多晶硅薄膜制造方法和具有其的薄膜晶体管的制造方法

文档序号:8024385阅读:107来源:国知局
专利名称:多晶硅薄膜制造方法和具有其的薄膜晶体管的制造方法
技术领域
本发明涉及一种制造多晶硅薄膜的方法和制造具有该薄膜的薄膜晶体管(TFT)的方法。更具体地,本发明涉及一种制造具有改进的电学特性的多晶硅薄膜的方法和制造具有该薄膜的TFT的方法。
背景技术
液晶显示(LCD)设备包括开关元件。开关元件包括非晶硅薄膜晶体管(a-Si TFT)或多晶硅薄膜晶体管(Poly-Si TFT)。具有Poly-Si TFT的LCD设备拥有比具有a-Si TFT的LCD设备更快的运行速度,从而提供了比具有a-Si TFT的LCD设备更好的图像显示质量。
Poly-Si TFT直接形成在基板上,或者非晶硅薄膜通过热处理被晶化来形成Poly-Si TFT。
当将用于LCD设备的玻璃基板的温度增加到高于约600℃时,玻璃基板发生变形。为了避免这一变形,非晶硅薄膜使用受激准分子激光器晶化。在受激准分子激光器退火(ELA)处理中,具有高能量的激光束被辐射到非晶硅薄膜上一段几十纳秒的时间,以使非晶硅薄膜晶化,使得玻璃基板不会变形。
当非晶硅薄膜没有用ELA工艺来处理时,非晶硅薄膜中的硅原子以晶粒形状重排,以提供具有高电子迁移率的Poly-Si TFT。在ELA工艺中,非晶硅薄膜被熔化然后被固化以形成Poly-Si TFT。即,通过ELA工艺形成的Poly-Si TFT在接通状态下具有高的运行速度。
但是,在断开状态下,泄漏电流流经多晶硅晶粒之间的界面。即,界面处的硅原子彼此不是可靠结合的,导致了在界面处形成的电子空穴,从而产生了泄漏电流。

发明内容
根据本发明,提供了一种制造具有改进电学特性的多晶硅薄膜的方法。
根据本发明,还提供了一种制造具有上述薄膜的薄膜晶体管(TFT)的方法。
根据本发明实施例的多晶硅薄膜的制造方法如下所述。激光束被辐射到非晶硅薄膜的第一部分,以使非晶硅薄膜的该部分液化。非晶硅薄膜的第一部分位于基板的第一端部上。液化硅被晶化以形成硅晶粒。激光束在第一方向上从基板的第一端部向与第一端部相对的第二端部移动一间隔。激光束然后被辐射到与硅晶粒相邻的非晶硅薄膜的第二部分上,以形成第一多晶硅薄膜。
根据本发明实施例的薄膜晶体管的制造方法如下所述。非晶硅薄膜被形成在基板上。激光束被辐射到非晶硅薄膜上,以使非晶硅薄膜转变为多晶硅薄膜。多晶硅薄膜被部分蚀刻以形成多晶硅图案。第一绝缘层被形成在具有多晶硅图案的基板上以保护多晶硅图案。栅电极被形成在与多晶硅图案相应的第一绝缘层上。第二绝缘层形成在第一绝缘层和栅电极上。第一绝缘层和第二绝缘层被部分蚀刻以形成接触孔。源电极和漏电极形成在第二绝缘层上。源电极与漏电极间隔开。源电极和漏电极通过接触孔分别电连接到多晶硅图案。
根据本发明,激光束从第一端部向第二端部被反复辐射到基板上,以增大晶粒尺寸,从而形成具有改进电学特性的Poly-Si薄膜。


本发明上面和其它的优点将通过下面参考附图的详细说明而变得清楚,其中图1是示出了根据本发明一个实施例的多晶硅(Poly-Si)薄膜制造方法的横截面图;图2是示出了图1所示的Poly-Si薄膜制造方法的平面图;图3是示出了图1所示的部分‘A’的放大横截面视图;图4A到4F是示出了图2所示的Poly-Si的生长的横截面视图;图5A到5C是示出了图2所示的Poly-Si的生长的平面图;图6是示出了图2所示的Poly-Si薄膜的平面图;图7是示出了激光束强度与位置之间关系的图;图8是示出了图7中的部分‘B’的图;
图9A到9C是示出了通过根据本发明另一实施例的薄膜制造方法形成的Poly-Si的生长的平面图;图10是示出了通过图9A到图9C所示的方法形成的Poly-Si薄膜的平面图;图11是示出了根据本发明另一实施例的Poly-Si薄膜制造方法的平面图;图12A到图12C是示出了图11所示的方法的平面图;图13是示出了由图11所示的方法形成的Poly-Si薄膜的平面图;以及图14A到图14D是示出了根据本发明一个实施例的Poly-Si薄膜制造方法的横截面视图。
具体实施例方式
下面参照在其中示出了本发明实施例的附图来更完整地描述本发明。但是,本发明可以以许多不同的形式实现,而不应该被解释为限于这里给出的实施例。实际上,提供这些实施例是为了使本公开全面且完整,而且向本领域的普通技术人员充分传达本发明的范围。在附图中,为了清楚起见,层和区的尺寸和相对尺寸都可能被夸大了。
应当理解的是,当元件或层被称作“在...上”、“被连接到”或“被耦合到”另一个元件或层时,其可以直接在该另一个元件或层之上,或者直接连接或耦合到其上,或者也可以存在位于两者之间的元件或层。对比而言,当元件被称作“直接在...上”、“被直接连接到”或“被直接耦合到”另一个元件或层时,不存在位于两者之间的元件或层。全文中类似的标号指代类似的元件。如这里所使用的那样,术语“和/或”包括一个或多个相关列出的项的任何和所有组合。
应当理解的是,虽然术语第一、第二、第三等在这里被用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应该受这些术语的限制。这些术语只是用来将一个元件、部件、区、层与另一个区、层或部分区分开。因此,下面讨论的第一元件、部件、区、层或部分也可以称作第二元件、部件、区、层和/或部分,但并不脱离本发明的教导。
