由选定尺寸的纳米颗粒制成的分级氧化的钽多孔膜的设计和组装及其牙科和生物医疗植...的制作方法

文档序号:10556569阅读:243来源:国知局
由选定尺寸的纳米颗粒制成的分级氧化的钽多孔膜的设计和组装及其牙科和生物医疗植 ...的制作方法
【专利摘要】在衬底上形成一种由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述衬底的表面的方向上具有分级氧化特征。
【专利说明】
由选定尺寸的纳米颗粒制成的分级氧化的钽多孔膜的设计和组装及其牙科和生物医疗植入物应用
技术领域
[0001]本发明涉及钽膜的设计和组装及其对生物医疗植入物的应用。本申请通过引用将2014年I月16日提交的61 /928,321号美国临时申请整体并入本文。
【背景技术】
[0002]无论是纯钽还是其氧化物的纳米结构膜都显示出许多有趣的特性,例如宽带隙(ChaneIiere等1998)、UV照射下的高光催化活性(Guo和Huang 2011 )、耐化学性(Barr等2006)、高熔点(Stella等2009)、良好的机械强度(Chaneliere等1998)及生物相容性(Leng等2006; Oh等2011)。这些膜已广泛用于存储设备(Lin等1999)、超级电容器(Bartic等2002)、整形外科器械(Levine等2006)、光催化剂(Goncalves等2012)、燃料电池(Seo等2013)及X射线造影剂(Oh等2011 ;Bonitatibus等2012)。特别而言,五氧化二钽(Ta2O5),作为热力学上最稳定的钽氧化物(ChaneI iere等1998 ),因其期望的特性和许多潜在应用而众所周知。因其高折射系数、低吸收和高带隙,其在1970年代首先作为光学或光电应用的抗反射层使用(Balaji等2002;ElSayed和Birss 2009)。
[0003]近二十年来,随着对薄膜的研究受到越来越多的关注,Ta2O5也被确立为是诸如S12和SiN等常规介电膜的优良替代,这些常规介电膜在厚度减少和介电强度方面被推近其物理极限(ChaneIiere等 1998;Alers等2007)。
[0004]近来,Ta2O5膜因其良好的生物相容性和骨传导性而受到了研究界的额外关注(Leng等2006;LeVine等2006),这些性质使它们成为组织工程领域的强有力的候选者(Li等2012)。然而,针对可用于生物相容性植入物的材料,其必须充当适合于细胞培养和组织再生的基底。虽然扁平金属和金属氧化物植入物支架展现出生物相容性,但其一般不支持细胞生长。为了克服此问题,潜在植入材料的表面需要设计成使其能够支持活细胞的粘附和组织(Levine等2006;Han等2011)。因此,考虑到在生物医疗行业中的这种有前途的应用潜力,已付出了巨大努力来发展和进一步完善多孔的钽和钽氧化物膜的合成技术。遗憾的是,此种膜的受控生长是困难的,并且极具挑战。已经使用了各种制造技术,例如溶胶-凝胶(Zhang等1998)、薄膜溅射(Cheng和Mao2003)、电沉积(Lee等2004;Seo等2013)、气相燃烧(Barr等2006)、电弧源沉积(Leng等2006)、电子束蒸发(StelIa等2009; Bartic等2002)及化学气相沉积(Seman等2007),但成效甚微。
[0005]引用列表
[0006]非专利文献
[0007]NPL I:Alers GB,fferder DJ,Chabal Y,Lu HC,Gusev EP,Garfunkel E,Gustafsson T ,Urdahl RS(2007)Intermixing at the tantalum oxide/siliconinterface in gate dielectric structures.Appl Phys Lett 73:1517-1519
[0008]NPL 2:Arcidiacono S,Bieri NR,Poulikakos D,Grigoropou1s CP(2004)0nthe coalescence of gold nanoparticles.1nt.J.Multiph.Flow 30:979-994
[0009]NPL 3:Atanassova E,Tyuliev G,Paskaleva A?Spassov D,Kostov K(2004)XPSstudy of N2annealing effect on thermal Ta2051ayers on S1.Appl Surf Sci 225:86-99
[0010]NPL 4:Balaji T,Govindaiah R,Sharma MK,Purushotham Y,Kumar A,PrakashTL(2002)Sintering and electrical properties of tantalum anodes for capacitorapplicat1ns.Mater Lett 56:560—563
[0011]NPL 5:Barr JL,Axelbaum RL,Macias ME(2006)Processing salt-encapsulatedtantalum nanoparticles for high purity?ultra high surface area applicat1ns.JNanopart Res 8:11-220
[0012]NPL 6:Bartic C?Jansen H,Campitelli A?Borghs S(2002)Ta205as gatedielectric material for low-voltage organic thin-f iIm transistors.0rganicElectronics 3:65_720
