿戴设备坐标系的z轴旋转第一预设角度的四元数,所述预设的第三四元数用于表示绕所述可穿戴设备坐标系的x轴旋转第二预设角度的四元数。

在一些实施例中,所述根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,包括:

将所述预设的第二四元数与所述预设的第三四元数进行叉乘运算后,得到第四四元数;

根据所述第四四元数及所述第一四元数,得到所述可穿戴设备的姿态角。

在一些实施例中,根据所述可穿戴设备的加速度得到所述可穿戴设备的姿态参数的计算公式为:

其中,(θ,ψ,φ)表示为所述可穿戴设备的姿态角,θ表示为所述可穿戴设备的姿态角中的俯仰角,φ表示为所述可穿戴设备的姿态角中的翻滚角,ψ表示为所述可穿戴设备的姿态角中的偏航角;(x,y,z)表示为所述可穿戴设备的加速度;(q,x,y,z)表示为第一四元数,满足:pi表示为圆周率。

在一些实施例中,所述拍摄装置搭载于云台上;

所述根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令,包括:

根据所述可穿戴设备的姿态角以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令;

所述根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度,包括:

根据所述拍摄角度调节指令,调节所述云台的角度,以调整所述拍摄装置的拍摄角度。

在一些实施例中,所述可穿戴设备的姿态参数还包括可穿戴设备的角速度,所述方法还包括;

根据所述可穿戴设备的角速度,生成角速度调节指令,所述角速度调节指令用于调节所述拍摄装置的拍摄的角速度;

根据所述角速度调节指令,调节所述云台的角速度,以调节所述拍摄装置的拍摄的角速度。

在一些实施例中,所述方法还包括:

在所述可穿戴设备上实时显示所述拍摄装置的方位信息。

在一些实施例中,所述可穿戴设备设置有加速度计,所述可穿戴设备的加速度由所述加速度计采集得到。

第二方面,本发明实施例提供了一种拍摄装置的拍摄角度的控制装置,所述控制装置分别与所述拍摄装置和可穿戴设备相连,所述可穿戴设备显示所述拍摄装置所拍摄的图像,所述装置包括:

加速度获取模块,用于在所述可穿戴设备运动的过程中,获取所述可穿戴设备的加速度;

姿态参数确定模块,用于根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数;

拍摄角度信息获取模块,用于获取所述拍摄装置的拍摄角度信息;

拍摄角度调节指令生成模块,用于根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令,所述拍摄角度调节指令用于调节所述拍摄装置的拍摄角度;

拍摄角度调节模块,用于根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度。

在一些实施例中,所述可穿戴设备的姿态参数包括可穿戴设备的姿态角;

所述姿态参数确定模块具体用于:

将所述可穿戴设备的加速度转换为第一四元数;

根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,所述预设的第二四元数用于表示绕所述可穿戴设备坐标系的z轴旋转第一预设角度的四元数,所述预设的第三四元数用于表示绕所述可穿戴设备坐标系的x轴旋转第二预设角度的四元数。

在一些实施例中,所述姿态参数确定模块根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,包括:

将所述预设的第二四元数与所述预设的第三四元数进行叉乘运算后,得到第四四元数;

根据所述第四四元数及所述第一四元数,得到所述可穿戴设备的姿态角。

在一些实施例中,所述姿态参数确定模块根据所述可穿戴设备的加速度得到所述可穿戴设备的姿态参数的计算公式为:

其中,(θ,ψ,φ)表示为所述可穿戴设备的姿态角,θ表示为所述可穿戴设备的姿态角中的俯仰角,φ表示为所述可穿戴设备的姿态角中的翻滚角,ψ表示为所述可穿戴设备的姿态角中的偏航角;(x,y,z)表示为所述可穿戴设备的加速度;(q,x,y,z)表示为第一四元数,满足:pi表示为圆周率。

在一些实施例中,所述拍摄装置搭载于云台上;

所述拍摄角度调节指令生成模块具体用于:

根据所述可穿戴设备的姿态角以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令;

所述拍摄角度调节模块具体用于:

根据所述拍摄角度调节指令,调节所述云台的角度,以调整所述拍摄装置的拍摄角度。

在一些实施例中,所述可穿戴设备的姿态参数还包括可穿戴设备的角速度,所述装置还包括;

角速度调节指令生成模块,用于根据所述可穿戴设备的角速度,生成角速度调节指令,所述角速度调节指令用于调节所述拍摄装置的拍摄的角速度;

角速度调节模块,用于根据所述角速度调节指令,调节所述云台的角速度,以调节所述拍摄装置的拍摄的角速度。

在一些实施例中,所述装置还包括:

方位信息显示模块,用于在所述可穿戴设备上实时显示所述拍摄装置的方位信息。

在一些实施例中,所述可穿戴设备设置有加速度计,所述可穿戴设备的加速度由所述加速度计采集得到。

第三方面,本发明实施例提供了一种遥控器,用于控制拍摄装置的拍摄角度,包括:

至少一个处理器;以及,

与所述至少一个处理器通信连接的存储器;其中,

所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的控制拍摄装置的拍摄角度的方法。

第四方面,本发明实施例提供了一种拍摄系统,包括:拍摄装置、如上所述的遥控器以及可穿戴设备,所述遥控器分别与所述拍摄装置和所述可穿戴设备相连,所述遥控器用于控制所述拍摄装置的拍摄角度。

在一些实施例中,所述拍摄装置包括相机、具有拍摄功能的无人飞行器或者具有拍摄功能的固定装置。

第五方面,本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上所述的控制拍摄装置的拍摄角度的方法。

第六方面,本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的控制拍摄装置的拍摄角度的方法。

本发明实施例,通过可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息来调节拍摄装置的拍摄角度,从而实现体感式控制,避免需要手动拨动遥控器上的滑轮,或者,手动调节终端设备的终端界面进度条或手动输入具体的角度的方式调节拍摄装置的拍摄角度,有效提高用户体验。

附图说明

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。

图1是本发明实施例提供的一种控制拍摄装置的拍摄角度的方法的的应用环境的示意图;

图2是本发明实施例提供的vr设备的示意图;

图3是本发明实施例提供的一种控制拍摄装置的拍摄角度的方法的流程示意图;

图4是本发明实施例提供的另一种控制拍摄装置的拍摄角度的方法的流程示意图;

图5是本发明实施例提供的一种拍摄装置的拍摄角度控制装置的示意图;

图6是本发明实施例提供的一种遥控器的硬件结构示意图;

图7是本发明实施例提供的一种拍摄系统的示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

图1为本发明提供的控制拍摄装置的拍摄角度的方法的其中一种应用环境的示意图。其中,该应用环境中包括:拍摄装置10、可穿戴设备20、遥控器30以及用户(图未示)。

该拍摄装置10用于拍摄图像(或视频、影像或画面)等,并将所拍摄的图像传输至可穿戴设备20,以便在该可穿戴设备20上显示拍摄装置10所拍摄的图像。遥控器30分别与拍摄装置10及可穿戴设备相连。遥控器30用于控制拍摄装置10的拍摄角度。具体的,当用户佩戴该可穿戴设备20时,通过用户的运动带动该可穿戴设备20的运动,并通过可穿戴设备20的加速度采集得到可穿戴设备的加速度;然后,可穿戴设备20将可穿戴设备的加速度传输至遥控器30,以便遥控器30根据可穿戴设备的加速度,得到可穿戴设备的姿态参数,并且拍摄装置10将拍摄装置的拍摄角度信息传输至遥控器30,以便遥控器30根据可穿戴设备的姿态参数以及拍摄装置的拍摄角度信息生成拍摄角度调节指令,从而遥控器30根据该拍摄角度调节指令来控制拍摄装置10的拍摄角度,从而实现体感式控制拍摄装置10的拍摄角度。

其中,拍摄装置10可以为任何合适的拍摄功能的设备,例如,该拍摄装置10可以包括相机、具有拍摄功能的无人飞行器或者具有拍摄功能的固定装置等等。以下对本发明的描述使用无人机(unmannedaerialvehicle,uav)作为拍摄装置10的示例。uav是由遥控设备或自备程序控制装置操纵,带任务载荷的不载人航空器。该uav各种类型的uav,例如,该uav可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此,uav也可以是其它类型的uav或可移动装置。

uav包括但不限于:机身、飞行控制系统、云台、图像采集装置、图传模块等。其中,飞行控制系统设置于机身内,云台安装于机身上,图像采集装置搭载于云台上。飞行控制系统可以与云台、图像采集装置、图传模块进行耦合,以实现通信。

机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。

飞行控制系统具有对uav的飞行和任务进行监控和操纵的能力,包含对无人机发射和回收控制的一组设备。飞行控制系统用于控制uav的飞行,例如,可以根据姿态参数控制uav的飞行。可以理解的是,飞行控制系统可以接收自其它设备发送的姿态参数以及自身的拍摄角度信息,根据该姿态参数以及自身的拍摄角度信息生成拍摄角度调节指令以对uav进行控制;或者可以接收其它设备发送的根据姿态参数以拍摄角度信息生成的拍摄角度调节指令以对uav进行控制。

云台用于搭载图像采集装置。云台上设置有云台电机,飞行控制系统可以控制云台,具体的控制云台电机的运动(如转速),来调节uav拍摄角度。其中,云台电机可以是无刷电机,也可以有刷电机。还可以理解的是,云台可以位于机身的顶部,也可以位于机身的底部。

