一种提高磁性纳米造影剂稳定性的方法

文档序号:1264743阅读:277来源:国知局
一种提高磁性纳米造影剂稳定性的方法
【专利摘要】本发明涉及一种提高磁性纳米造影剂稳定性的方法,包括以下步骤:用聚多巴胺对磁性纳米粒子进行包覆。本发明采用简单、绿色的合成方法,得到聚多巴胺包覆的磁性纳米粒子,所采用的原料价格低廉易得,合成方法简单。本发明仅仅通过简单的控制磁性纳米粒子和多巴胺盐酸盐的质量比,实现对磁性纳米粒子的厚度进行可控包覆。
【专利说明】一种提高磁性纳米造影剂稳定性的方法
【技术领域】
[0001]本发明涉及一种磁性纳米造影剂【技术领域】,特别涉及一种提高磁性纳米造影剂稳定性的方法。
【背景技术】
[0002]核磁成像(MRI)技术在临床医学中是一种非常重要的诊断工具。以铁的氧化物为主的磁性纳米造影剂(主要为Fe304、Y -Fe2O3)因具有良好的生物兼容性、能有效地缩短横向弛豫时间(T2),因此被认为是最有前景的MRI造影剂之一。
[0003]然而,铁的氧化物磁性纳米造影剂本身不稳定,在水溶液中很容易被进一步氧化,导致饱和磁化强度变弱,使得造影剂的造影能力降低,影响核磁成像效果。

【发明内容】
[0004]本发明要解决现有技术中的如何在维持铁氧化物磁性纳米粒子生物兼容性的前提下,能有效地保持其在水溶液中的稳定性,稳定其核磁造影成像效果的技术问题,提供一种采用在人体内广泛分布的黑色素类似物一聚多巴胺作为磁性纳米粒子的包覆剂,生物兼容性好、能有效稳定磁性纳米粒子造影效果的,提高磁性纳米造影剂稳定性的方法。
[0005]为了解决上述技术问题,本发明的技术方案具体如下:
[0006]一种提高磁性纳米造影剂稳定性的方法,包括以下步骤:用聚多巴胺对磁性纳米粒子进行包覆。
[0007]上述技术方案中,所述磁性纳米粒子是粒径为50_80nm的磁性纳米粒子。
[0008]上述技术方案中,所述磁性纳米粒子为基于铁的氧化物磁性纳米粒子。
[0009]上述技术方案中,所述磁性纳米粒子是采用水热法合成得到的磁性纳米粒子。
[0010]上述技术方案中,所述磁性纳米粒子具体是采用柠檬酸钠、乙酸钠、氯化铁作为原料,在乙二醇和二乙二醇的混合溶剂中,200度溶剂热条件下,反应10小时得到的50-80nm的磁性纳米粒子。
[0011 ] 上述技术方案中,所述聚多巴胺是采用多巴胺盐酸盐在碱性条件下聚合生成的聚多巴胺。
[0012]上述技术方案中,所述聚多巴胺包覆的厚度为3_15nm。
[0013]上述技术方案中,用聚多巴胺对磁性纳米粒子进行包覆具体步骤包括:
[0014]将磁性纳米粒子分散在碱性的缓冲溶液中,加入多巴胺盐酸盐,多巴胺在磁性纳米粒子的表面进行聚合,反应0.5-24小时,通过离心分离,然后用去离子水洗涤,得到聚多巴胺包覆的磁性纳米粒子。
[0015]上述技术方案中,在用聚多巴胺对磁性纳米粒子进行包覆具体步骤中:所述碱性的缓冲溶液的PH值为7.5-11。
[0016]上述技术方案中,在用聚多巴胺对磁性纳米粒子进行包覆具体步骤中:磁性纳米粒子的质量与多巴胺盐酸盐的质量比为1:3-1:1之间。[0017]本发明的有益效果如下:
[0018]本发明采用简单、绿色的合成方法,得到聚多巴胺包覆的磁性纳米粒子,所采用的原料价格低廉易得,合成方法简单。
[0019]本发明仅仅通过简单的控制磁性纳米粒子和多巴胺盐酸盐的质量比,实现对磁性纳米粒子的厚度进行可控包覆。
[0020]从生物兼容性和安全性角度考虑,黑色素在体内广泛分布,其具有良好的生物兼容性,而且黑色素在体内本身能被体内广泛存在的黑色素酶以及过氧化氢所降解,聚多巴胺是黑色素的一个重要的组成部分,对磁性纳米粒子进行包覆后,对其生物兼容性进行考察,通过细胞毒性试验(MTT)考察,发现其对细胞的生长、发育和复制均无不良影响,在2mg/ml的高浓度条件下,细胞的存活率仍然超过90%。以上实验数据说明,聚多巴胺修饰的磁性纳米粒子具有非常良好的生物兼容性(图3)。
[0021]从稳定磁性纳米粒子的角度考虑,通过考察未包覆与包覆聚多巴胺的磁性纳米造影剂的横向弛豫时间,发现未包覆聚多巴胺的随着时间的推移,其横向弛豫率(r2)大幅减少,经过4周,从最初的减少到ΜβπιΤ?而PDA包覆的磁性纳米粒子的r2,基本维持稳定(表1,图4)。
【专利附图】

【附图说明】