[0013]NPL 7:Bonitatibus PJ?Torres AS,KandapalIiI B,Lee BD,Goddard GD,Colborn RE,Marino ME(2012)Preclinical Assessment of a Zwitter1nic TantalumOxide Nanoparticle X-ray Contrast Agent.ACS Nano 6:6650-6658
[0014]NPL 8:Chaneliere C?Autran JL,Devine RAB?Balland B(1998)Tantalumpentoxide(Ta205)thin films for advanced dielectric applicat1ns.MaterialsScience and Engineering R:Reports 22:269-322
[0015]NPL 9:Chang JP,0pila RL?Alers GB,Steigerwald ML,Lu HC,Garfunkel E,Gustafsson T(1999)Interfacial react1n and thermal stability of Ta1s/TiN formetal electrode capacitors.Solid State Technol 42:43—48
[0016]NPL 10:Cheng H,Mao C(2003)The effect of substrate temperature on thephysical properties of tantalum oxide thin films grown by reactive rad1-frequency sputtering.Mater.Res.Bulletin 38:1841—1849
[0017]NPL 11:Das B,Banerjee A(2007)Implementat1n of complex nanosystemsusing a versatile ultrahigh vacuum nonlithographic technique.Nanotechnology18:445202
[0018]NPL 12: Ding F ? Rosen A ? Bo I ton K( 2004) Size dependence of thecoalescence and melting of iron clusters:A molecular-dynamics study.Phys RevB 70:075416
[0019]NPL 13:Eggersdorfer ML ? Kadau D ? Herrmann HJ,Pratsinis SE(2012)Aggregate morphology evolut1n by sintering:Number and diameter of primaryparticles.J Aerosol Sci 46:7—19
[0020]NPL 14:El-Sayed HA?Birss VI(2009)Controlled Interconvers1n ofNanoarray of TaDimples and High Aspect Rat1 Ta Oxide Nanotubes.Nano Lett 9:1350-1355
[0021]NPL 15:Finnis MW,Sinclair JE(1984)A simple empirical N-body potentialfor transit1n metals.Phil Mag A 50:45—55
[0022]NPL 16:Gale JD(1997)GULP:A computer program for the symmetry-adaptedsimulat1n of solids.J Chem Soc?Faraday Trans 93:629-637
[0023]NPL 17:Goncalves RV ?Migowski P offender H,Eberhardt D,Weibel DE,Sonagl1 FC,Zapata MJM,Dupont J,Feil AF,Teixeira SR(2012)Ta205 NanotubesObtained by Anodizat1n:Effect of Thermal Treatment on the PhotocatalyticActivity for Hydrogen Product1n.J Phys Chem C 116:14022-14030
[0024]NPL 18:Guo G?Huang J(201I)Preparat1n of mesoporous tantalum oxideand its enhanced photocatalytic activity.Mater Lett 65:64—66
[0025]NPL 19:Han Y ? Zhou JH? Zhang L,Xu Kff(2011)A mult1-scaled hybridorthopedic implant:bone ECM-shaped Sr-HA nanofibers on the microporous wallsof a macroporous titanium scaffold.Nanotechnology 22:275603
[0026]NPL 20:Hollaway PH,Nelson GS(1979)Preferential sputtering of Ta205 byargon 1ns.J Vac Sci Technol 16:793-796