图像采集装置可以是照相机、拍照手机或摄像机等用于采集图像的装置,图像采集装置可以与飞行控制系统通信,并在飞行控制系统的控制下进行拍摄。例如,飞行控制系统控制图像采集装置拍摄图像的拍摄频率,也即每单位时间内拍摄多少次。或者,飞行控制系统通过云台控制图像采集装置的拍摄角度。

图传模块用于将天空中处于飞行状态的uav所拍摄的画面实时稳定的发射给地面无线图传遥控接收设备,如遥控器30。

可以理解的是,上述对于uav各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。

需要说明的是当拍摄装置可以为独立的相机,也可以为搭载于无人飞行器上的相机,也即该拍摄装置可以无人飞行器的一个组成部分。

其中,可穿戴设备20可以为任何合适的可以穿戴的设备。例如,可穿戴设备20为虚拟现实(virtualreality,vr)设备20a、智能眼镜,该vr设备20a是一种可为用户提供沉浸式感觉的设备。以下对本发明的描述使用vr设备20a作为可穿戴设备20的示例。vr设备20a可将拍摄装置10传输过来的实时图像(或视频、影像或画面)通过光学系统拉到远处放大,近乎充满人的视野范围,从而产生沉浸感,让用户达到置身于其中的感觉。

请参考图2,该vr设备20a包括:显示装置201及智能终端202。该智能终端202与显示装置201连接。

显示装置201可以为各种合适的vr头显,如vr眼镜、vr眼罩、vr头盔或其它头戴式显示设备。显示装置201用于显示拍摄装置10所拍摄的图像,并为用户提供一种沉浸式感觉。显示装置201的显示原理大致为:左右眼屏幕分别显示左右眼的图像,人眼获取这种带有差异的信息后在脑海中产生立体感,从而为用户提供一种沉浸式感觉。

显示装置201上设置有接口,以使智能终端202与显示装置201连接。具体的,显示装置201上设置有usb接口,以智能终端202接收到的拍摄装置10所拍摄的图像显示于显示装置201上。

可以理解的是,上述显示装置201可以佩戴于用户头部的任何合适位置,只要可以使得拍摄装置10所拍摄的图像在用户的可视范围内即可,也即,本发明实施例对显示装置201所佩戴的位置并不做具体限制。

智能终端202可以为任何合适的终端设备,如手机、小型平板等。以下对本发明的描述使用手机作为智能终端202的示例。手机中可设置有各种手机传感器。手机传感器是手机上通过芯片来感应的元器件,如距离值、温度值、亮度值和压力值等。该手机传感器包括但不限于:加速度计、陀螺仪、磁力传感器、方式传感器、压力传感器、指南针等。其中,vr设备20a可以将通过手机传感器采集的数据传输至遥控器30,以便遥控器30根据该数据得到vr设备20a的姿态参数,进而调节拍摄装置10的拍摄角度。例如,通过加速度计得到vr设备20a运动过程中vr设备20a的加速度,并将该vr设备20a的加速度传输至遥控器30。

需要说明的是,该vr设备20a可以为一体式的vr设备,也可以是分离式的vr设备,也即移动端头显设备。其中,一体式的vr设备是指具备独立处理器的vr头显设备,具备了独立运算、输入和输出的功能,也即上述智能终端202所实现的功能均可以集成于vr设备的处理器上。移动端头显设备是指上述智能终端202与上述显示装置201是可以分离而独立实现自身功能的。

其中,该遥控器30可以是任何合适的遥控设备。遥控器30为受地(舰)面或空中平台上的遥控单元通过机载飞行控制系统控制飞行的航空器。该遥控器30分别与拍摄装置10及可穿戴设备20通信连接。遥控器30为执行上述控制拍摄装置的拍摄角度的方法的主体,也即遥控器30用于控制拍摄装置10的拍摄角度。其中,遥控器30根据该拍摄角度调节指令来控制拍摄装置10的拍摄角度具体为:通过遥控器30的图传模块和拍摄装置10上的图传模块,实现与拍摄装置10的通讯,将用于控制拍摄角度的拍摄角度调节指令从遥控器30传递给拍摄装置10,例如,拍摄装置10以上述uav为例,遥控器30将用于控制拍摄角度的拍摄角度调节指令传输至该uav的图传模块,图传模块连接uav的飞行控制系统,飞行控制系统连接电调,然后电调连接至云台的云台电机引出线,通过电调控制电机的转速,从而调节uav的拍摄角度。

通常在拍摄装置10进行拍摄的过程中,拍摄装置10与可穿戴设备20有一定的距离,特别是对于一些高空拍摄,拍摄装置10与可穿戴设备20通常距离较远,为了实现远距离控制拍摄装置10的拍摄角度,需要通过该遥控器30进行拍摄装置10的拍摄角度的控制。

