低蠕变、高强度uhmwpe纤维及其制造方法

文档序号:917383阅读:395来源:国知局
专利名称:低蠕变、高强度uhmwpe纤维及其制造方法
低蠕变、高强度UHMWPE纤维及其制造方法本申请是发明专利申请第200880110448. I号的分案申请,原申请的申请日为2008年10月06日、最早优先权日为2007年10月05日,原申请的发明名称为“低蠕变、高强度UHMWPE纤维及其制造方法”。本发明涉及一种用于制造具有高拉伸强度以及改善蠕变速率的凝胶纺丝超高分子量聚乙烯(UHMWPE)纤维的方法并且涉及由上述方法制成的凝胶纺丝UHMWPE纤维。由上述方法制成的凝胶纺丝UHMWPE纤维可用在各种应用领域中。本发明具体涉及含有所述UHMWPE纤维的绳索、医疗器械、复合制品和防弹制品。例如由EP I, 699,954已知用于制造具有高韧性以及改善的耐蠕变性的凝胶纺丝UHMWPE纤维的方法,该方法包括如下步骤
a)制备UHMWPE在溶剂中的溶液,所述UHMWPE在135°C下、十氢化萘中具有至少5dl/g的特性粘度;b)使步骤a)的溶液通过含有多个喷丝孔的喷丝头喷丝到空气隙中,从而形成流体细丝;c)使所述流体细丝冷却,从而形成含有溶剂的凝胶细丝;和d)从所述凝胶细丝中至少部分除去溶剂,从而形成固体细丝,此后和/或同时拉伸所述固体细丝。具体地,EP 1,699,954的方法使用每1000个碳原子上具有至多3个短C1-C4烷侧基(优选甲基)的UHMPWE。所得UHMWPE具有低至I X KT6SecT1的蠕变速率和高达4. IGPa的拉伸强度,所述蠕变速率在70°C、600MPa的负载下测定。还已知的是,UHMWPE纤维的蠕变速率的降低可以采用其中使用高支化UHMWPE的凝胶纺丝工艺得以实现,这种高支化UHMWPE即为具有比甲基分枝更长分枝(例如为乙基、丙基等)或者具有大量上述分枝或其组合的UHMWPE。然而,所述高支化聚乙烯会损害纺成的UHMWPE纤维的拉伸性能,因此制成具有不良拉伸性能的纤维。另一方面已知的是,通过使用较低支化的UHMWPE(即具有更多线性构形的聚乙烯,这意味着分枝少或分枝短,例如甲基分枝)可以制成具有改善拉伸性能的纤维。然而,这些纤维具有不佳的蠕变性质。由此可见,由于蠕变性和拉伸性能不是同时兼得的性能,所以本领域普通技术人员无论如何不会尝试获得具有低蠕变速率和高拉伸强度的UHMWPE纤维。因此,本发明的目的在于满足对具有高拉伸强度和低蠕变速率的组合的UHMPWE及其制备方法的需求,这种组合是现有UHMWPE纤维中的任意一种无法满足的。本发明的目的通过如下的用于制造凝胶纺丝UHMWPE纤维的方法得以实现,该方法具有如下特征所述UHMWPE每1000个碳原子中包含O. I至I. 3个甲基侧基和O. 08至O. 6个甲基端基;以及总拉伸比(DR,g、#= DR,ffi# XDRw XDR_)为至少7000,附加条件是所述流体拉伸比DRaw= DRspXDRag为至少100,其中,DPsp是喷丝孔中的拉伸比,DRag是空气隙中的拉伸比。“甲基端基”在本文中被理解为对应于UHMWPE链的末端和UHMWPE链的长链分枝(LCB)的末端的甲基。“LCB”在本文中被理解为比乙基长的分枝,例如丙基、丁基、己基和更长的分枝。令人惊讶地,本发明人发现,采用本发明的方法得到的新型UHMPWE纤维与迄今为止得到的任何UHMWPE纤维相比具有更好的蠕变速率和拉伸强度的组合。