[0027]NPL 21:Moo JGS?Awaludin Z?Okajima T,0hsaka T(2013)An XPS depth-profile study on electrochemicalIy deposited TaOx.J Solid State Electrochem17:3115-3123。
[0028]NPL 22:Kart HH?Wang G?Karaman I?Cagin T(2009)Molecular dynamics studyof the coalescence of equal and unequal sized Cu nanoparticles.1nt J Mod PhysC 20:179-196
[0029]NPL 23:Kerrec 0?Devilliers D,Groult H,Marcus P(1998)Study of dry andelectrogenerated Ta205 and Ta/Ta205/Pt structures by XPS.Mat Sci Eng B 55:134-142
[0030]NPL 24:Leng YX,Chen JY,Yang P,Sun H,Wang J,Huang N(2006)Theb1compatibility of the tantalum and tantalum oxide films synthesized bypulse metal vacuum source deposit1n.Nucl Instrum Meth B 242:30—32
[0031]NPL 25:Levine BR?Sporer S,Poggie RA,Valle CJD?Jacobs JJ(2006)Experimental and clinical performance of porous tantalum in orthopedicsurgery.B1materials 27:4671-4681
[0032]NPL 26:Lewi s LJ ?Jensen P ? Barrat JL( 1997)Me11ing,freezing,andcoalescence of gold nanoclusters.Phys Rev B 56:2248—2257
[0033]NPL 27:Li Y?Zhang S,Guo L?Dong M,Liu B?Mamdouh ff(2012)Collagen coatedtantalum substrate for cell proliferat1n.Colloids and Surfaces B:B1interfaces 95:10-15
[0034]NPL 28:Lin J,Masaaki N?Tsukune A?Yamada M(1999)Ta205 thin films withexcept1nally high dielectric constant.Appl Phys Lett 74:2370
[0035]NPL 29:Oh MH?Lee N,Kim H,Park SP,Piao Y,Lee JJun Sff?Moon WK?Choi SH,Hyeon T(2011)Large_scale synthesis of b1inert tantalum oxide nanoparticlesfor X-ray computed tomography imaging and bimodal image-guided sentinel lymphnode mapping.J Am Chem Soc 133:5508-5515
[0036]NPL 30:Palmer RE?Pratontep S,Boyen HG(2003)Nanostructured surfacesfrom size-selected clusters.Nature Mater 2:443—448
[0037]NPL 31:Popoka VN ? Barke I? Campbel I EEB ?Meiwes-Broer KH(2011)Clustersurface interact1n:From soft landing to implantat1n.Surf Sci Rep 66:347-377
[0038]NPL 32:Seman M,Robbins JJ?Agarwal S?ffolden CA(2007)Self-1imitinggrowth of tantalum oxide thin films by pulsed plasma-enhanced chemical vapordeposit1n.Appl Phys Lett 90:131504
[0039]NPL 33:Seo J?Zhao L,Cha D?Takanabe K,Katayama M,Kubota J?Domen K(2013)Highly Dispersed TaOx Nanoparticles Prepared by Electrodeposit1n asOxygen Reduct1n Electrocatalysts for Polymer Electrolyte Fuel Cells.J PhysChem C 117:11635-11646
[0040]NPL 34:Singh V,Cassidy C?Bohra M,Galea A?Hawash Z?Sowwan M(2013)Surface morphology of films grown by size-selected Ta nanoparticles.Adv MaterRes 647:732-737
