酶和微生物的失活方法

文档序号:448655阅读:7135来源:国知局
专利名称:酶和微生物的失活方法
技术领域
本发明提供了关于酶和微生物的失活方法,该方法特别适于在食品加工过程中应用。
工业酶在食品加工中的成功应用通常需要一个特殊的失活步骤,即不仅要在所需要的阶段停止反应,而且要保证终产品中的残余酶处于最低或测不出的水平。这是保证良好产品质量和稳定性(保质期)的基本条件。就保质期而论,上述条件也同样适用于许多食品和食品原料中的内源酶,在食品加工和贮存过程中残余的酶活性(如脂酶和氧化酶)会造成严重的问题。
酶的失活通常是在适当的温度和pH下通过热处理而实现的。不过,使酶彻底灭活的处理可能会引起产品重要特性(如颜色、味道、浓度和营养价值)的改变。因此,在低温下提高酶的失活作用的新技术的开发引起了人们的普遍兴趣。
这项新技术的开发是十分重要的,因为它也同样适用于活体微生物中维持生命所必需的蛋白质的变性,其中通过加热可使微生物的死亡率增加(也就是说与食品的消毒有关)。这种失活方法更适用于造成食品主要污染物(细菌、酵母和霉菌等)的微生物孢子的失活。
加热可使蛋白质变性或使蛋白质丧失生物活性。在酸、碱、有机溶剂、去污剂和高浓度的脲和胍的作用下其效果尤为显著(即无论是电荷、水的活度或氢键都会对酶的最佳稳定性产生不利的影响)。但无论怎样,除了用酸或碱微调pH外,以上所提到的化学试剂是不能在食品加工中应用的。
大于1,000巴的高流体静力压的应用是失活的一个特殊的条件,早在1899年已有过将1,000巴的高压用于牛奶的贮存和消毒的报道。在-25℃至100℃的变化温度范围内,把压力升到10,000巴的高压所得到的结果已由Timson和Short在“微生物对流体静力压的耐性”[见Biotechnol Bioeng.7,139-159(1965)]一文中做过深入的研究。他们认为,压力增强了离子的溶剂化作用,因而增加了弱电介质的电离作用。大于2,000巴压力下的电离作用和蛋白质中电荷基团间形成的离子键改变了蛋白质的溶解性,从而引起沉淀和不可逆的变性(酶的失活)。非常有趣而引人注意的是,对孢子而言,当存活微生物的数量很少时,它们对持久的压力是不敏感的,并且当压力在2,000巴以上时,温度相对而言似乎也不很重要了。当终产物的体积较大时,压力与反应是成反比的,而且似于高于1,000巴的压力会阻碍由加热而导致的蛋白质的变性。Timson和Short推断,由压力而引起的蛋白质变性机制与由热而导致的蛋白质变性机制是不同的。
FR-A-2·650·942公开了一种在CO2和/或N2O压力下通过对食物加热而使酶失活的方法,这种方法可以降低处理温度并减少处理时间。
本发明的首要目的是改进这种方法,以达到在较低的温度下和较短的时间内更有效的失活效果。
从纯理论的角度看,假设一种酶在临界温度变得不稳定时,CO2就具有插入到酶氢键松弛部位的趋向。当温度和压力增加时,蛋白质分子的氢键进一步被打开,使蛋白质分子的结构发生变化而造成酶的失活。然而,这个过程很可能是可逆的,所以,当CO2压力解除后,酶的活性又可恢复。
所以,本发明的另一个目的是克服上述反应机制的可逆性,提供一种使酶或微生物完全且不可逆失活的方法。
本发明人还有一个意外的发现,即如果上述法国文献中提到的加热/CO2或N2O压力处理相结合的方法在硫化还原剂(如SO2、半胱氨酸、谷胱甘肽等)存在下进行,进一步受到CO2或N2O压力开键作用的反应性基团,特别是蛋白质分子的-SH、-S-S-、-OH、-NH2等基团,会与所述的还原剂发生不可逆的反应。