[0022]下面结合附图和【具体实施方式】对本发明作进一步详细说明。
[0023]图1为水热法合成得到的柠檬酸根保护的磁性纳米粒子示意图。
[0024]图2为聚多巴胺包覆的磁性纳米粒子示意图。
`[0025]图3为聚多巴胺包覆的磁性纳米粒子生物兼容性考察示意图。
[0026]图4为未包覆和包覆聚多巴胺的磁性纳米粒子的r2值随时间的变化示意图。
【具体实施方式】
[0027]图1至图4显示了本发明的提高磁性纳米造影剂稳定性的方法的几种【具体实施方式】,下面结合附图对本发明做以详细说明。
[0028]实施例1
[0029]( I)磁性纳米粒子的制备
[0030]在烧杯里分别加入柠檬酸钠和氯化铁,然后加入乙二醇和二乙二醇,超声溶解后,再加入乙酸钠,进一步超声溶解,最后转移到反应釜中,200度条件下,反应10小时,经去离子水洗涤三次后得到磁性纳米粒子。
[0031](2)聚多巴胺包覆磁性纳米粒子
[0032]取0.4g纳米粒子分散到4升的碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤,即得厚度为15nm聚多巴胺包覆的磁性纳米粒子,称为造影剂I。
[0033]图1为所制备的磁性纳米粒子,通过TEM图片,可知磁性纳米粒子的粒径在50_80nm 之间。
[0034]图2为所制备的聚多巴胺包覆的磁性纳米粒子,通过TEM图片,可知其聚多巴胺包覆的厚度大约为15nm。[0035] 实施例2
[0036]( I)磁性纳米粒子的制备同实施例1。
[0037](2)取0.4g纳米粒子分散到4升的碱性缓冲溶液中,取Ig多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得厚度为12nm聚多巴胺包覆的磁性纳米粒子,称为造影剂2。
[0038]实施例3
[0039]( I)磁性纳米粒子的制备同实施例1。
[0040](2)取0.4g纳米粒子分散到4升的碱性缓冲溶液中,取0.8g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得厚度为8nm聚多巴胺包覆的磁性纳米粒子,称为造影剂3。
[0041]实施例4
[0042]( I)磁性纳米粒子的制备同实施例1。
[0043](2)取0.4g纳米粒子分散到4升的碱性缓冲溶液中,取0.6g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得厚度为5nm聚多巴胺包覆的磁性纳米粒子,称为造影剂4。
[0044]实施例5
[0045]( I)磁性纳米粒子的制备同实施例1。
[0046](2)取0.4g纳米粒子分散到4升的碱性缓冲溶液中,取0.4g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得厚度为3nm聚多巴胺包覆的磁性纳米粒子,称为造影剂5。
[0047]实施例6
[0048]将实施例1-5的磁性纳米粒子的造影剂分散到水中,配制成浓度为0.lmg/ml的铁浓度的分散体系中,考察4周后的造影剂的r2值是起初值的百分比。
[0049]实施例7
[0050]( I)磁性纳米粒子的制备同实施例1。
[0051](2)取0.4g纳米粒子分散到4升的pH值7.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂7。
[0052]实施例8
[0053]( I)磁性纳米粒子的制备同实施例1。
[0054](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂8。
[0055]实施例9
[0056]( I)磁性纳米粒子的制备同实施例1。
[0057](2)取0.4g纳米粒子分散到4升的pH值9.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂9。
[0058]实施例10[0059](1)磁性纳米粒子的制备同实施例1。
[0060](2)取0.4g纳米粒子分散到4升的pH值11为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂10。
[0061]实施例11