[0041]NPL 35:Stel la K ? BursteI D ?Franzka S,Posth 0,Diesing D(2009)Preparat1n and properties of thin amorphous tantalum films formed by smalle-beam evaporators.J Phys D:Appl Phys 42:135417
[0042]NPL 36:Zhang JY,Bie LJ,Dusastre V,Boyd Iff(1998)Thin tantalum oxidefilms prepared by 172nm Excimer lamp irradiat1n using sol—gel method.Thinsolid films 318:252-256
[0043]NPL 37:Zhao SJ?ffang SQ,Ye H Q(2001)Coalescence of three silvernanoclusters:a molecular dynamics study.J Phys:Condens Matter 13:8061—8069
[0044]NPL 38: Zhu H ? Averback RS (I 996 ) Sin t er ing processes of twonanoparticles:A study by molecular dynamics simulat1ns.Phil Mag Lett 73:27—330

【发明内容】

[0045]技术问题
[0046]上述各种技术仅取得了有限的成功。此外,对于易于安装和维护的牙科和生物医疗植入物的需求在增加。
[0047]因此,本发明涉及分级氧化的钽多孔膜的设计和组装及其针对牙科和生物医疗植入物的应用。
[0048]本发明的目的是以合理廉价的、控制良好的方式提供分级氧化的钽多孔膜的设计和组装。
[0049]本发明的另一目的是提供由选定尺寸的纳米颗粒组成的分级氧化的钽多孔膜的设计和组装。
[0050]本发明的另一目的是提供牙科或生物医疗植入物,其最初是亲水性的,但随后很快变成疏水性的。
[0051 ]问题的解决方案
[0052]为了实现这些和其它优点以及依照本发明的目的,如所具体实施和广泛描述的,一方面,本发明提供一种在衬底上形成的由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述衬底的表面的方向上具有分级氧化特征。
[0053]另一方面,本发明提供一种牙科植入物,其包含植入物基座和在所述植入物基座上的涂层,其中,所述涂层由在植入物基座上形成的多孔膜制成,所述多孔膜由选定尺寸的钽纳米颗粒制成,所述多孔膜在垂直于所述植入物基座的表面的方向上具有分级氧化特征。
[0054]在上述由选定尺寸的钽纳米颗粒制成的多孔膜中,钽纳米颗粒的氧化可以在所述膜的顶面上较高,并且可以朝向所述膜的在所述衬底上的底面逐渐降低。
[0055]上述由选定尺寸的钽纳米颗粒制成的多孔膜可进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。
[0056]在上述牙科植入物中,所述多孔膜中钽纳米颗粒的氧化可以在所述膜的顶面上较高,并且可以朝向所述膜的在所述植入物基座上的底面逐渐降低。
[0057]上述牙科植入物可进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。
[0058]在上述牙科植入物中,所述植入物基座可由Ti合金或钨合金制成。
[0059]另一方面,本发明提供一种生物医疗植入物,其包含植入物基座;及在所述植入物基座上形成的由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述植入物基座的表面的方向上具有分级氧化特征。
[0060]发明的有益效果
[0061 ]根据本发明的一个或多个方面,可以以受控和/或高效的方式利用选定尺寸的钽纳米颗粒沉积来提供多孔膜,所述多孔膜在与衬底表面垂直的方向上具有分级氧化特征,这允许针对各种生物医疗和技术应用来对纳米多孔膜进行表面操作和设计。此外,当应用于牙科或生物医疗植入物时,本发明提供最初是亲水性的并随后很快变成疏水性的牙科/生物医疗植入物,从而在牙科和生物医疗行业中提供非常方便和有利的牙科/生物医疗植入物。
[0062]本发明的其他或独立的特征和优点在下面的描述中进行阐述,并且其一部分将根据该描述而变得显而易见,或者可以通过实施本发明而获知。本发明的目的和其它优点将通过书面说明书及其权利要求以及附图中具体指出的结构来实现和达到。
[0063]应当理解,前面的总体描述和下面的详细描述都是示例性和解释性的,且旨在提供所要求保护的发明的进一步解释。
【附图说明】
[0064]图1是本发明实施方式的用于钽纳米颗粒和多孔膜的生长的磁控管溅射惰性气体冷凝装置的示意图。
[0065]图2显示了在54W的恒定DC磁控管功率下作为纳米颗粒沉积参数的函数的平均粒度,其中沉积参数是在125mm的固定聚集长度下的Ar流速,以及在30标准立方厘米/分钟的固定Ar流速下的聚集长度。
[0066]图3为沉积到硅衬底上的具有低钽纳米颗粒覆盖率的样品的(a)AFM形貌图像和(b)高度直方图。对该直方图的高斯拟合以实线显示。平均高度为3.8nm,与通过QMF预先选定的3.0nm的尺寸良好吻合。
[0067]图4显示了直接沉积在氮化硅膜上的钽/钽氧化物纳米颗粒的(a)明场TEM和(b)高角度环形暗场STEM显微图。插图显示高倍放大的图像,其中颗粒是自然非晶性的((a)中的插图)和由被钽氧化物覆盖的金属钽芯组成的芯-壳结构((b)中的插图)。
[0068]图5显示了钽/钽氧化物纳米颗粒及纳米颗粒间的测量的EDS光谱。所述EDS光谱表明纳米颗粒区域(用数字2标记)不出所料地包含Ta和O。
