氧浓缩设备的制作方法

文档序号:1107488阅读:228来源:国知局
专利名称:氧浓缩设备的制作方法
技术领域
本发明涉及一种包括用于压缩机的冷却装置的氧浓缩设备,所述压缩机将压缩空气供应至填充有吸附剂如沸石的多个吸附塔。
背景技术
吸氧疗法已被用作呼吸系统疾病如哮喘、肺气肿或慢性支气管炎的最有效的治疗方法。在吸氧疗法中,氧浓缩气体被供应给病人。为此目的,已经开发出适于家用的组件型氧浓缩设备。所述组件型氧浓缩设备包括通过从空气中分离出氮气而产生氧气的氧浓缩单元、用于将压缩空气供应至氧浓缩单元的压缩机和用于容纳氧浓缩单元和压缩机以便隔离噪声的罩壳。日本的待审专利公开(Kokai)No.62-140619和No.63-218502披露了这种设备的实例。

发明内容
近来,一些氧浓缩设备进一步包括设置在罩壳中用于容纳压缩机从而使设备的噪声排放最小化的压缩机壳体。然而,压缩机壳体防碍了设置在其中的压缩机受到冷却。
因此,本发明的目的在于提供一种得到改进从而对设置在所述压缩机壳体中的所述压缩机进行有效冷却的氧浓缩设备,同时使所述设备的增重最小化。
根据本发明,提供了一种氧浓缩设备,所述氧浓缩设备包括氧浓缩单元,所述氧浓缩单元包括填充有选择性地吸附氮气多于氧气的吸附剂材料的吸附塔;用于将压缩空气供应至所述氧浓缩单元的压缩机;用于容纳所述压缩机的压缩机壳体,所述压缩机壳体包括用于将空气引入所述压缩机壳体内的多个空气入口和用于从所述压缩机壳体中排出空气的空气出口孔;安装在所述压缩机壳体上的所述空气出口孔处以从所述压缩机壳体中吸出空气的冷却风机;以及所述空气入口被设置在邻近所述压缩机的侧壁的位置处以垂直于所述压缩机的所述侧壁引导由所述冷却风机引起的空气流。选择所述冷却风机的容量和所述空气入口的直径以确保通过所述空气入口的所述空气流的速度等于或低于15m/sec。


图1是根据本发明的一个实施例的氧浓缩设备的图解剖视图;图2是在图1所示的氧浓缩设备中使用的压缩机的图解剖视图;图3是用以确定本发明的效果的实验设备的框图;图4是示出使用图3所示设备所获得的实验结果的曲线图;图5是示出使用图3所示设备所获得的其它实验结果的曲线图;图6是示出使用图3所示设备所获得的其它实验结果的曲线图;和图7是示出使用图3所示设备所获得的其它实验结果的曲线图。
具体实施例方式
参见图1和图2,下面将对本发明的优选实施例进行描述。
根据本发明的实施例的氧浓缩设备10包括氧浓缩单元12、用于将压缩空气供应至氧浓缩单元12的压缩机单元14、用于包含来自氧浓缩单元12的氧浓缩气体的储罐16、作为氧浓缩单元12和压缩机单元14的电功率源18的电池、用于控制氧浓缩单元12和压缩机单元14的电路板20和22以及容纳所有上述元件12-22的罩壳24。氧浓缩设备10进一步包括用于流体连接氧浓缩单元12、压缩机单元14和储罐16的多条导管或管道(未示出)。罩壳24包括空气入口孔24a和气体出口孔24b,空气通过所述空气入口孔被引入罩壳24内,由氧浓缩单元12从空气中分离出来的氮气通过所述气体出口孔被排出。
氧浓缩单元12优选可包括变压型气体分离器。在该具体实施例中,氧浓缩单元12包括填充有吸附剂如沸石的多个吸附塔12a,所述吸附剂选择性地吸附氮气多于氧气。氧浓缩单元12进一步包括转换机构12b和12c,所述转换机构用于对由压缩机单元14供应空气的吸附塔和从其中释放出吸收的氮的吸附塔顺序地进行选择性转换,以使吸附剂再生从而使得相应的吸附塔根据吸收-再生循环反复地吸收氮气且释放出吸收的氮气。
参见图2,压缩机单元14包括压缩机26、由适当材料例如合成树脂如NBR(丁腈橡胶)制成的用以容纳压缩机26并提供噪声隔离的压缩机壳体28和冷却风机30。壳体28具有线性附接到其内表面上作为噪声隔离材料的发泡聚氨酯。压缩机26可包括任何类型的压缩机,如往复式压缩机和旋转式压缩机。在图2所示的实施例中,压缩机26是往复式压缩机且例如是可从Rietschle Thomas,7222-T Parkway Dr.,Hanover,MD购买到的Horizon Model 2250压力/真空泵。压缩机具有活塞(未示出)被可滑动地设置在其内的缸26a、附接到缸26a端部上的缸盖26b和驱动马达26c。驱动马达26c的输出轴被连接到曲柄轴(未示出)上,活塞通过连杆被连接到所述曲柄轴上以使得驱动马达26c的转动被转换成活塞的往复运动。