本发明人还惊讶地观察到可以在本发明的方法中向纺成的纤维施加比向通过已知凝胶纺丝工艺制成的UHMPWE所施加的DR总体或比现有技术中先前报道的DR总体都高的总拉伸比(DR,6#),而不 会出现断裂。“DR,6#”在本文中被理解为施加到流体纤维、凝胶纤维和固体纤维上的拉伸比的乘积,即DRm= DR流体XDRjiiu XDR_。优选地,施加到本发明的UHMWPE纤维上的DR,6#为至少8000,甚至更优选为至少10,000,还要甚至更优选为至少12,000,还要甚至更优选为至少14,000,还要甚至更优选为至少16,000,还要甚至更优选为至少18,000,还要甚至更优选为至少19,000,最优选为至少 20,000。在本发明的方法中施加上述高DR,_的优点在于得到独一无二的UHMWPE纤维,该纤维具有甚至进一步改善的蠕变速率和/或拉伸强度。本发明方法的另一优点在于可以使用更高的拉伸速率来拉伸本发明的UHMWPE纤维,这提高了生产量、缩短了生产时间,因而本发明的方法更经济。“拉伸速率”在本文中被理解为拉伸比除以为实现该拉伸比所需的时间(以秒计)的商值。优选地,所述UHMWEP每1000个碳原子中包含O. 3至I. 3个、更优选O. 5至I. 2个、甚至更优选O. 7至I. I个、最优选O. 7至O. 9个甲基侧基;更优选地,所述UHMWEP每1000个碳原子中包含O. I至O. 6个、甚至更优选O. I至O. 4个、还要甚至更优选O. I至O. 3个、最优选O. 2至O. 3个甲基端基。优选地,每1000个碳原子中甲基侧基的个数与每1000个碳原子中甲基端基的个数相加得到的每1000个碳原子中甲基的总和为至多2. 1,更优选为至多I. 9,甚至更优选为至多I. 7,还要甚至更优选为至多I. 5,最优选为至多1.3。所述总和优选为至少O. 7,更优选为至少O. 8,甚至更优选为至少O. 9,最优选为至少I. O。令人惊讶地发现,对于可通过本发明的方法(其中使用每1000个碳原子中具有以上所述甲基总数的UHMWPE)得到的UHMWEP纤维来说,拉伸强度和蠕变速率的组合被进一步改善了,特别是蠕变速率被进一步改善了。用在本发明方法中的聚乙烯是超高分子量聚乙烯,即该UHMWPE具有至少5dl/g、优选至少10dl/g、更优选至少15dl/g、最优选至少21dl/g的特性粘度(IV),该特性粘度在135°C下对十氢化萘溶液进行测定得到。优选地,该IV为至多40dl/g,更优选为至多30dl/g,甚至更优选为至多25dl/g。该UHMWPE溶液优选被制成具有至少3质量%、更优选至少5质量%、甚至更优选至少8质量%、最优选至少10质量%的浓度。该UHMWPE溶液优选具有至多30质量%、更优选至多25质量%、甚至更优选至多20质量%、最优选至多15质量%的浓度。为了改善加工性能,聚乙烯的摩尔质量越高,优选越低的浓度。优选地,对于IV在15-25dl/g范围内的UHMWPE而言,浓度介于3和15质量%之间。为了制备UHMWPE溶液,可以使用适用于凝胶纺丝UHMWPE的已知溶剂中的任意一种。