[0069]图6显示了针对由2或3个纳米颗粒组成的系统的、在100K?2300K温度范围内对2种和3种纳米颗粒构造进行了 10ps的分子动力学运行后得到的特征性聚集体的实例。
[0070]图7显示了(a)沉积到硅衬底上的非氧化高覆盖率钽纳米颗粒及(b)沉积到硅衬底上的氧化的高覆盖率钽纳米颗粒的AFM表面形态。各自的插图显示了高倍放大的图像,其显示了 Ta纳米颗粒氧化后的粗糙度增加。
[0071]图8显示了沉积到硅衬底上的高覆盖率钽纳米颗粒的SEM图像。插图显示了高倍放大的图像,其中可观察到具有长聚结纳米颗粒和孔的膜的多孔性质。
[0072]图9显示了在0.5°的固定掠射角下观察到的硅衬底上的纳米多孔膜的掠射角X射线衍射图案。除了宽的扩散峰(其通常是非晶型纳米颗粒膜的特征信号)外,不能观察到钽和钽氧化物相的对应峰。
[0073]图10显示了XPS研究:(a)测量光谱,其中插图显示了表面处的Ta4f芯能级的拟合光谱;及(b)随蚀刻时间显示的一系列深度特征的光谱,其中插图显示了 Ta(4f7/2)的第一光谱和最后光谱的结合能差异。第一光谱和最后光谱是蚀刻前的和蚀刻420秒后的。结果表明了在垂直于所述衬底的方向上的分级氧化特性。
[0074]图11是在垂直于衬底表面的方向上具有分级氧化特性的多孔钽膜的示意图。表面附近的较大孔径允许将钽氧化为钽氧化物。深入膜中的氧化水平降低,导致在膜/衬底界面附近的纯金属钽。
【具体实施方式】
[0075]本发明人使用了磁控管溅射惰性气体聚集系统来制造定制的在垂直于衬底的方向上具有分级氧化特性的多孔膜,其由离散沉积的、选定尺寸的钽纳米颗粒组装而成。该方法是相对廉价的、多用途的、可再现的,并且将多孔膜生长的所有步骤整合为一个连续的、良好控制的过程(Palmer等2003 ;Das和Baner jee 2007)。采用分子动力学(MD)计算机模拟来加强对膜生长期间纳米颗粒聚结(其在很大程度上影响膜的多孔性)的理解。使用像差校正扫描透射电子显微镜(STEM)、高分辨透射电子显微镜(HRTEM)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和掠入射X射线衍射(GIXRD)来研究钽纳米颗粒和多孔膜的形态和结构。使用具有深度特征分析的X射线光电子谱法(XPS)来揭示垂直于衬底表面的氧化态。
[0076]尺寸为25mm直径X 3mm厚度的钽磁控管溅射靶标(纯度>99.95 % )购自Kur tJ.LeSker(PA,美国)。作为用于AFM、SEM、XPS和GIXRD测量的衬底,具有(100)取向的硅块/晶片购自MTI公司(CA,美国)。硅块/晶片在丙酮、2-丙醇和去离子纯净水中进行超声处理(每种5分钟),随后在高纯度氮气流中干燥,然后置于真空室内。干净的硅块表面表现出0.2nm的典型均方根(rms)粗糙度。氮化硅(Si3N4)膜(200nm厚)购自Ted Pella Inc.(CA,美国),其作为用于TEM分析的衬底。
[0077]超高真空(UHV)型气相纳米颗粒沉积系统(来自Mantis Deposit1n Ltd,英国)用于制造本发明的钽多孔膜。图1是本发明实施方式的用于钽纳米颗粒和多孔膜的生长的磁控管溅射惰性气体冷凝装置的示意图。纳米颗粒形成在聚集区111中(标记I),然后用QMF117选定尺寸(标记II),并在沉积室113中将其沉积在衬底115上(标记III)。所述沉积系统的主要组成部分是聚集区111、四极质量过滤器(QMF)117及衬底室113(图1)。聚集区111包含能够容纳多个溅射靶标105(直径25mm)的溅射磁控管头121。将氩(Ar)注入聚集区111中作为磁控管头121处的溅射气体。通过小出口孔119(5_直径)的差动栗送引起聚集区111内的相对高压力的形成,导致溅射原子的聚结和随后的集群生长。聚集区的壁形成封闭的水冷套,具有279K的恒定水流。通过利用线性定位驱动器平移磁控管头的位置可将聚集区长度从30mm(完全插入)调节至125mm(完全缩回)。在孔两侧的较大压差导致新生集群从(高压)聚集区111朝向(低压)沉积室113的加速。
[0078]〈纳米颗粒生长和沉积过程〉
[0079]初级钽纳米颗粒在聚集区111内通过气相冷凝形成(Singh等2013)。利用如图1所示的DC磁控管溅射工艺由钽靶标生产钽109的原子金属蒸汽。根据完善的生长模型(Palmer等2003),随后钽原子通过在气体聚集区中与惰性Ar原子连续的原子间碰撞而损失其原有动能,导致聚集成钽纳米颗粒。气体流量、压力、磁控管功率和聚集区长度是可被便利地调节以直接影响成核过程的关键参数(Das和Baner jee 2007)。通过原位质谱反馈和非原位AFM研究,首先对产率和粒度分布的最佳工艺条件进行了探索。
[0080]如图1所示,所述装置也包括各种其它组成部分:例如,用于移动DC磁控管121的线性驱动器101;用于冷却用水的连接部103;涡轮栗口 107;压力表123;聚集气体进给部125;以及用于DC电源和气体的连接部127。
[0081]针对若干组沉积参数研究了粒径。图2显示了作为沉积参数函数的平均粒径。本发明中使用的条件为:30标准立方厘米/分钟的Ar流速(产生1.0 X 10—Vbar的聚集区压力读数)、54W的DC磁控管功率以及最大值(125mm)的聚集区长度。这些条件用于本发明中制造的所有钽纳米颗粒。通过实现良好的预沉积基准压力(在聚集区中为约1.5 X 10—6mbar,在样品沉积室中为约8.0 X 10—8mbar)、利用高纯度靶标以及经由原位残余气体分析仪(RGA)验证系统清洁度来控制不需要的物质或污染物的存在。