空间相关性术语,例如“紧靠...之下”、“在...下方”、“下部”、“在...之上”、“上部”等,在这里为了描述方便可以用来描述一个元件或特征与另一个(或多个)元件或一个(或多个)特征的关系,如在附图中所图示的那样。应该理解,空间相关性术语在图中描绘的方向之外,还意于包含使用中或操作中的器件的不同方向。例如,如果图中的器件被翻转,那么被描述为相对于其它元件或特征为“在其下方”或“紧靠其下”的元件的取向就会变为相对于该其它元件或特征为“在其之上”。因此,示例性术语“在...下方”、可以包含在其之上和在其之下的两个取向。器件可以是其它取向(旋转90度或处于其它取向),此时这里使用的空间相关性描述符应被相应地解释。
这里使用的术语仅仅是出于描述具体实施例的目的,并不意于对本发明进行限制。如这里使用的那样,单数形式“一”和“该”也意于包括复数形式,除非上下文另外明确指出另外的情形。应该进一步理解的是,术语“包括”和/或“包含”,当在本说明书中使用时,指定存在所陈述的特征、整数、步骤、操作、元件和/或部件,但是并不排除存在或增加一个或多个其它特征、整数、步骤、操作、元件、部件和/或其组合。
这里参照横截面图示来描述本发明的实施例,这些横截面是本发明理想化实施例(和中间结构)示意图示。这样,例如制造技术和/或公差而导致的图示形状的变化将是可以预料到的。因此,本发明的实施例不应该被解释成限制为这里所图示的区的具体形状,而是将包括例如由于制造所导致的形状的改变。例如,图示为矩形的注入区通常会具有倒圆的或曲线的特征和/或在其边缘处的注入浓度梯度,而非从注入区到非注入区的二元变化。同样地,通过注入形成的埋入区可能会导致在该埋入区与注入通过其发生的表面之间的区域中的某些注入。因此,在图中所图示的区本质上是示意的,它们的形状并不意于图示器件区的实际形状,也并非意于限制本发明的范围。
除非另外定义,否则这里使用的所有术语(包括技术和科学术语)都具有如本发明所属技术领域的普通技术人员通常所理解的相同含义。应该进一步理解的是,例如在通用词典中定义的那些术语的术语将被解释为具有与它们在相关领域上下文中的意义相一致的含义,而不应该以理想化或过度刻板的方式解释,除非在这里有清楚的定义。
图1是示出了根据本发明一个实施例的多晶硅(Poly-Si)薄膜的制造方法的横截面视图。图2是示出了图1所示Poly-Si薄膜的制造方法的平面图。图3是示出了图1所示部分‘A’的放大横截面视图。
现在参照图1到图3,用于制造Poly-Si薄膜140的装置包括激光器单元10、XY-台20和基板100。
激光器单元10产生激光束200,以间歇性地将激光束200辐射到基板100上。在图1到图3所示的方法中,激光器单元10包括具有例如短波长、高输出、高效率等多种特性的受激准分子激光器。受激准分子激光器可以包括惰性气体受激准分子激光器、惰性气体卤化物受激准分子激光器、卤化汞受激准分子激光器、惰性气体氧化物受激准分子激光器或多原子受激准分子激光器。惰性气体的例子包括Ar2、Kr2、Xe2等。惰性气体卤化物的示例包括ArF、ArCl、KrF、KrCl、XeF、XeCl等。卤化汞的示例包括HgCl、HgBr、Hgl等。惰性气体氧化物的示例包括ArO、KrO、XeO等。多原子材料的示例包括Kr2F、Xe2F等。
由激光器单元10产生的激光束200的波长从约200nm到约400nm。在图1到图3示出的方法中,由激光器单元10产生的激光束200的波长为约250nm到约308nm。激光束200的频率为约300Hz到约6,000Hz。在图1到图3所示的方法中,激光束200的频率为约4,000Hz到约6,000Hz。
XY-台20支撑基板100,并且在第一方向上相对于基板100以第一间隔反复传送基板100。在图1到图3所示的方法中,XY-台20从右向左传送基板100,并且XY-台20在基本上垂直于第二方向的第一方向上相对于基板100移动第一间隔。
当XY-台20传送基板100时,由激光器单元10产生的激光束200从基板100的第一端部102到基板100的第二端部104辐射到基板100上。邻近基板100右侧的第二端部104与邻近基板100左侧的第一端部102相对。或者,XY-台20可以从左向右传送基板100,并且XY-台20在第一方向上移动第一间隔。
基板100被定位在XY-台20上,并且包括透明基板110、氧化物层120和非晶硅(a-Si)薄膜130。在图1到图3所示的方法中,基板100的尺寸为约470mm×360mm。
透明基板110被定位在XY-台20上。透明基板110包括用于透射光的玻璃或石英。氧化物层120被设置在透明基板110上,并改进透明基板110与a-Si薄膜130之间的界面特性。a-Si薄膜130通过化学气相沉积(CVD)工艺沉积在氧化物层120上。a-Si薄膜130包括非晶硅。
由激光器10产生的激光束200被辐射到a-Si薄膜130上,使得a-Si薄膜130被快速熔化。在图1到图3中,激光束200辐射到其上的a-Si薄膜130被完全熔化,同时激光束200没有辐射到其上的a-Si薄膜130的剩余部分仍旧处于固体状态。熔化的a-Si薄膜130通过固相晶化被快速晶化,从而形成多晶硅(Poly-Si)薄膜140。
图4A到4F是示出了图2所示Poly-Si的生长的横截面视图。具体而言,图4A是示出了a-Si薄膜的一部分的首次液化的横截面视图。
现在参照图4A,在设置于基板100上的a-Si薄膜130上准备了产生激光束200的激光器单元10。基板100被定位在XY-台20上。激光束200可以具有例如椭圆形、四边形等的光束形状。光束200的光束形状的第一宽度比激光束200的光束形状的第二宽度短。激光束200的光束形状的第二宽度可以基本上等于基板100的侧边长。在图4A中,激光束200的光束形状的第一宽度比通过每次传送基板100所形成的单元Poly-Si晶体宽度的两倍还多。