压缩机壳体28优选具有与压缩机26的外部构型相似的构型从而有效地使空气沿压缩机26的表面运动。压缩机壳体28包括多个空气入口28a、空气出口孔28b和面对26a的圆柱形侧壁且限定出入口28a的至少一些侧壁。冷却风机30被安装在压缩机壳体28上的空气出口孔28b处。在该具体实施例中,壳体28包括二十八(28)个具有6mm直径的空气入口28a。空气入口28a被设置在缸26a周围以引导由冷却风机30引起的空气流垂直于邻近缸端部的缸26a的外表面地通过空气入口28a,在所述外表面处,通过空气的压缩以及活塞与缸26a的内表面之间的摩擦使缸26a中的空气温度增加。该构型允许空气流撞击在缸26a的外表面上且增强了空气流的冷却效应。通过空气入口28a被引入压缩机壳体28a的空气通过空气出口孔28b被排入罩壳24内。
参见图3-图7,下面将对本发明的效果进行描述。
图4-图7是示出使用图3所示的设备所获得的实验结果的曲线图。在图3中,实验设备100具有模拟压缩机单元110和通过导管122被流体连接至模拟压缩机单元110的真空泵120。模拟压缩机单元110包括加热器单元112,所述加热器单元具有圆柱形外部构型和75W的热输出以证实压缩机26中的生热、用于容纳加热器单元112的中空圆柱形壳体和用于检测壳体中压力的压力计118。用于垂直于加热器单元112的外表面引导冷却空气的多个空气喷嘴116,具体而言为二十八(28)个喷嘴116被设置在壳体114的侧壁中。
在模拟加热器单元110与真空泵120之间的导管112中,设置用于控制和测量通过导管122的空气流量的阀124和流量计126。实验设备100进一步包括用于检测加热器112的外表面与室温之间的温差的温度传感器(未示出)。当真空泵120抽吸壳体114中的空气时,通过喷嘴116的空气流垂直撞击在加热器单元112的外表面上以冷却所述加热器单元。
图4示出了相对于空气流量变化的加热器单元112的外表面温度变化和通过喷嘴116的压力损失。在这方面,请注意加热器单元112的外表面温度由加热器单元112的外表面温度与室温之间的温差ΔT表示。如图4所示,空气流量越大,加热器单元112受到越多冷却,且通过喷嘴116的压力损失越大。
图5示出了相对于喷嘴116的直径的加热器单元112的外表面温度变化和通过喷嘴116的压力损失。与图5所示曲线图相关的详细实验数据如下表1中所示。
表1

其中Dn喷嘴的直径F通过喷嘴的空气流量Tr室温Ts加热器单元112的外表面温度ΔTTs-TrΔP通过喷嘴的压力损失V通过喷嘴的空气流速Re雷诺数。
如图5和表1所示,当空气的流速大于15m/sec时,通过喷嘴116的压力损失迅速且极度增加。因此,根据本发明,选择空气入口28a的直径和通过其中的冷却空气的流量以使得通过空气入口28a的空气流的流速低于15m/sec。如果空气入口28a包括不同尺寸的孔口,那么通过每个孔口的平均尺寸对直径进行估计。
压缩机26受到冷却风机30所引起空气的冷却。选择冷却空气流量以使得压缩机26的缸26a的外表面的温度Ts与室温Tr之间的温差ΔT保持低于30℃。如本领域已公知地,压缩机功率越高,所需要的冷却空气流量越大。
如图6所示,压缩机功率变化与保持温差ΔT低于预定值所需要的冷却空气流量变化之间存在线性关系。图6示出了两种具体情况,一种是温差ΔT低于30℃的情况,由线和正方形标记所示,且另一种为温差ΔT低于20℃的情况,由线和三角形标记所示。
如图7所示,压缩机功率变化与保持温差ΔT低于预定值所需要的通过喷嘴116的冷却空气流速变化之间存在线性关系。图7示出了两种具体情况,一种是温差ΔT低于30℃的情况,由线和正方形标记所示,且另一种为温差ΔT低于20℃的情况,由线和三角形标记所示。