[0082]在聚集过程完成后,获得的纳米颗粒利用QMF装置进行尺寸过滤以选择大小为3nm的纳米颗粒,然后使其在沉积室中在硅衬底的表面上软着陆。所有沉积都在环境温度(约298K,用衬底架热电偶测得)下进行。所有沉积中的衬底旋转速率保持在2rpm,以确保衬底区域上最佳的均匀性。不对衬底施加外部偏压,因而颗粒的着陆动能主要受聚集区和沉积室之间的压力差(后者在溅射过程中通常为2.3X10—4mbar)控制。基于这些沉积条件,着陆能量被认为低于0.1eV/原子(Popoka等2011)。衬底上钽纳米颗粒的表面覆盖率通过沉积时间来控制。不出所料,以低沉积时间(5分钟?30分钟),沉积了非晶性单分散纳米颗粒(在此称为低覆盖率样品)。对于更长的沉积时间(〈60分钟),获得了纳米多孔膜(在此称为高覆盖率样品,厚度约30nm)o
[0083]〈分析〉
[0084]对由此制造的样品以多种方式进行了评估。AFM(Multimode 8,Bruker,CA)用于对沉积的纳米颗粒进行形态表征。AFM系统高度“Z”分辨率和本底噪声小于0.030nm。使用一般半径小于1nm的商业氮化娃三角悬臂(弹簧常数为0.35N/m,共振频率为65kHz)触点以轻敲模式进行AFM扫描。高度分布曲线和rms粗糙度值利用扫描探针处理器软件(SPIP 5.1.8,Image Metrology,Horsholm,DK)的内置功能从AFM图像中获取。在生长后,使用SEM(Hel1sNanolab 650,FEI公司)对表面形貌和纳米粒度进行非原位表征。TEM研究使用两台300kVFEI Titan显微镜进行,其分别配备有用于探针(对于STEM成像)和用于图像(对于明场TEM成像)的球面像差校正器。在TEM中,用具有SOmm2硅漂移探测器(SDD)且能量分辨率为136eV的Oxford Xmax系统进行能量色散X射线光谱法(EDS)。使用Kratos Axis Ultra 39-306电子谱仪(配备有以300W运行的单色AlKalpha(1486.6eV)源和用于蚀刻的Ar+离子枪)进行XPS测量。在1eV的通过能(pass energy)下测量谱/扫描。使用NanoCalc薄膜反射计量系统(Ocean optics)通过反射计测量来评估膜厚度。以0.5度的固定掠入射角利用Cu Ka福射(45kV/40mA)进行GIXRD测量(D8Discover Bruker CA)。
[0085]〈计算机模拟〉
[0086]使用Accelrys(版权保护)Materials Stud1 Suite,通过MD计算机模拟研究了纳米颗粒聚结的原子机制。使用非晶单元模块,产生了直径3nm的近球形的非晶纳米颗粒,其具有标准室温初始密度(g卩16.69g/cm3),且包含792个钽原子。使用GULP平行经典MD码(Gale 1997)及嵌入原子方法Finnis-Sinclair势能(Finnis和Sinclair 1984),对每个所产生的纳米颗粒进行几何优化,然后在所有感兴趣的温度下(即100K、300K、1000K和2300K)单独平衡约50ps。随后通过组合不同尺寸的2或3个纳米颗粒,创建许多不同的构造,并使用Ifs?3fs的时间步长对其进行产生时间为10ps的MD运行。最初使纳米颗粒彼此靠近,其间隔距离在势能阈值半径内。利用具有0.1ps参数的Nose-Hoover恒温器在恒定温度下运行模拟。在所有情况下,系统呈现所有的有趣的行为,并在模拟运行时间内达到稳定的构造。
[0087]〈低覆盖率:单分散纳米颗粒沉积〉
[0088]在沉积过程之后,负载锁机制允许将样品转移到用于表征的相邻的氮气填充手套箱中,从而避免氧化或污染。在此处,通过AFM研究如此沉积的纳米颗粒的表面覆盖率和粒度分布。图3为(a)沉积到硅衬底上的具有低钽纳米颗粒覆盖率的样品的AFM形貌图像和(b)高度直方图。对该直方图的高斯拟合以实线显示。平均高度为3.8nm,这与通过QMF预先选定的3nm的尺寸良好吻合。这些样品的亚单层、低覆盖率性质在图3(b)所示出的软轻敲模式AFM图像中很明显。由于沉积在低动能下发生,纳米颗粒保留了其原来的形状。两个以上纳米颗粒的聚集体导致了亮点,其可能是由于其在表面上的“堆积”。高度分布(图3(b))可以与具有在3.8nm处的峰高度(平均尺寸)的高斯曲线非常好地拟合。由AFM测量的平均尺寸与QMF选定的尺寸3nm良好吻合。
[0089]在暴露于空气之后,通过TEM和HAADF-STEM检测样品。图4显示了直接沉积在氮化硅膜上的钽/钽氧化物纳米颗粒的(a)明场TEM和(b)高角度环形暗场STEM显微图。插图显示高倍放大的图像,其中颗粒是自然非晶性的((a)中的插图)和由被钽氧化物覆盖的金属钽芯组成的芯-壳结构((b)中的插图)。发现低覆盖率的钽/钽氧化物纳米颗粒具有长的形状,其源自于沉积过程中Si3N4衬底(TEM网格)表面上各个纳米颗粒的聚结(图4(a)和4(b))。在HAADF-STEM中,在z_对比成像模式下,大部分纳米颗粒在略低强度的壳体中有中央亮斑(例如参见图4(b)的插图)。这表明了与被钽氧化物覆盖的金属钽芯一致的芯-壳结构。此钽氧化物壳归因于钽纳米颗粒在暴露于环境气氛时的氧化。在直径约3nm的大致球形的非晶纯钽芯周围,形成有厚度为约2nm的非晶钽氧化物壳。图5显示了钽/钽氧化物纳米颗粒及纳米颗粒间的测量的EDS光谱。所述EDS光谱表明纳米颗粒区域(用数字2标记)不出所料地包含Ta 和O。
[0090]〈高覆盖率:从单分散纳米颗粒至多孔膜〉