因而,本发明的目的就是要达到上述的效果,即提供一种使酶或微生物特别是食品中的酶或微生物失活的方法,该方法包括在选自活性硫化物的还原剂的存在下,在CO2或N2O压力下在含水介质中酶或微生物的热处理。
确切地说,含水介质意味着水的含量不应少于10%,待失活的微生物既可处于生长期又可处于芽孢期。
活性硫化物,如可使用亚硫酸盐,优选的是以SO2气体的形式加入,加入量约为10-1,000ppm,最好控制在30-100ppm范围内。在CO2压力的作用下,从稀释的硫酸氢钠(NaHSO3)水溶液中也可以得到适量的气态SO2。也可以有效地使用硫羟基活性化合物,例如还原态的谷胱甘肽、半胱氨酸或维生素B1,使用浓度约为0.05-0.5%。
当然,还原剂最好要选择食品加工中允许使用的试剂。
处理温度通常与食品的加工温度相符合,即一般小于120℃,但最好高于50℃。至于CO2或N2O压力,可在5-1,000巴范围内选择,如能控制在50-500巴范围内更好,以便保持CO2的浓度不小于5g/L;但优选的是20g/L或更大些。
本发明的方法既可处理液态食品也可处理糊状食品;在这种情况下,气态的硫化物(如SO2)通过搅拌就可以直接注入到液态或糊状食品中。如果食品是固体的,如马铃薯、调味品或甚至是做好的饭菜,也可用上述的方法有效处理,从食品外部施加CO2压力和SO2(例如从亚硫酸氢钠溶液中得到)而无需任何搅拌。
本发明将通过以下实施例进一步阐明,参见附图。


图1至4分别用图示的形式描述了实施例的结果,特别是在分别加入谷胱甘肽时CO2和SO2对两种不同酶(半乳糖苷酶和脂酶)和微生物孢子(枯草杆菌)的失活的影响。D值是酶的拾-失活时间,相当于达到酶活性降低10倍所需的时间,表达式为D=t/(log[E]0-log[E]t其中E0起始酶浓度Ett时间后的酶浓度。
实施例1将1.5升缓冲液(0.1M醋酸钠、0.02M半乳糖,pH4.5)倒入2升的玻璃高压釜中,(BuChj,最大压力12巴),搅拌均匀,55℃下恒温处理。
把从米曲霉得到的乳糖酶(β-半乳糖苷酶)溶液用压力泵注入到体系中,使酶的终浓度达到5单位/毫升。定时取样分析乳糖酶的活性。
重复以上的操作,但先在5巴的压力下用CO2使反应釜中的缓冲液饱和。仍继续以上所有的操作,但先将亚硫酸氢钠添加到缓冲液中,使其中SO2的当量浓度达到300ppm。附图1所示的结果表明,当二氧化碳与二氧化硫结合后,会使乳糖酶失活作用增强。
加工样品中的残留的乳糖酶活性通过与对硝基苯基-β-D-吡喃半乳糖苷酶于30℃保温30分钟,并在410nm处进行比色而测定。
实施例2重复实施例1的实验步骤,但用谷胱甘肽(还原形式,2g/L)代替亚硫酸盐。在5.8巴的压力下使CO2达到饱和。附图2所示的结果清楚地表明,当使CO2压力与硫羟基活性化合物结合时乳糖酶的失活作用增强了。
实施例3同实施例1那样,把含有24mg/L的油酸的1.5升pH6.5,0.08M的柠檬酸钠缓冲液置于2升的玻璃高压釜内恒温至55℃,用高压泵将脂酶(M10,Amano)溶液注入到体系中,使酶的终浓度达到0.5单位/毫升,定期从反应介质中取样,测定脂酶的活性。
重复上述操作,在8巴的压力下用CO2使缓冲液饱和。继续最后一项操作,先向缓冲液中加入亚硫酸钠使SO2的当量浓度达到500ppm。附图3的结果再次表明当CO2压力与SO2结合时脂酶的失活效果提高。
残留的脂酶活性通过将反应混合物与橄榄油于37℃保温而测定。游离的脂肪酸用改进的铜皂比色法[Koos and Klomp,Neth. Milk Dairy J. 31∶56-74(1977)]进行分析。