下面结合附图,对本发明实施例作进一步阐述。

实施例1:

图3为本发明实施例提供的一种控制拍摄装置的拍摄角度的方法的流程示意图。该方法适用于对各种拍摄装置的拍摄角度进行调整,如无人飞行器、相机等。该方法可由各种遥控设备执行,如遥控器等。该遥控器分别与拍摄装置和可穿戴设备相连,该可穿戴设备可佩戴于用户头部,该可穿戴设备显示所述拍摄装置所拍摄的图像。该可穿戴设备可以为各种可以穿戴的设备,如vr设备等等。

参照图3,所述控制拍摄装置的拍摄角度的方法包括:

301:在所述可穿戴设备运动的过程中,获取所述可穿戴设备的加速度。

其中,可穿戴设备中设置有智能终端,如手机等。由于手机中携带有各种手机传感器,如加速度计、陀螺仪、磁力传感器、指南针等。因此,在用户佩戴可穿戴设备,在其头部运动带动可穿戴设备的运动时,可通过手机传感器采集可穿戴设备的运动数据。具体的,所述可穿戴设备的加速度由所述加速度计采集得到。

其中,遥控器获取所述可穿戴设备的加速度具体包括:接收通过加速度计采集得到的可穿戴设备加速度。该可穿戴设备的加速度可以为三轴加速度,也即可穿戴设备坐标系的三个坐标轴方向上的加速度(x,y,z)。

302:根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数。

其中,所述可穿戴设备的姿态参数包括可穿戴设备的姿态角。

为了避免求解姿态角过程中的出现万向节锁(gimballock)现象,保证数据的稳定性,将获取得到的加速度(x,y,z)转换为四元数。其中,产生万向节锁现象的根本原因是,旋转矩阵是依次进行的,假设先围绕x轴旋转,再围绕y轴旋转,最后围绕z轴旋转,这就导致物体其实是围绕自己的坐标系的x轴旋转,而不是惯性系的x轴旋转。表现就是,在一个欧拉角(x1,y1,z1)下,改变x1的值,物体会围绕物体自己的坐标系的x轴进行旋转,而不是世界惯性系的x轴进行旋转,最后,当把物体的x轴旋转到与惯性系的z轴重合时,欧垃角的x1和z1旋转结果就都一样了,也就丢失了一个维度,这便是万向节锁现象。使用三个量来表示三维空间的朝向的系统都会出现万向节锁现象这个问题,而通过四元数进行描述可以有效的避免万向节锁现象。

具体的,遥控器根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数,包括:将所述可穿戴设备的加速度转换为第一四元数;根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,所述预设的第二四元数用于表示绕所述可穿戴设备坐标系的z轴旋转第一预设角度的四元数,所述预设的第三四元数用于表示绕所述可穿戴设备坐标系的x轴旋转第二预设角度的四元数。

进一步的,遥控器根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,包括:将所述预设的第二四元数与所述预设的第三四元数进行叉乘运算后,得到第四四元数;根据所述第四四元数及所述第一四元数,得到所述可穿戴设备的姿态角。

上述遥控器计算可穿戴设备的姿态角的具体过程为:

1、将通过加速度计获取得到的可穿戴设备的加速度(x,y,z)转换为第一四元数w=(w0,w1,w2,w3)=(q,x,y,z)。其中,w1=x,w2=y,w3=x。

2、将预设的第二四元数rot1与预设的第三四元数rot2进行叉乘运算后,得到第四四元数rot。其中,第四四元数rot垂直于rot1和rot2组成面。该预设的第二四元数rot1用于表示绕所述可穿戴设备坐标系的z轴旋转第一预设角度的四元数,例如,预设的第二四元数rot1用于表示绕所述可穿戴设备坐标系的z轴旋转90的四元数,则该预设的第二四元数rot1的表达式为:rot1=(cos(pi/4),0,0,-sin(pi/4))。其中,pi表示为圆周率。具体的,pi=3.14159265358979323846。该预设的第三四元数rot2用于表示绕所述可穿戴设备坐标系的x轴旋转第二预设角度的四元数,例如,该预设的第三四元数rot2用于表示绕所述可穿戴设备坐标系的x轴旋转90的四元数,则该预设的第三四元数rot2的表达式为:rot2=(cos(pi/4),-sin(pi/4),0,0)。由于第四四元数rot是由预设的第二四元数rot1与所述预设的第三四元数rot2进行叉乘运算得到的,则第四四元数rot的表达式为:为了提高计算精度,预设的第二四元数rot1与预设的第三四元数rot2均为浮点类型数据。