[0091 ]对于更长的沉积时间,首先在硅衬底表面上沉积然后在其上继续沉积以形成钽纳米颗粒的连续层。纳米颗粒之间的大范围聚结引起多孔薄膜的形成。为了充分理解控制此聚结的原子机制的性质,运行了许多分子动力学计算机模拟。先前,已通过针对诸如金(Lewis等1997; Arcidiacono等2004)、银(Zhao等2001)、铜(Kart等2009 ;Zhu和Averback1996)、铁(Ding等2004)等多种材料的MD而大量研究了聚结。所有的研究都认定,一般而言,其具有共同的机制。通过烧结在一起,纳米颗粒减少它们的自由表面积,产生界面,并因此降低了整体势能。在这种初级的相互作用后,在原子扩散的辅助下,在界面处形成颈状物(neck)。这些颈状物也被认为是化学上最活跃的位点,即所谓的3相边界(Eggersdorfer等2012)。其厚度对依赖于多孔性的膜特性产生巨大影响,例如机械稳定性、导电性和气体敏感性。
[0092]图6显示了针对由2或3个纳米颗粒组成的系统的、在100K?2300K温度范围内对2种和3种纳米颗粒构造进行10ps的分子动力学运行后得到的特征性聚集体的实例。这些聚集体的组合产生了通过纳米颗粒沉积形成的纳米多孔膜结构(为了清楚表示,不同的灰度组合表示不同的温度)。温度的影响的显著性在所有的结构中都是明显的。在接近3nm钽纳米颗粒的熔点(在所用的势能下为2500K)的2300K下,在所有的情况下都出现了完全固化为单个、更大的纳米颗粒。在衬底上(或附近)不能发现这样高的温度,但其在上空是现实的,这是因为在聚集区内或离开聚集区时的仍然热的纳米颗粒可能彼此撞击。在较低温度下,所有构造都呈现出相似的较不明显的聚结程度。这样的行为对应于:纳米颗粒由于原子表面扩散而在室温下于衬底上彼此接触并烧结在一起从而形成颈状物形式的界面。这些颈状物的宽度取决于温度并决定聚集体的最终形状和分形维数,以及所得膜的孔隙率,原因在于产生如图4所示的最终纳米多孔膜结构的是例如图6所描述的那些聚集体的组合。
[0093]图7显示(a)沉积到硅衬底上的非氧化高覆盖率钽纳米颗粒及(b)沉积到硅衬底上的氧化的高覆盖率钽纳米颗粒的AFM表面形态。各自的插图显示高倍放大的图像,其显示了在Ta纳米颗粒氧化后的粗糙度增加。图7显示膜的质量是非常好的,更重要的是,其是多孔的。据显示,当高覆盖率钽纳米颗粒膜暴露于空气时,在其表面形成氧化物层,并且测量的rms粗糙度从2.12nm相应增加至2.86nm。此外,如图8所示,在暴露于空气后,膜的多孔性质可通过SEM验证,其中大范围的氧化导致连续的分层结构。钽纳米颗粒大小均匀,且彼此紧密堆叠。图8中的插图显示了近球形和细长的纳米颗粒聚集体,其与模拟的结果形状相似(图6)。精细的亚结构归因于初始纳米颗粒的较小的平均尺寸(3nm?4nm)。在衬底上或在较低层的纳米颗粒上,在纳米颗粒在随机位点上着陆时形成了孔,且它们的大小与纳米颗粒的大小相当。然而,其开口(即孔的顶层)通常比纳米颗粒的截面积大得多。因此,随着新纳米颗粒的沉积,它们轻易穿透最上面的孔层,直到他们最终着陆,与先前沉积的纳米颗粒部分聚结。这使得膜的较低层发展成比表面附近的层更致密的结构。
[0094]图9显示在0.5°的固定掠射角下观察到的硅衬底上的纳米多孔膜的掠射角X射线衍射图案。除了宽的扩散峰(这通常是非晶型纳米颗粒膜的特征信号)外,不能观察到钽和钽氧化物相的对应峰。因此,通过图9中示出的GIXRD测量确认了膜的非晶态。没有检测到与结晶钽和钽氧化物相相关的峰,但检测到了非晶纳米颗粒膜的典型的宽扩散峰(Stella等2009) ο
[0095]最后,通过XPS表征了所得到的纳米多孔膜的定性的化学组成和键合状态。图10显示了沉积在硅衬底上的高覆盖率纳米多孔膜的XPS测量光谱。在XPS分析中观察到了来自Ta4f、Ta 2p、Si 2p、Si 2s和O Is边缘的信号。沉积的钽纳米颗粒膜由于暴露在空气中而高度氧化。此处,金属(钽)形成多种氧化物,例如Ta205(主要的、最稳定的相)和低值氧化物(TaO和Ta02,其通常为亚稳相)(Ho 11 away 和Ne I son 1979;1(61^6。等1998;01&1^等1999;Atanassova等2004;Moo等2013)。图10(a)中的插图显示了高覆盖率多孔膜的Ta 4f芯能级谱。在膜的表面(第一水平),观察到与位于27.61eV和29.49eV结合能(1.88eV的能量分离)的峰拟合的Ta 4€双线态(4€7/2,4€5/2)(0^呢等1999)。这些结合能接近化学计量的1&205,且表明膜被氧化为Ta5+态。在23.78和25.94eV结合能处的低强度双线态中也检测到了金属钽。
[0096]对高覆盖率多孔膜进行表面蚀刻(从表面水平到至多420秒的最后蚀刻),从而通过监测Ta 4f芯能级来进行深度特征实验(图10(b))。如前文所述,在相同的结合能处观察到Ta 4f双线态。在三个蚀刻重复后,金属钽(Tat3)的强度增加。这些数据显示出在25.94(4f7/2)和23.78(4f5/2)eV结合能处的明显双线态(双峰)(Chang等1999)。此外,随刻蚀时间的增加,Ta5+的强度减小,且记录光谱显示出两种状态,即Tat3和Ta5+。相对比例逐渐变化,直到对应于Ta5+状态的峰消失。图10(b)的插图中的谱显示,金属钽和钽氧化物的峰(4f7/2)之间的结合能量差(DEbe)为5.38eV。这些结果证实了在获得的膜的表面处(和表面附近)的Ta的氧化态为+5(即Ta205) (Chang等 1999 ;Hollaway和Nelson 1979)。