由激光器单元10产生的激光束200被首先辐射到邻近基板第一端部102的a-Si薄膜130的一部分上,以首先液化a-Si薄膜130的该部分,从而形成液化硅区134。即,a-Si薄膜130的相从非晶固相转变为液相。激光束200首先辐射到其上的a-Si薄膜130的那部分被完全液化。a-Si薄膜130的其余部分仍旧处于非晶固相。
在图4A中,激光束200的单位照射强度就足以完全液化a-Si薄膜130。或者,激光束200的单位照射强度可能小于用于液化a-Si薄膜130的强度,因此激光束200的多次照射可以被辐射到a-Si薄膜130的该部分上以完全液化a-Si薄膜130。
图4B是示出了邻近首次液化硅区的侧面的晶体生长的横截面视图。
参照图4B,首次液化硅区134从首次液化硅区134的侧面通过固相晶化被首先晶化。邻近作为a-Si薄膜132的其余部分与首次液化硅区134之间界面的侧面的首次晶化Poly-Si 142作为晶体生长的核心。即,a-Si 132的其余部分作为晶体生长的核心,使得液化硅区134从首次液化硅区134的侧面到首次液化硅区134的中央以约激光束200光束形状第一宽度一半的横向生长宽度被首先晶化。在图4B中,横向生长宽度为约1μm到约5μm。例如,横向生长宽度可以为约2μm到约4μm。
图4C是示出了首次晶化的Poly-Si的中央突出部分的横截面视图。
现在参照图4C,当首次液化硅区134的首次晶化结束时,突出部分146形成在首次晶化的Poly-Si 142的中央。从侧面开始的横向生长在首次晶化的Poly-Si 142的中央相遇。突出部分146的电子迁移率低于首次晶化的Poly-Si142的其余部分。为了使Poly-Si薄膜的电子迁移率更加均匀,突出部分146被通过如下过程去除。
图4D是示出了邻近首次液化硅区的a-Si薄膜的另一个部分的二次液化的横截面视图。
参照图4D,激光器单元10从第一端部102向第二端部104移动第一间隔。由激光器单元10产生的激光束200被再次辐射到a-Si薄膜130的一部分、首次晶化的Poly-Si 142的一部分以及邻近基板100第一端部102的首次突出部分146上。激光束200的辐射再次液化a-Si薄膜130的该部分、首次晶化得Poly-Si 142的该部分以及首次突出部分146,以形成二次液化硅区134’。激光束200再次辐射到其上的a-Si薄膜130的部分被完全液化。首次突出部分146的熔化使得首次晶化Poly-Si 142的表面被平化,从而消除了突出部分146。在图4D中,第一间隔大于首次晶化的Poly-Si 132宽度的一半。
图4E是示出了邻近二次液化硅区134’的侧面的晶体生长的横截面视图。
参照图4E,二次液化硅区134’通过固相晶化从二次液化硅区134’的侧面再次晶化。与作为首次晶化的Poly-Si 142其余部分与二次液化硅区134’之间界面的侧面以及与作为a-Si薄膜132其余部分与二次液化硅区134’之间界面的侧面相邻的二次晶化的Poly-Si 142’作为晶体生长的核心。即,沿着第一侧面,晶体生长从首次晶化的Poly-Si 142形成,使得二次液化硅区134’从首次晶化的Poly-Si 142的其余部分与二次液化硅区134’之间的界面再次晶化。沿着与第一侧面相对的第二侧面,a-Si薄膜132作为晶体生长的核心,使得二次液化硅区134’从a-Si薄膜132的其余部分与二次液化硅区134’之间的界面以约激光束200光束形状第一宽度的一半的横向生长宽度被再次晶化。
图4F是示出了二次液化硅区中央上的突出部分的横截面视图。
参照图4F,当二次液化硅区134’的再次晶化结束时,在二次晶化的Poly-Si 142’上形成二次突出部分146’。
激光器单元10被再次移动以将激光束200辐射到a-Si薄膜130的一部分、二次晶化的Poly-Si的一部分(未示出)以及二次突出部分146’上,以第三次液化a-Si薄膜130的该部分和二次晶化的Poly-Si 142’的该部分,来形成液化硅区134,并消除二次突出部分146’。激光束200被第三次辐射到其上的a-Si薄膜130的部分被完全液化。上述过程横跨基板100的表面反复进行,以形成具有增加的电子迁移率的Poly-Si薄膜140。
图5A到图5C是示出了图2所示Poly-Si生长的平面图。具体而言,图5A是示出了通过激光束的首次辐射形成的Poly-Si薄膜的平面图。
现在参照图5A,由激光器单元10产生的激光束200被辐射到a-Si薄膜130的一部分。a-Si薄膜130的该部分被快速液化以形成液化硅区134,并且通过固相晶化从液化硅区134的侧面开始被晶化。
在固相晶化中,在液化硅区134侧面的a-Si薄膜130作为晶体生长的核心。首次晶化的Poly-Si 142从核心开始生长以形成多个硅晶粒143。硅晶粒边界144由相邻的硅晶粒143界定。
当硅晶粒143通过固相晶化生长时,在首次晶化的Poly-Si 142的中央形成首次突出部分146。在图5A中,首次突出部分146在第二方向上延伸。
图5B是示出了通过激光束的二次辐射形成的Poly-Si薄膜的平面图。