溶剂的适当实例包括脂族烃和脂环族烃,例如辛烷、壬烷、癸烷和石蜡,包括其异构体;石油馏分;矿物油;煤油;芳族烃,例如甲苯、二甲苯和萘,包括其氢化衍生物,例如十氢化萘和四氢化萘;卤化烃,例如一氯化苯;和环烷烃或环烯烃,例如蒈烯(careen)、荷、茨烯、孟烧、二戍烯、萘、危烯(acenaphtalene)、甲基环戍二烯、三环癸烧、I, 2,4, 5-四甲基-1,4-环 己二烯、荷酮、联萘胺(naphtindane)、四甲基-对-苯并二醌、乙基荷(ethylfuorene)、突蒽和萘酮。还可以使用组合的上述列举的溶剂用于凝胶纺丝UHMWPE,其中为了简化,溶剂的组合也被称为溶剂。在优选的实施方式中,所选择的溶剂在室温下不挥发,例如为石蜡油。还发现本发明的方法对于在室温下相对挥发性的溶剂例如十氢化萘、四氢化萘和煤油尤其有利。在最优选的实施方式中,所选择的溶剂是十氢化萘。根据本发明,UHMWPE溶液通过如下形成流体细丝将所述溶液通过含有多个喷丝孔的喷丝头喷丝。本文所用术语“流体细丝”指流体状细丝,其包含UHMWPE在用于制备所述UHMWPE溶液的溶剂中的溶液,所述流体细丝通过将UHMWPE溶液挤出通过喷丝头而得到,被挤出的流体细丝中的UHMWPE的浓度与挤出前UHMWPE溶液的浓度相同或几乎相同。“含有多个喷丝孔的喷丝头”在本文中被理解为含有优选至少10个喷丝孔、更优选至少50个喷丝孔、甚至更优选至少100个喷丝孔、还要甚至更优选至少300个喷丝孔、最优选至少500个喷丝孔的喷丝头。优选地,喷丝头包含至多5000个、更优选3000个、最优选1000个喷丝孔。优选地,纺丝温度介于150°C和250°C之间,更优选地,其被选定低于纺丝溶剂的沸点。如果例如十氢化萘被用作纺丝溶剂,那么纺丝温度优选为至多190°C、更优选为至多180°C、最优选为至多170°C,并且优选为至少115°C、更优选为至少120°C、最优选为至少125°C。在石蜡的情况下,纺丝温度优选低于220°C,更优选介于130°C和195°C之间。在优选的实施方式中,喷丝头中的每个喷丝孔的几何形状含有至少一个收缩区。“收缩区”在本文中被理解为直径以在8-75°范围内的锥角由直径Dtl逐渐缩小至直SDn的区域,结果在该喷丝孔中实现拉伸比DRSP。优选地,所述喷丝孔在所述收缩区下游进一步包含至少一个具有恒定直径的区域,其中长度/直径比Ln/Dn为至多50。更优选地,Ln/Dn为至多40,更优选为至多25,最优选为至多10,并且优选为至少I,更优选为至少3,最优选为至少5。Ln是具有恒定直径Dn的区域的长度。优选地,DcZDnK为至少2,更优选为至少5,甚至更优选为至少10,还要甚至更优选为至少15,最优选为至少20。优选地,锥角为至少10°,更优选为至少12°,甚至更优选为至少15°。优选地,锥角为至多60°,更优选为至多50°,甚至更优选为至多45°。喷丝孔的直径在本文中指有效直径,即对于非圆形或不规则形状的喷丝孔来说,喷丝孔外边界间的最长距离。锥角在本文中指喷丝孔收缩区中相对壁面的切线间的最大角度。例如,对于圆锥形或锥形收缩区域而言,切线间的锥角是恒定的;而对于所谓的喇叭形收缩区域来说,切线间的锥角随着直径的下降而减小。对于葡萄酒杯型收缩区域而言,切线间的角度经过最大值。喷丝孔中的拉伸比DRsp被表示为溶液在收缩区的初始截面处的流速与溶液在收缩区的末尾截面处的流速的比值,其相当于各横截面积的比值。在收缩区具有圆锥体的平截头形状时,DRsp等于初始直径与末尾直径比值的平方,即=(D0/Dn)2o优选地,选择Dc^PDn,以使DRsp为至少5,更优选为至少10,甚至更优选为至少15,最优选为至少20。