3、将q与第四四元数rot进行叉乘得到的四元数进行归一化处理后得到用于表示可穿戴设备的姿态角的四元数,再基于该用于表示可穿戴设备的姿态角的四元数与姿态角转换方程,得到可穿戴设备的姿态角(θ,ψ,φ)。其中,归一化是指是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系,以简化计算,缩小量值。归一化处理不影响最终计算的姿态角的值,只是为了简化计算,缩小量值。

具体的,根据所述可穿戴设备的加速度得到所述可穿戴设备的姿态参数的计算公式为:

式中,(θ,ψ,φ)表示为所述可穿戴设备的姿态角,θ表示为所述可穿戴设备的姿态角中的俯仰角,φ表示为所述可穿戴设备的姿态角中的翻滚角,ψ表示为所述可穿戴设备的姿态角中的偏航角;(x,y,z)表示为所述可穿戴设备的加速度;(q,x,y,z)表示为第一四元数,满足:pi表示为圆周率。

通过上述方式,遥控器便可根据可穿戴设备的加速度,得到所述可穿戴设备的姿态参数,其中,该姿态参数为姿态角。上述方式一方面可以避免万向节锁,保证数据的稳定性;另一方面,计算过程的数据的空间占用小相比正交矩阵小,其中,矩阵需要储存9个数,而本计算方式只需要4个数,有效减少数据的空间占用,提高运算速度。

需要说明的是,通常对于拍摄装置的拍摄角度主要是对俯仰角及翻滚角的调整,也即在一些实施例中,若对拍摄角度的控制的要求不高的情况下,可以之间用上述预设的第二四元数rot1代替上述第四四元数进行姿态角的机身,也即直接将q与预设的第二四元数rot1进行叉乘得到的四元数进行归一化处理后得到用于表示可穿戴设备的姿态角的四元数,再基于该用于表示可穿戴设备的姿态角的四元数与姿态角转换方程,得到可穿戴设备的姿态角(θ,ψ,φ)。

所述可穿戴设备的姿态参数还包括可穿戴设备的角速度。其中,遥控器根据所述可穿戴设备的加速度,得到所述可穿戴设备的角速度,可以包括:根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态角;根据所述可穿戴设备的姿态角,得到所述可穿戴设备的角速度。具体的,可以基于上述计算方式得到可穿戴设备的姿态角,然后再结合微分方程,将可穿戴设备的姿态角进行微分得到可穿戴设备的角速度。

303:获取所述拍摄装置的拍摄角度信息。

其中,该拍摄装置的拍摄角度信息为拍摄装置当前的拍摄角度信息,如拍摄装置当前的角度。

304:根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令。

其中,所述拍摄角度调节指令用于调节所述拍摄装置的拍摄角度。

由于所述可穿戴设备的姿态参数包括可穿戴设备的姿态角,因此遥控器根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令,具体包括:根据所述可穿戴设备的姿态角以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令。遥控器需要预先获取拍摄装置的拍摄角度信息以及可穿戴设备的姿态参数,才能确定最终需要调整的拍摄装置的拍摄角度。例如,所述拍摄装置的拍摄角度信息也即拍摄装置当前的角度为(θ1,ψ1,φ1);可穿戴设备的姿态参数也即可穿戴设备的姿态角为(θ2,ψ2,φ2);则根据(θ1,ψ1,φ1)和(θ2,ψ2,φ2)可以得到,拍摄装置需要调整的角度,从而根据该需要调整的角度,生成拍摄角度调节指令,以调节所述拍摄装置的拍摄角度。

305:根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度。

其中,所述拍摄装置搭载于云台上。遥控根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度,具体包括:根据所述拍摄角度调节指令,调节所述云台的角度,以调整所述拍摄装置的拍摄角度。

通过遥控器将根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息生成的拍摄角度调节指令传输至拍摄装置的飞行控制系统,从而调节用于搭载拍摄装置的云台的角度,以获取不同视角的拍摄图像,从而实现体感式控制拍摄装置的拍摄角度,避免人为手动触发操作,自动根据用户的头部运动来控制拍摄装置的拍摄视角,同时可穿戴设备为用户显示拍摄装置所拍摄的图像,该可穿戴设备可以为vr设备,使用户获得3d视角,提高用户沉浸式体验。

需要说明的是,在本发明实施例中,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤301-305可以有不同的执行顺序,例如,先执行步骤303再执行步骤301,或者步骤303与步骤301同时执行。

在本发明实施例中,通过可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息来调节拍摄装置的拍摄角度,从而实现体感式控制,避免需要手动拨动遥控器上的滑轮,或者,手动调节终端设备的终端界面进度条或手动输入具体的角度的方式调节拍摄装置的拍摄角度,有效提高用户体验;同时,该可穿戴设备可以为vr设备,使用户获得3d视角,提高用户沉浸式体验。