参照图4D和5B,激光单元10在第一方向上从第一端部102向第二端部104移动第一间隔D1。由激光器单元10产生的激光束200被再次辐射到a-Si薄膜130的一部分、首次晶化的Poly-Si 142的一部分和首次突出部分146,以再次液化a-Si薄膜130的该部分、首次晶化的Poly-Si 142的该部分和第一突出部分146,来形成二次液化硅区,并消除首次突出部分146。激光束200再次辐射到其上的a-Si薄膜130的部分被完全液化。在图4D和图5B中,第一间隔D1不超过激光束200光束形状的第一宽度的一半,这确保了激光束200将完全液化由于之前的辐射所形成的突出部分。例如,激光束200的第一间隔D1为约1μm到约4μm。
当激光束200被过度地辐射到a-Si薄膜130上时,a-Si薄膜130从氧化物层120上分离。为了防止a-Si薄膜130的分离,首次辐射激光束与二次辐射激光束之间的重叠面积不大于激光束200面积的约90%。
当由激光器单元10产生的激光束200被再次辐射到a-Si薄膜130的一部分、首次晶化的Poly-Si 142的一部分上时,a-Si薄膜130的该部分、首次晶化的Poly-Si 142的该部分和第一突出部分146被再次液化以形成二次液化硅区134’。此外,第一突出部分146通过a-Si薄膜130的熔化而被消除。a-Si薄膜130的该部分位于激光束200的右侧,首次晶化的Poly-Si 142的该部分位于激光束200的左侧。
二次液化硅区134’从首次晶化的Poly-Si 142的其余部分与二次液化硅区134’之间的界面开始被再次晶化,使得硅晶粒143向激光束200的中央部分生长。此外,二次液化硅区134’从a-Si薄膜132的其余部分与二次液化硅区134’之间的界面开始被再次晶化。当二次液化硅区134’的二次晶化结束时,二次突出部分146’沿着激光束200的中央形成在二次晶化的Poly-Si142’上。
图5C是示出了通过激光束的第三次辐射形成的Poly-Si薄膜的平面图。
参照图5C,激光束单元10在第一方向上从第一端部102向第二端部104移动第二间隔D2。由激光器单元10产生的激光束200被第三次辐射到图4D中所示a-Si薄膜130的一部分、二次晶化的Poly-Si 142’的一部分和二次突出部分146’上,以第三次液化图4D中所示a-Si薄膜130的该部分、二次晶化的Poly-Si 142’的该部分和二次突出部分146’,来形成三次液化硅区(未示出),并消除二次突出部分146’。激光束被第三次辐射到其上的图4D中所示a-Si薄膜130的那部分被完全液化。第二间隔D2不大于激光束200光束形状的第一宽度的一半。在图5C中,第二间隔D2基本上等于第一间隔D1。
当由激光器单元10产生的激光束200被第三次辐射到图4D中所示a-Si薄膜130的该部分、二次晶化的Poly-Si 142’的该部分时,图4D中所示a-Si薄膜130的该部分、二次晶化的Poly-Si 142’的该部分和二次突出部分146’被第三次液化,以形成三次液化硅区(未示出)。此外,二次突出部分146’被消除。图4D中所示a-Si薄膜130的该部分在激光束200的右侧上,并且二次晶化的Poly-Si 142’的该部分在激光束200的左侧上。三次液化硅区(未示出)从二次晶化的Poly-Si 142’的其余部分与三次液化硅区(未示出)之间的界面开始被第三次晶化,使得硅晶粒143朝向激光束200的中央部分生长。此外,三次液化硅区(未示出)从图4D中所示a-Si薄膜132的其余部分与三次液化硅区(未示出)之间的界面开始被第三次晶化。当三次液化硅区(未示出)的三次晶化结束时,三次突出部分146”沿着激光束200的中央形成在三次晶化的Poly-Si 142”上。
重复突出部分146、146’和146”的产生和消除,使得硅晶粒143在第一方向上横跨基板100的表面生长。因此,形成了具有增加的电子迁移率的Poly-Si薄膜140。
图6是图2所示Poly-Si薄膜的平面图。
参照图6,Poly-Si薄膜140包括硅晶粒143和硅晶界144。
硅晶粒143在第一方向上从基板的左侧向右侧延伸。硅晶界144也在基本上平行于硅晶粒143的方向上延伸。由于电子不能流经硅晶界144,所以Poly-Si薄膜140在第一方向上的电子迁移率大于Poly-Si薄膜140在第二方向上的电子迁移率。即,电子或空穴可能被捕获在硅晶界144处。
图7是示出了激光束的能量强度与位置之间关系的图。位置是激光束被辐射到其上的表面上预定点的水平长度。图8是示出了图7的部分‘B’的图。
现在参照图7和8,由激光器单元10产生的激光束200的能量图包括平坦部分220和两个倾斜部分210。平坦部分220具有基本上恒定的能量分布。每一个倾斜部分210都具有倾斜的能量分布。平坦部分220在倾斜部分210之间。
激光束200的光束形状的第二宽度基本上等于基板100的侧边长。例如,当基板100的尺寸为约470mm×360mm时,激光束200的光束形状的第二宽度可以为约470mm或者约360mm。
当激光束200的光束形状的第一宽度L短于约3μm时,激光束200可能是不可控制的。此外,当激光束200的光束形状的第一宽度L过宽时,液化硅区134的宽度会太宽而不能在硅晶粒中形成微晶。激光束200的光束形状的第一宽度L为约3μm到约10μm。
平坦部分的能量强度为约400mJ/cm2到约1,000mJ/cm2。当平坦部分的能量强度小于约400mJ/cm2时,激光束200可能不能液化a-Si薄膜130。当平坦部分的能量强度大于约1,000mJ/cm2时,激光束200熔化过多部分的a-Si薄膜130,使得a-Si薄膜130可能会从氧化物层120上分离。