使UHMWPE溶液通过喷丝头喷丝形成的流体细丝挤入空气隙,然后挤入冷却区域,由该冷却区域,细丝被卷到第一驱动辊上。优选地,通过选择第一驱动辊的角速率以使所述辊的表面速度大于由所述喷丝头流出的UHMWPE溶液的流速,从而使流体细丝在空气隙中以至少5的拉伸比DRag进行拉伸。空气隙中的拉伸比DRag更优选为至少10,甚至更优选为至少15,还要甚至更优选为至少20,还要甚至更优选为至少25,还要甚至更优选为至少30,还要甚至更优选为至少35,最优选为至少40。在本发明的方法中,选择DRsp和DRag,从而使流体UHMWPE细丝的总拉伸比DRS# =DRspXDRag为至少100。在优选的实施方式中,选择DRsl^P DRag,从而使DR,—为至少200,更优选为至少300,甚至更优选为至少400,最优选为至少500。令人惊讶地,发现在本发明的方法中可以向流体UHMWPE细丝施加比以往DR—都要高的DRS#,而断裂发生率被保持在同
一水平。相应地,当向流体UHMWPE细丝施加与本领域以前施加的那些DRs体同样大的DRs#时,流体细丝中的断裂发生率减少了。 空气隙的长度优选为至少1_,更优选为至少3_,甚至更优选为至少5_,还要甚至更优选为至少10mm,还要甚至更优选为至少15mm,还要甚至更优选为至少25mm,还要甚至更优选为至少35mm,还要甚至更优选为至少40mm,还要甚至更优选为至少45mm,最优选为至少55mm。空气隙的长度优选为至多200mm,更优选为至多175mm,甚至更优选为至多150mm,还要甚至更优选为至多125mm,还要甚至更优选为至多105mm,还要甚至更优选为至多95mm,最优选为至多75mm。可以在气流中和/或在液体冷却浴中对离开空气隙的流体细丝进行冷却(也被成为淬火),从而形成含有溶剂的凝胶细丝。优选地,冷却浴含有UHMWPE的非溶剂作为冷却液体,更优选含有与用于制备UHMWPE溶液的溶剂不可混溶的冷却液体。优选地,冷却液至少在流体细丝进入冷却浴的场所基本上垂直流过该细丝,其优点在于可以更好地限定、控制拉伸条件。“空气隙”在应用气冷时指流体细丝转化成含有溶剂的凝胶细丝前流体细丝行进的长度,或者在液体冷却浴中指喷丝头的面与冷却液体的表面间的距离。尽管被称为空气隙,但可以使用不同于空气的气氛,例如诸如氮气或氩气的惰性气流、由细丝蒸发出的溶剂或其组合。本文使用的术语“凝胶细丝”指这样的细丝,该细丝在冷却时演变成由纺丝溶剂溶胀的连续UHMWPE网络。流体细丝转化成凝胶细丝并形成连续的UHMWPE网络的指示可以是细丝的透明度在冷却时由半透明的UHMWPE细丝变成基本上不透明的细丝,即凝胶细丝。优选地,冷却流体细丝的温度为至多100°C,更优选为至多80°C,最优选为至多60°C。优选地,冷却流体细丝的温度为至少TC,更优选为至少5°C,甚至更优选为至少10°C,最优选为至少15°C。在优选的实施方式中,在至少一个拉伸步骤中采用至少I. 05、更优选至少I. 5、甚至更优选至少3、还要甚至更优选至少6、最优选至少10的拉伸比拉伸含有溶剂的凝胶细丝。凝胶细丝的拉伸温度优选介于10°C和140°C之间,更优选介于30°C和130°C之间,甚至更优选介于50°C和130°C之间,还要甚至更优选介于80°C和130°C之间,最优选介于100°C和120°C之间。