实施例2:

图4为本发明实施例提供的另一种控制拍摄装置的拍摄角度的方法的流程示意图。该方法适用于对各种拍摄装置的拍摄角度进行调整,如无人飞行器、相机等。该方法可由各种遥控设备执行,如遥控器等。该遥控器分别与拍摄装置和可穿戴设备相连,该可穿戴设备可佩戴于用户头部,该可穿戴设备显示所述拍摄装置所拍摄的图像。该可穿戴设备可以为各种可以穿戴的设备,如vr设备等等。

参照图4,所述控制拍摄装置的拍摄角度的方法包括:

401:在所述可穿戴设备运动的过程中,获取所述可穿戴设备的加速度。

402:根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数。

403:获取所述拍摄装置的拍摄角度信息。

404:根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令。

405:根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度。

需要说明的是,上述步骤401-405分别与如图3所示的控制拍摄装置的拍摄角度的方法中的步骤301-305具有相同的技术特征,因此,其具体实施方式可以参考上述实施例的步骤301-305中相应的描述,在本实施例中便不再赘述。

406:根据所述可穿戴设备的角速度,生成角速度调节指令,所述角速度调节指令用于调节所述拍摄装置的拍摄的角速度。

407:根据所述角速度调节指令,调节所述云台的角速度,以调节所述拍摄装置的拍摄的角速度。

基于所述可穿戴设备的姿态参数还包括:可穿戴设备的角速度。因此,遥控器还可以根据可穿戴设备的角速度生成的角速度调节指令,调节搭载拍摄装置的云台的角速度,以调节拍摄装置的拍摄的角速度,从而实现体感式控制拍摄装置的拍摄的角速度,避免人为手动触发操作,自动根据用户的头部运动来控制拍摄装置的拍摄的角速度,进一步提高用户沉浸式体验。

在一些实施例中,该控制拍摄装置的拍摄角度的方法还包括:根据所述可穿戴设备的运动速度,生成运动速度调节指令,所述运动速度调节指令用于调节所述拍摄装置的运动速度;根据所述运动速度调节指令,调节拍摄装置的运动速度,以便进一步提高用户沉浸式体验。

408:在所述可穿戴设备上实时显示所述拍摄装置的方位信息。

由于,可穿戴设备的手机传感器还可以包括指南针,因此,为了更好的了解拍摄装置所在的位置信息,遥控器在调节拍摄装置的拍摄角度的过程中,还可以在可穿戴设备的显示界面上实时显示拍摄装置的方位信息,如当前所在方位及当前的偏转度数等。

在本发明实施例中,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤401-408可以有不同的执行顺序。例如,先执行步骤408再执行步骤406等。

在本发明实施例中,通过可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息来调节拍摄装置的拍摄角度,从而实现体感式控制,避免需要手动拨动遥控器上的滑轮,或者,手动调节终端设备的终端界面进度条或手动输入具体的角度的方式调节拍摄装置的拍摄角度,有效提高用户体验;同时,该可穿戴设备可以为vr设备,使用户获得3d视角,提高用户沉浸式体验。此外,还可以实时显示拍摄装置的方位信息,以便更好的了解拍摄装置所在的位置信息。

实施例3:

图5为本发明实施例提供的一种拍摄装置的拍摄角度的控制装置示意图。其中,该拍摄装置的拍摄角度的控制装置50(简称控制装置)可配置于各种遥控设备中,如遥控器等。该控制装置50分别与拍摄装置和可穿戴设备相连,该可穿戴设备可佩戴于用户头部,该可穿戴设备显示所述拍摄装置所拍摄的图像。该可穿戴设备可以为各种可以穿戴的设备,如vr设备等等。

参照图5,所述控制装置50包括:加速度获取模块501、姿态参数确定模块502、拍摄角度信息获取模块503、拍摄角度调节指令生成模块504、拍摄角度调节模块505、角速度调节指令生成模块506、角速度调节模块507以及方位信息显示模块508。

具体的,加速度获取模块501用于在所述可穿戴设备运动的过程中,获取所述可穿戴设备的加速度。

其中,可穿戴设备中设置有智能终端,如手机等。由于手机中携带有各种手机传感器,如加速度计、陀螺仪、磁力传感器、指南针等。因此,在用户佩戴可穿戴设备,在其头部运动带动可穿戴设备的运动时,可通过手机传感器采集可穿戴设备的运动数据。具体的,所述可穿戴设备的加速度由所述加速度计采集得到。

其中,加速度获取模块501具体用于:接收通过加速度计采集得到的可穿戴设备加速度。该加速度可以为三轴加速度,也即可穿戴设备坐标系的三个坐标轴方向上的加速度(x,y,z)。