[0097]对于膜的明显分级组成,虽然先前已报道了氧的优先溅射,但由于使用了相对高的加速电压(6keV),认为其对于我们的膜并不重要(Hollaway和Nelson 1979)。据信膜的分级化学组成的合理解释可归因于膜的形态学。如前所述,在沉积过程开始时,单分散纳米颗粒沉积在衬底的表面。通过增加沉积时间,纳米颗粒继续到达并软着陆到衬底的表面上,产生多孔钽薄膜。在沉积的膜暴露于大气之后,在膜表面上及附近的纳米颗粒变得充分氧化,从而在表面上产生均匀的Ta2O5层。然后来自大气的氧继续通过孔,在整个膜体积内产生不同的氧化状态。这通过图11示出的示意图描述。图11是本发明的在垂直于衬底表面的方向上具有分级氧化特征的多孔钽膜实例的示意图,其已通过上述研究得以实现。表面附近的较大孔径允许将钽氧化为钽氧化物。深入膜中的氧化水平降低,导致在膜/衬底界面附近的纯金属钽。
[0098]本发明人还进行了研究以探索公开的分级氧化的钽多孔膜对牙科植入物的应用。用本发明的钽氧化物纳米颗粒膜涂覆由Ti合金制成的牙科植入物基座。发现涂覆有本发明的膜的牙科植入最初是超亲水的,但一旦暴露于水即变成疏水性的,这在牙医进行的牙植入过程中是非常有利的。
[0099]所述牙科植入物基座可由诸如钨合金等其它材料制成。此外,从此研究中明显可见,本发明的分级氧化钽多孔膜可涂覆在其它生物医疗植入物(例如臀部和关节植入物)上,以提供优异的生物医疗植入物。
[0100]此外,银(Ag)单分散层可被沉积在本发明的分级钽氧化物(TaOx)膜的顶部上,其赋予抗微生物特性。上述公开的本发明的装置可用于沉积TaOx和单分散Ag纳米颗粒而无需修改。Ag本身的抗微生物特性是众所周知的,并为本发明的医疗、牙科和生物应用提供额外的优势。
[0101]本发明公开的尺寸受控的且无球面缺陷的钽氧化物纳米颗粒膜适用于各种应用,例如用于无机TFT或光学涂层的多孔膜。分级氧化特征分别在下部和上部界面处导致不同的表面特性,并且可用于例如与下部和上部界面处的不同衬底或微孔材料的工程粘合。一般而言,纳米结构膜提供比相应厚度的传统薄膜大很多的表面积,以及用于液体和气体类应用的相关优势。以纳米级约束尺寸和孔隙度也允许定制的光学和电子特性的工程化。
[0102]本公开描述了利用选定尺寸的钽纳米颗粒沉积来设计和组装在垂直于衬底表面的方向上具有分级氧化特征的多孔膜。使用许多诊断方法对其进行了表征。通过AFM进行的的表面形态学分析清楚展示了受纳米颗粒聚结控制的膜的多孔结构,如MD模拟所示。SEM和HRTEM/HAADF-STEM成像确认了暴露于空气后的此结构,以及因此纳米颗粒被氧化为芯/壳式的钽/钽氧化物构造。GIXRD将纳米颗粒鉴定为非晶态。XPS分析展示了氧化的分级性质。在膜的最顶层处,纳米颗粒的更大的自由表面积使得能够形成Ta2O5,其为热力学稳定的钽氧化物。在较低的层中,膜的较小的孔只允许氧的部分扩散,导致较低的氧化状态。在膜/衬底界面处检测出纯金属钽。对这种分级氧化的控制允许对纳米多孔膜进行表面操作和设计,以用于各种生物医疗和技术应用。
[0103]对本领域技术人员显而易见的是,在不脱离本发明的主旨和范围的情况下可进行各种修改和变化。因此,本发明旨在包括所附权利要求及其等价物的范围内的修改和变化。特别是,明确预期上述任何两个以上实施方式及其修改形式的任何部分或全部可被组合并且视为在本发明的范围内。
[0104]附图标记列表
[0105]101线性驱动器
[0106]103用于冷却用水的连接部
[0107]105溅射靶标材料(Ta)
[0108]107 涡轮栗口
[0109]109超饱和Ta蒸气
[0110]111聚集区(NP束源)
[0111]113样品沉积室
[0112]115 衬底
[0113]117四极质量过滤器(QMF)
[0114]119 孔
[0115]121 DC 磁控管
[0116]123压力表
[0117]125聚集气体进给部
[0118]127用于DC电源和气体的连接部
【主权项】
1.一种在衬底上形成的由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述衬底的表面的方向上具有分级氧化特征。2.如权利要求1所述的由选定尺寸的钽纳米颗粒制成的多孔膜,其中,钽纳米颗粒的氧化在所述膜的顶面上较高,并且朝向所述膜的在所述衬底上的底面逐渐降低。3.如权利要求1所述的由选定尺寸的钽纳米颗粒制成的多孔膜,其进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。4.如权利要求2所述的由选定尺寸的钽纳米颗粒制成的多孔膜,其进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。5.一种牙科植入物,其包含: 植入物基座;及 在所述植入物基座上形成的由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述植入物基座的表面的方向上具有分级氧化特征。6.如权利要求5所述的牙科植入物,其中,所述多孔膜中的钽纳米颗粒的氧化在所述膜的顶面上较高,并且朝向所述膜的在所述植入物基座上的底面逐渐降低。7.如权利要求5所述的牙科植入物,其进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。8.如权利要求6所述的牙科植入物,其进一步包含沉积在所述多孔膜上的银(Ag)单分散层,从而提供增强的抗微生物特性。9.如权利要求5所述的牙科植入物,其中,所述植入物基座由Ti合金制成。10.一种生物医疗植入物,其包含: 植入物基座;及 在所述植入物基座上形成的由选定尺寸的钽纳米颗粒制成的多孔膜,所述多孔膜在垂直于所述植入物基座的表面的方向上具有分级氧化特征。
【文档编号】B32B9/00GK105916678SQ201580004690
【公开日】2016年8月31日
【申请日】2015年1月15日
【发明人】M·I·索万
【申请人】学校法人冲绳科学技术大学院大学学园
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1