在形成凝胶细丝后,对所述凝胶细丝进行溶剂去除步骤,其中,从所述凝胶细丝中至少部分除去纺丝溶剂,从而形成固体细丝。抽提步骤后,残留在固体细丝中的纺丝溶剂(此后为残余溶剂)的量可以在宽范围内变化,优选地,残余溶剂的量为UHMWPE溶液中溶剂初始量的至多15质量更优选为至多10质量%,最优选为至多5质量%。溶剂去除步骤可以通过已知方法进行,例如当使用相对挥发性的纺丝溶剂(例如十氢化萘)来制备UHMWPE溶液时可以通过蒸发;当例如使用石蜡时可以通过使用抽提液体,或者可以通过这两种方法的组合。适当的抽提液体是不会对UHMWPE凝胶纤维的UHMWPE网络结构造成显著变化的液体,例如为乙醇、醚、丙酮、环己酮、2-甲基戊酮、正己烷、二氯甲烷、三氯三氟乙烷、二乙醚和二氧杂环己烷或其混合物。优选地,对抽提液体进行选择,从而可以从抽提液体中分离出纺丝溶剂以进行回收。
根据本发明的方法进一步包括在所述溶剂去除期间和/或之后拉伸所述固体细丝。优选地,在至少一个拉伸步骤中采用优选至少4的拉伸比01 @#拉伸固体细丝。更优选地,DR@#为至少7,甚至更优选为至少10,还要甚至更优选为至少15,还要甚至更优选为至少20,还要甚至更优选为至少30,最优选为至少40。更优选地,在至少两个步骤中、甚至更优选在至少三个步骤中拉伸固体细丝。优选地,各个拉伸步骤在不同的温度下实施,该温度优选被选择以实现所需拉伸比而不会出现细丝断裂。如果在一个以上步骤中拉伸固体细丝,那么DR通过如下计算将每个固体拉伸步骤的拉伸比相乘。更优选地,每个固体拉伸步骤通过如下实施拉伸所述固体细丝,然后使它们在至少10米的长度上连续穿过含有驱动辊的拉伸烘箱,结果在烘箱中的停留时间为至多10分钟。在烘箱中的拉伸可由本领域普通技术人员通过调节承载细丝的驱动辊的速度得以容易地实施。优选地,固体细丝在至少50米的长度上、更优选至少100米的长度上、最优选至少200米的长度上穿过烘箱。固体细丝在烘箱中的停留时间优选为至多5分钟,更优选为至多3. 5分钟,甚至更优选为至多2. 5分钟,还要甚至更优选为至多2分钟,还要甚至更优选为至多I. 5分钟,最优选为至多I分钟。所述烘箱中的温度还可以具有递增的温度分布,优选介于120和155°C之间。停留时间在本文中被理解为从固体细丝的某一横截面进入烘箱那刻到其离开烘箱时在烘箱中花费的时间。本发明人惊奇地发现,在本发明的方法中使UHMWPE细丝达到相同的拉伸比所需要的停留时间要短于以前。因此,本发明方法的效率与用于生产聚乙烯纤维的已知方法的效率相比改善了。在优选的实施方式中,至少一个拉伸步骤在具有处于约120°C至约155°C之间的递增温度分布的温度下实施。可选地,本发明地方法还可以包括从本发明的UHMWPE纤维中除去残余的纺丝溶剂的步骤,优选地,该步骤在固体拉伸步骤后进行。在优选的实施方式中,残留在本发明的UHMWPE纤维中的纺丝溶剂通过如下除去将所述纤维放置在温度优选为至多148°C、更优选为至多145°C、最优选为至多135°C的真空烘箱中。优选地,该烘箱被保持在至少50°C、更优选至少70°C的温度下、最优选至少90°C的温度下。更优选地,残余纺丝溶剂去除的同时保持纤维拉紧,即防止纤维松弛。优选地,在溶剂去除步骤结束时本发明的UHMWPE纤维中包含的纺丝溶剂的量低于800ppm。