[0062]将实施例7-10的磁性纳米粒子的造影剂分散到水中,配制成浓度为0.lmg/ml的铁浓度的分散体系中,考察4周后的造影剂的r2值是起初值的百分比。
[0063]实施例12
[0064](1)磁性纳米粒子的制备同实施例1。
[0065](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌0.5小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂12。
[0066]实施例13
[0067](I)磁性纳米粒子的制备同实施例1。
[0068](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌2小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂13。
[0069]实施例14
[0070]( I)磁性纳米粒子的制备同实施例1。
[0071](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌6小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂14。
[0072]实施例15
[0073](1)磁性纳米粒子的制备同实施例1。
[0074](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌12小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂15。
[0075]实施例16
[0076](I)磁性纳米粒子的制备同实施例1。
[0077](2)取0.4g纳米粒子分散到4升的pH值8.5为碱性缓冲溶液中,取1.2g多巴胺盐酸盐溶解于100毫升水中,然后将两者混合,搅拌24小时,离心分离,用去离子水洗涤三次,即得聚多巴胺包覆的磁性纳米粒子,称为造影剂16。
[0078]实施例17
[0079]将实施例12-16的磁性纳米粒子的造影剂分散到水中,配制成浓度为0.lmg/ml的铁浓度的分散体系中,考察4周后的造影剂的r2值是起初值的百分比。
[0080]
【权利要求】
1.一种提高磁性纳米造影剂稳定性的方法,其特征在于,包括以下步骤:用聚多巴胺对磁性纳米粒子进行包覆。
2.根据权利要求1所述的方法,其特征在于,所述磁性纳米粒子是粒径为50-80nm的磁性纳米粒子。
3.根据权利要求2所述的方法,其特征在于,所述磁性纳米粒子为基于铁的氧化物磁性纳米粒子。
4.根据权利要求3所述的方法,其特征在于,所述磁性纳米粒子是采用水热法合成得到的磁性纳米粒子。
5.根据权利要求4所述的方法,其特征在于,所述磁性纳米粒子具体是采用柠檬酸钠、乙酸钠、氯化铁作为原料,在乙二醇和二乙二醇的混合溶剂中,200度溶剂热条件下,反应10小时得到的50-80nm的磁性纳米粒子。
6.根据权利要求1所述的方法,其特征在于,所述聚多巴胺是采用多巴胺盐酸盐在碱性条件下聚合生成的聚多巴胺。
7.根据权利要求1所述的方法,其特征在于,所述聚多巴胺包覆的厚度为3-15nm。
8.根据权利要求1-7中任意一项所述的方法,其特征在于,用聚多巴胺对磁性纳米粒子进行包覆具体步骤包括: 将磁性纳米粒子分散在碱性的缓冲溶液中,加入多巴胺盐酸盐,多巴胺在磁性纳米粒子的表面进行聚合,反应0.5-24小时,通过离心分离,然后用去离子水洗涤,得到聚多巴胺包覆的磁性纳米粒子。
9.根据权利要求8所述的方法,其特征在于,在用聚多巴胺对磁性纳米粒子进行包覆具体步骤中: 所述碱性的缓冲溶液的PH值为7.5-11。
10.根据权利要求8所述的方法,其特征在于,在用聚多巴胺对磁性纳米粒子进行包覆具体步骤中: 磁性纳米粒子的质量与多巴胺盐酸盐的质量比为1:3-1:1之间。
【文档编号】A61K49/12GK103520742SQ201310472627
【公开日】2014年1月22日 申请日期:2013年10月11日 优先权日:2013年10月11日
【发明者】艾可龙, 刘艳岚, 逯乐慧 申请人:中国科学院长春应用化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1