具体的,姿态参数确定模块502用于根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态参数。

其中,所述可穿戴设备的姿态参数包括可穿戴设备的姿态角。

姿态参数确定模块502具体用于:将所述可穿戴设备的加速度转换为第一四元数;根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,所述预设的第二四元数用于表示绕所述可穿戴设备坐标系的z轴旋转第一预设角度的四元数,所述预设的第三四元数用于表示绕所述可穿戴设备坐标系的x轴旋转第二预设角度的四元数。

进一步的,姿态参数确定模块502根据所述第一四元数、预设的第二四元数以及预设的第三四元数,得到所述可穿戴设备的姿态角,包括:将所述预设的第二四元数与所述预设的第三四元数进行叉乘运算后,得到第四四元数;根据所述第四四元数及所述第一四元数,得到所述可穿戴设备的姿态角。

具体的,姿态参数确定模块502根据所述可穿戴设备的加速度得到所述可穿戴设备的姿态参数的计算公式为:

式中,(θ,ψ,φ)表示为所述可穿戴设备的姿态角,θ表示为所述可穿戴设备的姿态角中的俯仰角,φ表示为所述可穿戴设备的姿态角中的翻滚角,ψ表示为所述可穿戴设备的姿态角中的偏航角;(x,y,z)表示为所述可穿戴设备的加速度;(q,x,y,z)表示为第一四元数,满足:pi表示为圆周率。

通过上述方式,姿态参数确定模块502便可根据可穿戴设备的加速度,得到所述可穿戴设备的姿态参数,其中,该姿态参数为姿态角。上述方式一方面可以避免万向节锁,保证数据的稳定性;另一方面,计算过程的数据的空间占用小相比正交矩阵小,其中,矩阵需要储存9个数,而本计算方式只需要4个数,有效减少数据的空间占用,提高运算速度。

需要说明的是,通常对于拍摄装置的拍摄角度主要是对俯仰角及翻滚角的调整,也即在一些实施例中,若对拍摄角度的控制的要求不高的情况下,可以之间用上述预设的第二四元数代替上述第四四元数进行姿态角的机身,也即直接将q与预设的第二四元数rot1进行叉乘得到的四元数进行归一化处理后得到用于表示可穿戴设备的姿态角的四元数,再基于该用于表示可穿戴设备的姿态角的四元数与姿态角转换方程,得到可穿戴设备的姿态角(θ,ψ,φ)。

所述可穿戴设备的姿态参数还包括可穿戴设备的角速度。其中,姿态参数确定模块502根据所述可穿戴设备的加速度,得到所述可穿戴设备的角速度,可以包括:根据所述可穿戴设备的加速度,得到所述可穿戴设备的姿态角;根据所述可穿戴设备的姿态角,得到所述可穿戴设备的角速度。具体的,姿态参数确定模块502可以基于上述计算方式得到可穿戴设备的姿态角,然后再结合微分方程,将可穿戴设备的姿态角进行微分得到可穿戴设备的角速度。

具体的,拍摄角度信息获取模块503用于获取所述拍摄装置的拍摄角度信息。其中,该拍摄装置的拍摄角度信息为拍摄装置当前的拍摄角度信息,如拍摄装置当前的角度。

具体的,拍摄角度调节指令生成模块504根据所述可穿戴设备的姿态参数以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令。其中,所述拍摄角度调节指令用于调节所述拍摄装置的拍摄角度。

由于所述可穿戴设备的姿态参数包括可穿戴设备的姿态角,因此拍摄角度调节指令生成模块504具体用于:根据所述可穿戴设备的姿态角以及所述拍摄装置的拍摄角度信息,生成拍摄角度调节指令。拍摄角度调节指令生成模块504需要预先获取拍摄装置的拍摄角度信息以及可穿戴设备的姿态参数,才能确定最终需要调整的拍摄装置的拍摄角度。

拍摄角度调节模块505用于根据所述拍摄角度调节指令,控制所述拍摄装置的拍摄角度。

其中,所述拍摄装置搭载于云台上。拍摄角度调节模块505具体用于:根据所述拍摄角度调节指令,调节所述云台的角度,以调整所述拍摄装置的拍摄角度。

通过拍摄角度调节模块505将拍摄角度调节指令生成模块504所生成的拍摄角度调节指令传输至拍摄装置的飞行控制系统,从而调节用于搭载拍摄装置的云台的角度,以获取不同视角的拍摄图像,从而实现体感式控制拍摄装置的拍摄角度,避免人为手动触发操作,自动根据用户的头部运动来控制拍摄装置的拍摄视角,同时可穿戴设备为用户显示拍摄装置所拍摄的图像,该可穿戴设备可以为vr设备,使用户获得3d视角,提高用户沉浸式体验。