更优选地,所述纺丝溶剂的量低于600ppm,甚至更优选低于300ppm,最优选低于IOOppm0本发明进一步涉及一种拉伸强度为至少4GPa,蠕变速率为至多6X KTsec—1的凝胶纺丝UHMWPE纤维,所述蠕变速率在70°C、600MPa的负载下测定。更优选地,根据本发明的UHMWPE纤维的蠕变速率为至多4X liTsec—1,甚至更优选为至多2X liTsec—1,最优选为至多KT7Sec'所述UHMWPE纤维的拉伸强度优选为至少4. 5GPa,更优选为至少5GPa,最优选为至少5. 5GPa。所述UHMWPE纤维例如可通过上述凝胶纺丝工艺得到。优选地,UHMWPE纤维通过上述方法得到,但是其它制造方法也 是可行的。例如由EP 1,699,954、EP 0,205,960B1、EP 0,269,151、JP 5-70274、美国专利5,115,067和5,246,657已知具有高强度和改善耐蠕变性的凝胶纺丝UHMWPE纤维。表I汇总了以上所引用的参考文献中报道的纤维的拉丝强度和蠕变速率值以及在所述参考文献中限定的测量蠕变速率的条件。该表还包括根据测量技术并且在与引用的参考文献中所述的温度和负载相同的条件下测定的本发明的UHMWPE纤维(实施例I)的蠕变速率和拉伸强度。由该表可以看出,所引用的参考文献中的纤维没有一个具有本发明的UHMWPE纤维所具有的高强度和低蠕变性的组合。优选地,本发明的UHMWPE纤维具有至少lOOGPa、更优选至少130GPa、甚至更优选至少160GPa、还要甚至更优选至少190GPa、最优选至少220GPa的模量。并未受缚于任何理论,本发明人将模量的增加归因于本发明的UHMWPE纤维允许更高的DR本发明还涉及一种含有本发明的UHMWPE纤维的纱线。在优选的实施方式中,本发明的UHMWPE纤维包含这样的UHMWPE,该UHMWPE每1000个碳原子中包含O. I至I. 3个、更优选O. 3至I. 3个、甚至更优选O. 5至I. 2个、还要甚至更优选O. 7至I. I个、最优选O. 7至O. 9个甲基侧基。更优选地,所述UHMWEP每1000个碳原子中包含O. 08至O. 6个、甚至更优选O. I至O. 6个、还要甚至更优选O. I至O. 4个、还要甚至更优选O. I至O. 3个、最优选O. 2至O. 3个甲基端基。优选地,本发明的UHMWPE纤维包含这样的UHMWPE,该UHMWPE每1000个碳原子上甲基侧基的个数与每1000个碳原子上甲基端基的个数相加得到的每1000个碳原子上甲基的总和为至多2. 1,更优选为至多I. 9,甚至更优选为至多I. 7,还要甚至更优选为至多I. 5,最优选为至多I. 3。所述总和优选为至少O. 7,更优选为至少O. 8,甚至更优选为至少O. 9,最优选为至少I. O。纤维在本文中理解为细长体,即长度远远大于其横向尺寸的物体。本文中使用的纤维包括多根具有规则或不规则截面并且具有连续和/或非连续长度的细丝。在本发明的上下文中,纱线被理解为含有连续和/或非连续纤维的细长体。根据本发明的纱线可以是加捻的或编织的纱线。本发明的UHMWPE纤维具有的性质使得它们适于用在绳索、索具等中,优选用于为重型操作(例如牵引、航海和海面操作)设计的绳索中。重型操作可以进一步包括但不限于锚定处理、重型容器的系泊、钻井平台和采油平台的系泊等等。最优选地,本发明的UHMWPE纤维用在UHMWPE纤维经受静态张力的应用中。“静态张力”在本文中指在纤维在应用的时间内总是或多数时间内处于拉紧状态,而不管张力是恒定水平(例如重量自由悬挂在含有该纤维的绳子上)还是变化水平(例如暴露于热膨胀或水波纹运动下)。