倾斜部分的倾斜度S不大于约10μm。倾斜部分的该倾斜度S不大于约3μm。倾斜度S是平坦部分220能量强度的约10%与平坦部分220的能量强度的约90%之间的水平宽度。倾斜部分210的倾斜度S是激光束200的能量强度与倾斜部分210的宽度的比。倾斜度S在平坦部分220能量强度的约10%与平坦部分220的能量强度的约90%之间被确定。最大能量强度H对应于平坦部分220的能量强度。当倾斜部分210的倾斜度S大于约10μm时,激光束200的能量强度的均匀性降低,因此硅晶粒的晶体生长可能被劣化。
平坦部分210的能量强度的变化F不大于平坦部分210的最大能量强度222的约5%。即,平坦部分210的最大能量强度222与平坦部分210的最小能量强度224之间的差别不大于约5%。当能量强度的变化F大于约5%时,激光束200的能量强度的均匀性被劣化,微晶可能仍然会存在于液化硅区中。
激光束200被反复辐射到a-Si薄膜130上,并且被移动所述间隔以形成具有增加尺寸的硅晶粒143的Poly-Si薄膜140。
图9A到9C是示出了通过根据本发明另一个实施例的薄膜制造方法所形成的Poly-Si的生长的平面图。图9A到9C的薄膜制造方法除了Poly-Si薄膜之外,其余的与图1到图8中示出的基本上相同。因此,将使用相同的标号用于指代与图1到8中所描述那些部分相同或相似的部分,并且将省略有关上述单元的任何进一步的说明。
图9A是示出了由激光束的首次辐射所形成的Poly-Si薄膜的平面图。
参照图9A,由激光器单元10产生的激光束200被辐射到a-Si薄膜(未示出)的一部分上。a-Si薄膜(未示出)设置在基板上。a-Si薄膜(未示出)的该部分被快速液化以形成液化硅区(未示出),并且通过固相晶化从液化硅区(未示出)的侧面开始晶化。激光束200被首次辐射到其上的a-Si薄膜(未示出)的该部分被完全液化。
在固相晶化中,位于液化硅区(未示出)侧面处的a-Si薄膜(未示出)作为晶体生长的核心。首次晶化的Poly-Si 152从核心开始生长以形成多个硅晶粒153。硅晶界154由相邻的硅晶粒153界定。
当硅晶粒153通过固相晶化生长时,首次突出部分156形成在首次晶化的Poly-Si 152的中央。在图9A中,首次突出部分156在第二方向上延伸。
图9B是示出了通过激光束的二次辐射所形成的Poly-Si薄膜的平面图。
参照图9B,激光器单元10被从基板的第二端部向基板的第一端部移动第三间隔B1。当激光器单元10在与图2方向相反的方向上移动时,Poly-Si晶体的尺寸可能被均匀化,在各个方向上的电子迁移率也可能被均匀化。由激光器单元10产生的激光束200被再次辐射到a-Si薄膜(未示出)的一部分和首次晶化的Poly-Si 152的一部分上,以二次液化a-Si薄膜(未示出)的该部分和首次晶化的Poly-Si 152的该部分,从而形成二次液化硅区(未示出)。在该实施例中,第一突出部分156仍然存在。激光束200被再次辐射到其上的a-Si薄膜(未示出)的该部分被完全液化。在图9B中,第三间隔B1大于激光束200光束形状的第一宽度的一半。
当由激光器单元10产生的激光束200被再次辐射到a-Si薄膜(未示出)的该部分和首次晶化的Poly-Si 152的该部分时,a-Si薄膜(未示出)的该部分和首次晶化的Poly-Si 152的该部分被再次液化以形成二次液化硅区(未示出)。首次突出部分156并没有被消除。a-Si薄膜(未示出)的该部分在激光束200的一侧,首次晶化的Poly-Si 152的该部分在激光束200的相对侧。当在图1所示的图中察看时,激光束200的一侧和相对侧对应于激光束的左侧和右侧。
二次液化硅区(未示出)从首次晶化的Poly-Si 152的其余部分与二次液化硅区(未示出)之间的界面开始被二次晶化,使得硅晶粒153向激光束200的中央生长。此外,二次液化硅区(未示出)从a-Si薄膜(未示出)的其余部分与二次液化硅区(未示出)之间的界面开始被二次晶化。当二次液化硅区(未示出)的二次晶化结束时,二次突出部分156’沿着激光束200的中央形成在二次晶化的Poly-Si 152’上。在图9B中,二次突出部分156’基本上平行于第一突出部分156。
图9C是示出了通过激光束的第三次辐射所形成的Poly-Si薄膜的平面图。
参照图9C,激光器单元10从第二端部向第一端部移动第四间隔B2。由激光器单元10产生的激光束200被第三次辐射到a-Si薄膜(未示出)的一部分和二次晶化的Poly-Si 152’的一部分上,以第三次液化a-Si薄膜(未示出)的该部分和二次晶化的Poly-Si 152’的该部分。这形成了三次液化硅区(未示出),但是第二突出部分156’仍然存在。第四间隔B2大于激光束200光束形状的第一宽度的一半。在图9C中,第四间隔B2基本上等于第三间隔B1。
当由激光器单元10产生的激光束200被第三次辐射到a-Si薄膜(未示出)的该部分和二次晶化的Poly-Si 152’的该部分时,a-Si薄膜(未示出)的该部分和二次晶化的Poly-Si 152’的该部分被第三次液化,以形成三次液化硅区(未示出)。此外,二次突出部分156’并没有被消除。当在图1所示的图中察看,a-Si薄膜(未示出)的该部分在激光束200的左侧,二次晶化的Poly-Si 152’的该部分在激光束200的右侧。三次液化硅区(未示出)从二次晶化的Poly-Si 152’的其余部分与三次液化硅区(未示出)之间的界面开始被三次晶化,使得硅晶粒153朝向激光束200的中央生长。此外,三次液化硅区(未示出)从a-Si薄膜(未示出)的其余部分与三次液化硅区(未示出)之间的界面开始被三次晶化。当三次液化硅区(未示出)的三次晶化结束时,三次突出部分156”沿着激光束200的中央形成在三次晶化的Poly-Si 152”上。在图9C中,首次、二次和三次突出部分156、156’和156”基本上互相平行。