具体的,角速度调节指令生成模块506用于根据所述可穿戴设备的角速度,生成角速度调节指令,所述角速度调节指令用于调节所述拍摄装置的拍摄的角速度。

具体的,角速度调节模块507用于根据所述角速度调节指令,调节所述云台的角速度,以调节所述拍摄装置的拍摄的角速度。

基于所述可穿戴设备的姿态参数还包括:可穿戴设备的角速度。因此,角速度调节模块507还可以根据角速度调节指令生成模块506所生成的角速度调节指令,调节搭载拍摄装置的云台的角速度,以调节拍摄装置的拍摄的角速度,从而实现体感式控制拍摄装置的拍摄的角速度,避免人为手动触发操作,自动根据用户的头部运动来控制拍摄装置的拍摄的角速度,进一步提高用户沉浸式体验。

在一些实施例中,该控制装置50还包括:运动速度调节指令生成模块,用于根据所述可穿戴设备的运动速度,生成运动速度调节指令,所述运动速度调节指令用于调节所述拍摄装置的运动速度;运动速度调节模块,用于根据所述运动速度调节指令,调节拍摄装置的运动速度,以便进一步提高用户沉浸式体验。

具体的,方位信息显示模块508用于在所述可穿戴设备上实时显示所述拍摄装置的方位信息。

由于,可穿戴设备的手机传感器还可以包括指南针,因此,为了更好的了解拍摄装置所在的位置信息,在拍摄角度调节模块505调节拍摄装置的拍摄角度的过程中,还可以通过方位信息显示模块508在可穿戴设备的显示界面上实时显示拍摄装置的方位信息,如当前所在方位及当前的偏转度数等。

需要说明的是,在本发明实施例中,所述控制装置50可执行任意方法实施例所提供的控制拍摄装置的拍摄角度的方法,具备执行方法相应的功能模块和有益效果。未在控制装置50的实施例中详尽描述的技术细节,可参见方法实施例所提供的控制拍摄装置的拍摄角度的方法。

实施例4:

图6是本发明实施例提供的遥控器硬件结构示意图,如图6所示,所述遥控器60包括:

一个或多个处理器601以及存储器602,图6中以一个处理器601为例。

处理器601和存储器602可以通过总线或者其他方式连接,图6中以通过总线连接为例。

存储器602作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的控制拍摄装置的拍摄角度的方法对应的程序指令/模块(例如,附图5所示的加速度获取模块501、姿态参数确定模块502、拍摄角度信息获取模块503、拍摄角度调节指令生成模块504、拍摄角度调节模块505、角速度调节指令生成模块506、角速度调节模块507以及方位信息显示模块508)。处理器601通过运行存储在存储器602中的非易失性软件程序、指令以及模块,从而执行遥控器60的各种功能应用以及数据处理,即实现所述方法实施例的控制拍摄装置的拍摄角度的方法。

存储器602可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据遥控器60使用所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器602可选包括相对于处理器601远程设置的存储器,这些远程存储器可以通过网络连接至遥控器60。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。

所述一个或者多个模块存储在所述存储器602中,当被所述一个或者多个处理器601执行时,执行所述任意方法实施例中的控制拍摄装置的拍摄角度的方法,例如,执行以上描述的图4中的方法步骤401至步骤408,实现图5中的501-508模块的功能。

所述遥控器60可执行任意方法实施例所提供的控制拍摄装置的拍摄角度的方法,具备执行方法相应的功能模块和有益效果。未在遥控器实施例中详尽描述的技术细节,可参见任意方法实施例所提供的控制拍摄装置的拍摄角度的方法。

本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行所述任意方法实施例中的控制拍摄装置的拍摄角度的方法,例如,执行以上描述的图4中的方法步骤401至步骤408,实现图5中的501-508模块的功能。

本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行所述任意方法实施例中的控制拍摄装置的拍摄角度的方法,例如,执行以上描述的图4中的方法步骤401至步骤408,实现图5中的501-508模块的功能。

实施例5:

图7是本发明实施例提供的拍摄系统的示意图,如图7所示,所述拍摄系统70包括:拍摄装置701、如上所述的遥控器60以及可穿戴设备702,所述遥控器60分别与所述拍摄装置701和所述可穿戴设备702相连,所述遥控器60用于控制所述拍摄装置701的拍摄角度。所述可穿戴设备702用于显示所述拍摄装置701所拍摄的图像。

其中,所述拍摄装置701包括相机、具有拍摄功能的无人飞行器或者具有拍摄功能的固定装置。所述可穿戴设备702可以为vr设备等。

需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。

通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(read-onlymemory,rom)或随机存储记忆体(randomaccessmemory,ram)等。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1