非常优选的用于静态张力的实例例如为许多医疗应用(例如缆线和缝合线)、系泊绳索和张力增强元件,因为本发明的纤维的低蠕变性导致系统性能在这些应用和类似应用中被大大改善。因此,本发明涉及含有本发明的UHMWPE纤维的绳索。优选地,用于制造绳索的纤维总量的至少50质量%、更优选至少75质量%、甚至更优选至少90质量%由本发明的UHMWPE纤维构成。最优选地,该绳索由本发明的UHMWPE纤维构成。在本发明的绳索中剩余质量百分数的纤维可以包含由适于制造纤维的其它材料(例如金属、玻璃、碳、尼龙、聚酯、芳纶、其它类型的聚烯烃等等)制成的纤维或纤维的组

口 ο本发明进一步涉及含有本发明的UHMWPE纤维的复合制品。
在优选的实施方式中,复合制品中包含至少一个含有本发明UHMWPE纤维的单层。术语“单层”指一层纤维,即多根在一个平面内的纤维。在进一步优选的实施方式中,该单层是单向单层。术语“单向单层”指一层单向取向的纤维,即在一个平面上的基本上平行取向的纤维。在还要进一步优选的实施方式中,复合制品是多层复合制品,其含有多个单向单层,其中每个单层中的纤维方向优选相对于相邻单层中的纤维的方向以一定角度旋转。优选地,该角度为至少30°,更优选为至少45°,甚至更优选为至少75°,最优选地,该角度为至少90°。单层可以进一步包含使UHMWPE纤维保持在一起的粘合剂材料。该粘合剂材料可以以各种技术应用,例如,作为薄膜,作为横向粘合带或纤维(相对于单向纤维为横向)或通过将纤维用基质材料浸溃和/或包埋(所述基质材料例如为基质材料在液体中的溶液或分散液)。粘合剂材料的含量相对于该层的重量优选小于30质量%,更优选小于20质量%,最优选小于15质量%。单层可以进一步包含少量辅助组分,其可以包含由适于制造纤维的材料(诸如以上列举的那些)制成的其它纤维。优选地,单层中的增强纤维由本发明的UHMWPE纤维组成。已证实多层复合制品非常适于防弹应用中,例如防弹衣、头盔、硬质和软质防护板、车辆装甲板等等。因此,本发明还涉及以上列举的含有本发明的UHMWPE纤维的防弹制
品O本发明的残余溶剂量很低(即低于800ppm,优选低于IOOppm)的UHMWPE纤维还适于用在医疗器械中,例如用在缝合线、医疗线缆、植入物、手术修补产品等等中。因此,本发明进一步涉及一种含有本发明的UHMWPE纤维的医疗器械,具体涉及一种手术修补产品,更具体涉及一种缝合线和医疗线缆。根据本发明的缝合线和医疗线缆的优点在于由于它们具有优异的拉伸性能并且进一步由于它们具有低蠕变速率,所以这些产品的机械性能在人体内具有良好的保持性。根据本发明的UHMWPE纤维中的细丝的数量和粗细可以在宽范围内变化,这取决于该纤维即将使用的应用领域。例如,在用于航海和海面操作的重型绳索中,优选使用具有至少1500dtex的纤维,更优选使用具有至少2000dtex的纤维,最优选使用具有至少2500dtex的纤维。当纤维用在医疗器械中时,优选的它们的纤度为至多1500dtex,更优选为至多IOOOdtex,最优选为至多500dtex。我们还观察到具有以上所述独一无二的机械性能组合的本发明的UHMWPE纤维适于用在其它应用领域中,所述应用领域诸如为渔线和渔网、地网、货网和幕帘、牙线、网球拍线、帆布(例如帐篷)、无纺布和其它类型的织物、织物带、电池隔离物、电容器、压力容器、软管、汽车装置、电力传输带、建筑材料、耐切割制品、防护手套、复合运动装备(诸如滑雪撬、头盔、划艇、自行车和船体和翼梁)、扬声器纸盆、高性能电子绝缘、天线罩等等。