激光器单元10被移动大于激光束200光束形状第一宽度一半的间隔,使得突出部分156、156’和156”在随后的辐射步骤中没有被液化。因此,突出部分156、156’和156”并没有被消除。因此,Poly-Si薄膜150的制造时间减少了。
图10是示出了通过图9A到图9C所示方法形成的Poly-Si薄膜的平面图。
参照图10,Poly-Si薄膜150包括硅晶粒153、硅晶界154和图9A到图9C中示出的突出部分156、156’和156”。
图9A到图9C中示出的突出部分156、156’和156”基本上互相平行。硅晶粒153在图9A到图9C中示出的突出部分156、156’和156”之间延伸。一般地,硅晶界154相对于突出部分156、156’和156”是倾斜的。此外,硅晶粒153也相邻于Poly-Si薄膜150的侧面形成。
包括突出部分156、156’和156”的Poly-Si薄膜150所提供的电子迁移率比没有突出部分的Poly-Si薄膜的要低。具有低电子迁移率的Poly-Si薄膜150可以用于P-沟道金属氧化物半导体(PMOS)元件。
图11是示出了根据本发明另一个实施例的Poly-Si薄膜的制造方法的平面图。图11的薄膜制造方法除了Poly-Si薄膜之外,其余的与图1到图8中所示出的基本上相同。因此,将使用相同的标号用于指代与图1到图8中所描述那些部分相同或相似的部分,并且将省略有关上述单元的任何进一步的说明。
参照图11,产生激光束200的激光器单元被制备在形成于基板100上的a-Si薄膜130上。基板100被定位在XY-台20上。XY-台20传送和旋转基板100。激光束200具有例如椭圆形、四边形等的光束形状。激光束200的光束形状的第一宽度比激光束200的光束形状的第二宽度短。激光束200的光束形状的第二宽度由图1所示激光器单元10的光学控制器(未示出)控制。
当从图11所示的图中察看时,基板100包括第一端部102,其与基板100的左侧相邻;第二端部104,其与基板100的右侧相邻;第三端部106,其与基板100的上侧相邻;以及第四端部108,其与基板100的下侧相邻。激光束200包括第一激光束200a和第二激光束200b。激光束200的光束形状的第二宽度基本上等于第一端部102和第二端部104中每一个的侧边长。激光束200的光束形状的第二宽度基本上等于第三端部106和第四端部108的侧边长。
由激光器单元产生的第一激光束200a被辐射到与基板的第一端部102相邻的a-Si薄膜部分上,以液化a-Si薄膜的该部分,从而形成液化硅区。第一激光束200a被辐射到其上的a-Si薄膜的该部分被完全液化。即,a-Si薄膜的相被从非晶固相转变为液相。
液化硅区通过固相晶化从液化硅区的侧面开始被晶化。即,a-Si的其余部分作为晶体生长核心,使得液化硅区通过横向生长从a-Si的其余部分与液化硅区之间的界面处到液化硅区的中央被晶化。当液化硅区的首次晶化结束时,突出部分形成在晶化Poly-Si的中央。
激光器单元被从第一端部102向第二端部104反复地以一定间隔移动,并且由激光器单元产生的第一激光束200a被反复辐射到a-Si薄膜的一部分、晶化的Poly-Si的一部分和突出部分上,以完全液化a-Si薄膜的该部分、晶化的Poly-Si的该部分和突出部分,从而形成液化硅区,并消除突出部分。在图11中,第一激光束200a的间隔小于第一激光束200a光束形状的第一宽度的一半。晶化的Poly-Si形成第一硅晶粒,第一硅晶粒生长以形成第一Poly-Si薄膜。第一Poly-Si薄膜包括第一硅晶粒和第一硅晶界。第一硅晶粒和第一硅晶界在第一方向上延伸。
当第一Poly-Si薄膜完成时,XY-台20被旋转约90度,使得基板100被旋转约90度。激光束200的光束形状的第二宽度被从第一端部102和第二端部104中每一个的长度改变为第三端部106和第四端部108中每一个的长度。即,第一激光束200a被改变为第二激光束200b。
由激光器单元产生的第二激光束200b被辐射到与基板100的第三端部106相邻的第一Poly-Si薄膜的一部分上,以完全液化第一Poly-Si薄膜的该部分,从而形成液化硅区。或者,第一Poly-Si薄膜可以被部分熔化来形成部分液化硅区。然后液化硅区通过固相晶化被晶化,并且形成在第一方向上延伸的突出部分。激光器单元被从第三端部106向第四端部108以一定间隔反复移动,并且由激光器单元产生的第二激光束200b被反复辐射到第一Poly-Si薄膜的一部分、晶化的Poly-Si的一部分和突出部分上,以完全液化a-Si薄膜的该部分、晶化的Poly-Si的该部分和突出部分,从而形成液化硅区,并消除突出部分。在图11中,第二激光束200b的间隔大于第二激光束200b光束形状的第一宽度的一半。第二激光束200b的间隔可以基本上等于第一激光束200a的间隔。
晶化的Poly-Si形成第二硅晶粒,第二硅晶粒生长以形成第二Poly-Si薄膜。第二Poly-Si薄膜包括第二硅晶粒和第二硅晶界。在图11中,第二硅晶粒通过第一硅晶粒在第一方向上的生长来形成,使得第二硅晶粒具有比第一硅晶粒更大的尺寸。
图12A到图12C是示出了图11所示方法的平面图。
参照图12A,第一激光束200a被反复辐射到a-Si薄膜上,并且从第一端部102向第二端部104被移动一间隔,使得形成没有突出部分的第一Poly-Si薄膜140。第一Poly-Si薄膜140包括在第一方向上延伸的第一硅晶粒143和第一硅晶界144。