参见图7,在15m/sec流速下的冷却空气对于280W的压缩机而言保持温差ΔT为30℃,且对于140W的压缩机而言保持温差ΔT为20℃,且因此可充分冷却通常用于氧浓缩设备的压缩机。这些实验结果提供了相对于压缩机功率的冷却空气流速为0.05m/sec W(ΔT=30℃)和0.1m/sec W(ΔT=20℃)的参数。
如上所述,当通过喷嘴116的空气流的速度高于15m/sec时,压力损失变得过高。另一方面。压缩机的充分冷却允许其长时间进行工作。进一步地,为了提供大量冷却空气,需要大型冷却风机,这将导致设备的体积、重量、噪声和功率消耗增加。因此,为了满足这些条件,根据本发明,相对于压缩机功率的冷却空气速度被选择为0.05m/sec W或大于0.05m/sec W,优选在0.05m/sec W-0.1m/sec W的范围内。当使用100W的压缩机时,选择空气入口28的直径以使得通过空气入口28的冷却空气速度落入5-15m/sec的范围内且优选落入5-10m/sec的范围内。
权利要求
1.一种氧浓缩设备,所述氧浓缩设备包括氧浓缩单元,所述氧浓缩单元包括填充有选择性地吸附氮气多于氧气的吸附剂材料的吸附塔;用于将压缩空气供应至所述氧浓缩单元的压缩机;用于容纳所述压缩机的压缩机壳体,所述压缩机壳体包括用于将空气引入所述压缩机壳体内的多个空气入口和用于从所述压缩机壳体中排出空气的空气出口孔;安装在所述压缩机壳体上的所述空气出口孔处以从所述压缩机壳体中吸出空气的冷却风机;且所述空气入口被设置在邻近所述压缩机的侧壁的位置处以垂直于所述压缩机的所述侧壁引导由所述冷却风机引起的空气流;其特征在于,选择所述冷却风机的容量和所述空气入口的直径以确保通过所述空气入口的所述空气流的速度等于或低于15m/sec。
2.根据权利要求1所述的氧浓缩设备,其中选择所述冷却风机的容量和所述空气入口的直径以确保相对于所述压缩机的电功率消耗的通过所述空气入口的所述空气流的速度等于或高于0.05m/sec W。
3.根据权利要求2所述的氧浓缩设备,其中选择所述冷却风机的容量和所述空气入口的直径以确保相对于所述压缩机的电功率消耗的通过所述空气入口的所述空气流的速度等于或低于0.1m/sec W。
4.根据前述权利要求中任一项所述的氧浓缩设备,其中选择所述冷却风机的容量以确保所述压缩机壳体的空气外部与所述压缩机的外表面之间的温差等于或低于30℃。
5.根据权利要求1所述的氧浓缩设备,其中所述压缩机包括活塞被可滑动地设置在其内的缸、曲柄轴、用于将所述活塞连接到所述曲柄轴上的连杆、附接到所述缸端部上的缸盖和驱动马达,所述驱动马达的输出轴被连接到所述曲柄轴上以使得所述驱动马达的所述输出轴的转动被转换成所述活塞的往复运动;并且所述空气入口被设置在所述缸周围以引导由所述冷却风机引起的空气垂直于邻近所述缸端部的所述缸的外表面地通过所述空气入口,在所述外表面处,通过空气压缩使所述缸中的空气温度增加。
全文摘要
一种氧浓缩设备(10)具有氧浓缩单元(12)、用于将压缩空气供应至所述氧浓缩单元(12)的压缩机(26)和用于容纳所述压缩机(26)的压缩机壳体(28)。所述压缩机壳体(28)包括用于将空气引入所述压缩机壳体(28)内的多个空气入口(28a)和用于从所述压缩机壳体(28)中排出空气的空气出口孔(28b)。冷却风机(30)被安装在所述压缩机壳体(28)上的所述空气出口孔(28b)处以从所述压缩机壳体(28)中吸出空气。所述空气入口(28a)被设置在邻近所述压缩机(26)的侧壁的位置处以垂直于所述压缩机(26)的所述侧壁引导由所述冷却风机引起的空气流。选择所述冷却风机(30)的容量和所述空气入口(28a)的直径以确保通过所述空气入口(28a)的所述空气流的速度等于或低于15m/sec。
文档编号A61M16/10GK1910112SQ20058000248
公开日2007年2月7日 申请日期2005年2月15日 优先权日2004年2月16日
发明者峠真一, 木村善信, 猪本聪 申请人:帝人制药株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1