因此本发明还涉及含有本发明的UHMWPE纤维的以上列举的应用。本发明还涉及每1000个碳原子上具有O. I至I. 3个甲基侧基和O. 08至O. 6个甲基端基的UHMWPE以及以上所述实施方式和优选亚范围的UHMWPE在纺丝工艺中制备UHMWPE纤维的用途。在一个实施方式中,纺丝工艺是熔融纺丝工艺,其中UHMWPE纤维由UHMWPE的熔融物纺成。优选地,纺丝工艺是凝胶纺丝工艺,其中,UHMWPE纤维由UHMWPE在适于溶解该UHMWPE的溶剂中的溶液纺成。最优选地,凝胶纺丝工艺是本发明的工艺。此后,对附图
进行解释图I是用于在凝胶纺丝工艺中生产实施例I中的纤维的UHMWPE的NMR光谱(100)。图2是用于测定UHMWPE纤维的蠕变性的装置的示意图。图示⑴和⑵分别表示实验开始时的纱线长度(200)的情形和一段时间后被拉长的纱线的情形。图3表示对比例中的纱线在对数尺度上的蠕变速率[Ι/s]与伸长率(以百分比
计),即
权利要求
1.一种拉伸强度为至少4GPa、蠕变速率为至多6X liTsec—1的凝胶纺丝UHMWPE纤维,所述蠕变速率在70°C、600MPa的负载下测定。
2.如权利要求I所述的纤维,其中,所述蠕变速率至多4XKT7sec'
3.如权利要求I和2中任意一项所述的纤维,其具有至少4.5GPa的拉伸强度。
4.一种含有权利要求1-3中任意一项所述纤维的绳索。
5.一种含有权利要求1-3中任意一项所述纤维的复合制品。
6.一种含有权利要求1-3中任意一项所述纤维的医疗器械。
7.如权利要求6所述的医疗器械,其中,所述医疗器械是缝合线或医疗线缆。
8.如权利要求1-3中任意一项所述的纤维在涉及纤维静态张力的应用中的用途。
全文摘要
本发明涉及一种低蠕变、高强度UHMWPE纤维及其制造方法。本发明具体涉及用于制备具有高拉伸强度和改善蠕变速率的凝胶纺丝超高分子量聚乙烯(UHMWPE)纤维的方法,其中,用在所述方法中的UHMWPE每1000个碳原子中包含0.1至1.3个甲基侧基和0.08至0.6个甲基端基;并且其中,总拉伸比(DR总体=DR流体×DR凝胶×DR固体)为至少7000,附加条件是所述流体拉伸比DR流体=DRsp×DRag为至少100,其中,DPsp是喷丝孔中的拉伸比,DRag是空气隙中的拉伸比。本发明进一步涉及一种由上述方法制成的凝胶纺丝UHMWPE纤维。本发明的凝胶纺丝UHMWPE纤维具有至少4GPa拉伸强度和至多6×10-7sec-1的蠕变速率,所述蠕变速率在70℃、600MPa的负载下测定。由本发明的方法制成的凝胶纺丝UHMWPE纤维可用在各种应用中,本发明具体涉及含有所述UHMWPE纤维的绳索、医疗器械、复合制品和防弹制品。
文档编号A61B17/06GK102877148SQ20121032750
公开日2013年1月16日 申请日期2008年10月6日 优先权日2007年10月5日
发明者马丁·皮耶特·瓦拉斯布鲁姆, 鲁洛夫·马里萨恩, 约瑟夫·阿诺德·保罗·玛丽亚·斯梅林克 申请人:帝斯曼知识产权资产管理有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1