参照图12B,为了在第二方向上生长第一硅晶粒143,由激光器单元产生的第二激光束200b被辐射到与基板100第三端部106相邻的第一Poly-Si薄膜140的一部分上,以完全液化第一Poly-Si薄膜140的该部分,从而形成液化硅区。或者,第二激光束200b被辐射到其上的第一Poly-Si薄膜140的该部分可以被部分液化以形成部分液化硅区。第一硅晶界144通过液化被消除。因此,第一硅晶粒143在第二方向上生长以形成第二硅晶粒162。
参照图12C,激光器单元被从第三端部106向第四端部108反复移动间隔‘I’,并且从激光器单元产生的第二激光束200b被反复辐射到第一Poly-Si薄膜140的一部分上,使得第一硅晶粒143在相对于基板的第二方向上反复生长。因此,第二硅晶粒162具有比第一硅晶粒143更大的尺寸。或者,第二硅晶粒162可以是伪单晶晶粒。
图13是示出了通过图11所示方法形成的Poly-Si薄膜的平面图。
参照图13,第二Poly-Si薄膜160包括第二硅晶粒162和第二硅晶界164。第二硅晶粒162中每一个都在第一和第二方向上延伸。第二硅晶界164位于相邻的第二硅晶粒162之间。在图13中,第二硅晶界164具有大致圆形的形状。当第二硅晶粒162的大小被增大时,第二Poly-Si薄膜160的电子迁移率也被增大。
此外,当第二硅晶粒162的大小增加时,硅晶界164的密度降低,从而减少了在TFT被断开时可能通过硅晶界164形成的漏电流。
基板100被旋转90度,第一和第二激光束200在第一和第二方向上被辐射到a-Si薄膜130上,以使第二Poly-Si晶粒162的大小最大,从而增加了电子迁移率。
图14A到14D是示出了根据一个实施例的Poly-Si薄膜的制造方法的横截面视图。具体而言,图14A是示出了在透明基板上的Poly-Si图案的横截面视图。
参照图14A,氧化物层320形成在透明基板310上。a-Si薄膜形成在氧化物层320上。
使用激光束将a-Si薄膜转换成Poly-Si薄膜。具体而言,在具有a-Si薄膜的透明基板310上准备产生激光束的激光器单元。激光束具有例如椭圆形、四边形等的光束形状。激光束的光束形状的第二宽度大于激光束光束形状的第一宽度。激光束被辐射到与透明基板310的第一端部相邻的a-Si薄膜部分,以完全液化a-Si薄膜的一部分。或者,与透明基板310的第一端部相邻的a-Si薄膜部分可以被部分液化。硅晶粒通过固相晶化在液化硅区中生长。激光束被反复辐射到a-Si薄膜上,并且从透明基板310的第一端部向第二端部移动,以形成Poly-Si薄膜。
Poly-Si薄膜通过例如等离子蚀刻、湿法蚀刻等的蚀刻工艺被部分蚀刻以形成Poly-Si图案330。
现在参照图14B,在Poly-Si图案330上形成第一绝缘层340以保护Poly-Si图案330。在图14B中,第一绝缘层340通过等离子体增强化学气相沉积(PECVD)工艺形成。
栅电极G形成在第一绝缘层340上。在图14B中,栅电极G被定位在Poly-Si图案330的中央。具体而言,金属被沉积在第一绝缘层340上,并且被部分蚀刻以形成栅电极G。
参照图14C,第二绝缘层350形成在栅电极G和第一绝缘层340上。第二绝缘层350可以通过PECVD工艺形成。第二绝缘层350的厚度大于预定厚度,从而提高TFT 300的可信性和可靠性并防止串扰。在图14C中,第二绝缘层350的厚度大于约6,000。
第一绝缘层340和第二绝缘层350被部分蚀刻以形成第一接触孔352和第二接触孔354。第一接触孔352邻近栅电极G的右侧,第二接触孔354邻近栅电极G的左侧。第二接触孔354与第一接触孔352间隔开。
参照图14D,源电极S和漏电极D形成在第二绝缘层350上。源电极S通过第一接触孔352电连接到Poly-Si图案340,漏电极D通过第二接触孔354电连接到Poly-Si图案340。
保护层360形成在具有源电极S和漏电极D的第二绝缘层350上。保护层360被部分蚀刻以形成像素接触孔362。像素电极370被形成在保护层360上。像素电极370是透明的。像素电极370通过像素接触孔362电连接到漏电极D。
具有高电子迁移率的Poly-Si图案340通过激光束形成以改进TFT 300的电学特性。
TFT 300是顶栅极类型的TFT。或者,TFT可以是Poly-Si图案位于栅电极与源/漏电极之间的底栅极类型的TFT。
根据本发明,激光束被反复辐射到基板上,并且从第一端部向第二端部移动,以形成具有晶粒尺寸增加的和电学特性改进的Poly-Si薄膜。
此外,控制激光器单元的移动间隔以控制Poly-Si薄膜的制造时间。
激光器单元可以被旋转约90度,使得激光束被首次和再次辐射到a-Si薄膜上。硅晶粒的尺寸被最大化以增加电子迁移率。
Poly-Si图案具有高的电子迁移率,因此TFT具有改进的电学特性。
虽然已经描述了本发明的示例性实施例,但是应该理解,本发明将不限于这些示例性实施例,而可以由本领域技术人员对其进行各种改变和改进而不脱离由权利要求所限定的本发明的精神和范围。
权利要求
1.一种多晶硅薄膜的制造方法,包括将激光束辐射到非晶硅薄膜的第一部分,以使所述非晶硅薄膜的第一部分液化,所述非晶硅薄膜的第一部分位于基板的第一端部上;使液化硅晶化以形成硅晶粒;将所述激光束在第一方向上从所述基板的第一端部向与所述第一端部相对的第二端部移动一间隔;以及将所述激光束辐射到与所述硅晶粒相邻的非晶硅薄膜的第二部分上,以形成第一多晶硅薄膜。