实施例4在3.5升的无菌脱矿质水中接种0.5升枯草杆菌的孢子(作为食物的耐热污染物分离出来),使CFU计数达到大约1×106/ml,在5升的不锈钢高压釜内搅拌下迅速恒温至100℃(Brignole-Nova,最大压力300巴),保压,定期取样,用标准平板测定法进行活细胞计数测定。
重复上述操作,用薄膜压缩机从CO2气瓶向微生物孢子悬浮液中充入CO2,加压到150巴,通过加压密封定期取样。60分钟后,向体系中注入60ml的亚硫酸盐,使SO2的当量浓度达到15ppm。附图4的结果也证明了在SO2的作用下,微生物孢子的失活率增加。
以加压处理后的菌落形成单位(CFU/ml)表示的残余微生物计数是在未经处理的样品中直接测定的和在于80℃下处理10分钟的样品中测定的。把样品用无菌盐水进行梯度稀释,然后取0.1ml稀释液涂布在营养琼脂平皿上,于37℃培养3天以上进行测定。拾-失活时间D值由以下公式计算D=t/(log[CFU]0-log[CFU]t其中[CFU]0和[CFU]t分别是零时间与t时间微生物孢子计数(80℃下未失活的)。
实施例5用尼龙网兜着整块生马铃薯挂在实施例4所述的高压釜内,以3.2巴/分的速率用CO2向高压釜内加压,使终压力达到165巴,同时,以0.75℃/分的速率加热使容器中的温度达到55℃,将马铃薯样品在165巴和55~60℃下保持20分钟。然后在40分钟内以-4巴/分的速度减压并冷却至10℃。从切片加压处理的马铃薯样品中渗出的汁液放置后逐渐褐变,这表明有残留的多酚氧化酶存在。
除与上述加压加温等条件相同外,在高压釜的底部加入稀释的亚硫酸氢钠(水)溶液,发现产品并无褐变反应,仍保持着生马铃薯的自然性状。所以,对于典型“固体食品”来说多酚氧化酶的完全失活证明了二氧化硫和超临界二氧化碳共同使用的渗透效果。
权利要求
1.酶或微生物特别是食品中的酶或微生物的失活方法,该方法包括在5-1,000巴的CO2或N2O压力下,在选自活性的硫化物的还原剂存在下,在含水介质中所述酶或微生物于50-120℃条件下的热处理。
2.根据权利要求1的方法,其中还原剂是亚硫酸盐。
3.根据权利要求2的方法,其中亚硫酸盐是SO2的液态或气态形式,其用量为10-1,000ppm,优选30-500ppm。
4.根据权利要求3的方法,其中气态SO2是从稀释的亚硫酸氢钠水溶液中产生的。
5.根据权利要求1的方法,其中还原剂是硫羟基活性化合物。
6.根据权利要求5的方法,其中硫羟基活性化合物是还原态的谷胱甘肽、半胱氨酸或维生素B1,其浓度为0.05-0.5%。
7.根据权利要求1-6之一的方法,其中CO2或N2O压力为50-500巴,以使CO2或N2O的浓度不小于5g/L,优选20g/L。
8.根据权利要求1-7之一用于处理液态或糊状产品的方法,其中活性硫化物以气态的形式通过搅拌直接注入到所述的液态或糊状产品中。
9.根据权利要求1-7之一用于处理固体食物的方法,其中CO2或N2O压力与气态硫化物无需搅拌而从外部发挥作用。
全文摘要
酶或微生物特别是食品中的酶或微生物的失活方法,该方法包括在二氧化碳或一氧化二氮的压力下,在选自活性硫化物的还原剂(如亚硫酸盐或硫羟基活性化合物)存在下,在含水介质中所述酶或微生物的热处理。
文档编号A23L3/16GK1111112SQ9510358
公开日1995年11月8日 申请日期1995年3月27日 优先权日1994年3月28日
发明者V·卡利纳 申请人:雀巢制品有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1