2.如权利要求1的方法,其中,所述激光被辐射使得硅晶粒中每一个的尺寸在第一方向上比在基本垂直于所述第一方向的第二方向上更大。
3.如权利要求1的方法,其中,所述激光束具有一光束形状,所述光束形状包括基本平行于所述第一方向的第一宽度和基本平行于与所述第一方向垂直的第二方向的第二宽度,所述第二宽度大于所述第一宽度。
4.如权利要求3的方法,其中,所述激光束的光束形状的第二宽度基本上等于所述基板的侧边长。
5.如权利要求3的方法,其中,所述激光束的光束形状的第一宽度为约3μm到约10μm。
6.如权利要求3的方法,其中,所述激光束的间隔不大于所述激光束的光束形状的第一宽度的一半。
7.如权利要求3的方法,其中,所述激光束的间隔大于所述激光束的光束形状的第一宽度的一半,并且不大于所述激光束的光束形状的第一宽度。
8.如权利要求3的方法,其中,所述间隔在第一方向上为约1μm到约4μm。
9.如权利要求3的方法,其中,所述激光束的能量图包括具有倾斜的能量分布的两个倾斜部分和位于所述倾斜部分之间的平坦部分,所述平坦部分具有恒定的能量分布。
10.如权利要求9的方法,其中,所述平坦部分的能量强度为约400mJ/cm2到约1,000mJ/cm2。
11.如权利要求9的方法,其中,所述倾斜部分中每一个的宽度不大于约10μm。
12.如权利要求9的方法,其中,所述平坦部分的能量强度的变化不大于所述平坦部分的最大能量强度的约5%。
13.如权利要求1的方法,其中,移动之前的激光束辐射与移动之后的激光束辐射之间的重叠面积不大于所述激光束中每一个的面积的约90%。
14.如权利要求1的方法,其中,所述激光束由受激准分子激光器产生。
15.如权利要求1的方法,其中,所述激光束的波长为约200nm到约400nm。
16.如权利要求1的方法,其中,所述激光束的频率为约300Hz到约6,000Hz。
17.如权利要求1的方法,其中,所述激光束包括用于液化所述非晶硅薄膜的预定能量强度。
18.如权利要求17的方法,其中,所述非晶硅薄膜通过所述激光束的一个脉冲被液化。
19.如权利要求1的方法,还包括在形成所述第一多晶硅薄膜之后将所述基板旋转预定角度;在基本上垂直于所述第一方向的第二方向上,将所述激光束从位于所述第一端部与第二端部之间的第三端部向与所述第三端部相对的所述基板的第四端部移动一间隔;以及将所述激光束辐射到所述第一多晶硅薄膜的第三部分以增加硅晶粒在所述第二方向上的尺寸。
20.如权利要求1的方法,其中,所述激光束被辐射到其上的第一多晶硅薄膜的第三部分被完全液化。
21.一种薄膜晶体管的制造方法,包括在基板上形成非晶硅薄膜;将激光束辐射到所述非晶硅薄膜上,以使所述非晶硅薄膜转变为多晶硅薄膜;部分蚀刻所述多晶硅薄膜以形成多晶硅图案;在具有所述多晶硅图案的基板上形成第一绝缘层以保护所述多晶硅图案;在与所述多晶硅图案相应的第一绝缘层上形成栅电极;在所述第一绝缘层和栅电极上形成第二绝缘层;部分蚀刻所述第一绝缘层和第二绝缘层以形成接触孔;以及在所述第二绝缘层上形成源电极和漏电极,所述源电极与漏电极间隔开,所述源电极和漏电极通过接触孔分别电连接到所述多晶硅图案。
22.如权利要求21的方法,其中,将激光束辐射到非晶硅薄膜上包括将所述激光束辐射到非晶硅薄膜的第一部分,以使所述非晶硅薄膜的第一部分液化,所述非晶硅薄膜的第一部分位于所述基板的第一端部上;使液化硅晶化以形成硅晶粒;将所述激光束在第一方向上从基板的第一端部向与所述第一端部相对的第二端部移动一间隔;以及将所述激光束辐射到与所述硅晶粒相邻的非晶硅薄膜的第二部分上,以形成所述多晶硅薄膜。
23.如权利要求22的方法,将激光束辐射到非晶硅薄膜上还包括在形成所述第一多晶硅薄膜之后将所述基板旋转预定角度;在基本垂直于所述第一方向的第二方向上,将所述激光束从位于所述第一端部与第二端部之间的第三端部向与所述第三端部相对的所述基板的第四端部移动一间隔;以及将所述激光束辐射到所述第一多晶硅薄膜的一部分以增加所述硅晶粒在第二方向上的尺寸。
24.如权利要求23的方法,其中,旋转基板包括将所述基板旋转约90度;以及将所述激光束的宽度从与所述第一端部相应的侧边长改变为与所述第三端部相应的侧边长。
25.如权利要求22的方法,其中,辐射激光束包括在基本垂直于所述第一方向的第二方向上相对于基板来传送所述基板,并且移动激光束包括在第一方向上将所述基板移动所述间隔。
26.如权利要求22的方法,其中,激光束具有一光束形状,所述光束形状包括基本上平行于所述第一方向的第一宽度和基本上平行于与所述第一方向垂直的第二方向的第二宽度,所述第二宽度大于第一宽度。
27.如权利要求22的方法,其中,所述激光束被辐射到其上的非晶硅薄膜的部分被完全液化。
全文摘要
本发明提供了一种多晶硅薄膜的制造方法和具有该薄膜的TFT的制造方法,其中,激光束被辐射到非晶硅薄膜的一部分,以使非晶硅薄膜的该部分液化。非晶硅薄膜位于基板的第一端部上。液化硅被晶化以形成硅晶粒。激光束在第一方向上被从基板的第一端部向与第一端部相对的第二端部移动一个间隔。激光束然后被辐射到与硅晶粒相邻的非晶硅薄膜的一部分以形成第一多晶硅薄膜。因此,非晶硅薄膜的电学特性可以被改进。
文档编号C30B28/00GK1848365SQ200510119279
公开日2006年10月18日 申请日期2005年11月1日 优先权日2005年4月6日
发明者郑世镇, 金治宇, 郑义振, 金东范 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1