具有抗反射涂层的太阳能电池前电极的制作方法

文档序号:2006889阅读:333来源:国知局
专利名称:具有抗反射涂层的太阳能电池前电极的制作方法
具有抗反射涂层的太阳能电池前电极本发明 涉及一种载体基底,特别应用于太阳能电池的构造尤其是太阳能电池的前电极。根据本发明的内容,太阳能电池的前电极是光线穿过的两个电极中的第一个。众所周知,在某些太阳能电池中电极由透明导电的氧化物(称做TC0)形成,例如特别是掺杂氟的氧化锡SnO2:F,掺杂铝的氧化锌Ζη0:Α1 (称做ΑΖ0)和ΙΤ0(混合的铟锡氧化物)。这些氧化物具有吸收可见光谱中的蓝色和大部分红外光谱的缺点,因此,一方面太阳光谱中的一部分不能转变为电能,另一方面,这也排除了使用某些在这些波长范围内敏感的光电材料。此外,众所周知,SnO2IF虽然在环境湿气中非常稳定,但是当在沉积例如硅或锗层的功能层的操作期间暴露于氢等离子体时,具有还原为金属锡形式的缺点,ITO层也有相同的缺点。另一方面,在氢等离子体中非常稳定的Ζη0:Α1,由于周围的湿气的影响在构造步骤之后迅速地被腐蚀,当储存玻璃产品时引起严重的问题。另外,就AZO而言,众所周知,为了导电其层必须处于结晶的状态,其缺点为要么对于由室温磁控溅射沉积的层需要进行退火操作,所述的操作构成增加了操作成本的附加步骤,要么需要高温沉积,使得沉积过程更加复杂和昂贵。最终,形成电极的TCO具有的折射率(η < 1. 9)与它们所接触的硅的折射率(η = 3.8)相差甚远。这意味着,为了减少发生在两种元件接触面之间的反射,TCO例如AZO或 ITO的表面,不得不经历纳米组织化步骤,其表现为增加产品成本的附加操作。总而言之,用来形成诸如太阳能电池玻璃体系的电极的透明导电氧化物,每种都具有不同程度的具体缺点。本发明的目的是为了提供一种能够避免上述缺点的太阳能电池载体基底,其电极能够在所有的可见光谱和近红外光谱中实现导电功能,另外,其对于氢等离子体和环境湿气不敏感,以及其构造允许电极的导电功能与其他的功能分离,因此在选择材料方面给予了设计者极大的自由。因此,本发明的一个主题是一种载体基底,包括特别是具有玻璃功能的基底,至少在可见光和近红外范围内是透明的,和容纳至少在可见光和近红外范围内透明的导电电极,该电极载体基底用来和其他功能元件一起构成太阳能电池,该载体基底使得-电极包括具有亚毫米尺寸的由导电材料制备的开口微筛,并且优选由一个该开口微筛构成;和-该微筛与至少轻微导电的抗反射涂层接触,该抗反射涂层面向其要接触的功能元件中的一个。除了本发明可补救上述的多种缺点之外,应当注意到,由于其电极与使用金属氧化物的电极相比具有高导电性,其所支撑的抗反射层可以仅具有低的导电率。事实上,本发明使得将由前电极所提供的导电功能与分配到此的其他功能分离(换句话说,分开)变为可能。因此太阳能电池设计者在构造所述的电池时对材料的选择和它们的配置具有更多的自由选择。
因此本发明允许设计者使用除常规地与电极结合使用的金属氧化物以外的吸收体,从而使得将光电转换的范围特别地延伸到近红外变得可能。在至少可见光和近红外线的范围内,本发明在辐射穿越载体基底的透射与载体基底电极的导电率之间达成较好的平衡成为了可能。这改善了太阳能电池的光电效率,其中根据本发明的载体基底被整合为正面,这归功于在这些元件有用的波长范围内优良的进入到太阳能电池吸收元件的辐射透射,和从吸收元件获得的优良的电荷收集,源于抗反射涂层和电极的导电率。有益地,微筛可以基于金属或金属合金,特别是银或金。根据一个具体实施方案,微筛包括多层薄膜叠片,该叠片至少包括金属第一层和一个在金属第一层之下、另一个在金属第一层之上的两个基于电介质的涂层,和紧密位于金属第一层之上并与之接触的保护性金属层。微筛的开口优选在至少一个方向是非周期性分布的。所述的亚毫米尺寸开口的分布也将优选是随机的。此外,抗反射涂层可以由多层叠片组成,所述多层叠片包括电介质材料制备的至少两个薄层,与玻璃基底接触和打算与功能元件接触的层分别具有与所述基底和所述元件的折射率相近的折射率。抗反射涂层的多层叠片可以由至少三个薄层组成,其折射率可以交替地高或低。优选地,与基底相接触的抗反射多层叠片的层,是基于混合的基于硅(Si)、锡 (Sn)或锌(Zn)的氧化物、氮化物或氮氧化物,它们单独或作为混合物使用,并且任选地掺杂(氟、铝或锑);与功能多层叠片接触的层是基于至少一种透明导电的氧化物,特别选自二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、混合锡锌氧化物(SnZnO)、铟锡氧化物 (ITO)、混合铟锌氧化物(IZO)和混合铟锌镓氧化物(IZGO),并且任选掺杂Nb、Ta、Al、Sb或 F0有益地,与基底相接触的第一层起阻隔层的作用,用来阻止来自基底的碱金属。在本发明的一个特别有利的实施方案中,基底可以包括在其外表面上的抗反射层。根据本发明,抗反射涂层的电阻率等于或小于500微欧姆.cm,优选等于或小于50 微欧姆.cm,以及特别优选在0. 1到50ohms. cm之间(包括边界),更优选在5到50ohms. cm 之间(包括边界)。此外,可以使用过阻隔(overblocker)元件覆盖金属微筛。 在一个实施方案中,抗反射元件的层,其将位于功能元件和抗反射元件之间的界面处,是轻微掺杂或甚至是不掺杂的,以便使其功函数与功能元件的材料相匹配。有益地,由高度掺杂的透明导电的氧化物(TCO)构成的该层优选具有5到10纳米的厚度。本发明的另一主题是一种太阳能电池,包括如上所述的载体基底,再另一主题是如上所述的载体基底用于构成太阳能电池的用途。本发明的最后的主题是一种制备如上所述的载体基底的方法,其特征在于包括以下步骤-使用分散在溶剂中的稳定胶体颗粒的溶液在载体基底上沉积掩膜层;
-干燥掩膜层直到获得空隙的二维网络;-在这些空隙中沉积导电的、特别是金属的微筛材料,直到空隙的至少部分深度被填满;和-沉积至少轻微导电的抗反射涂层,该抗反射涂层面向其要接触的功能元件中的
一个。
优选地,其上沉积掩膜层的基底在其外表面上具有抗反射涂层。本发明的一个实施方案通过下面的非限制性实例来描述,参考如下附图-

图1是采用根据本发明的载体基底的太阳能电池的第一示例性实施方案的垂直截面示意图;-图2显示了载体基底的光的透射和吸收光谱的典型曲线,分别是根据本发明的和根据现有技术的,其中前电极使用了 TCO ;-图3是图1所示的太阳能电池的另一实施方案的垂直截面示意图;和-图4分别显示了根据现有技术的(曲线d)和根据本发明的载体基底的光反射光谱的典型曲线,根据本发明的载体基底的抗反射涂层分别是单层型(曲线b)、双层型(曲线 c)和具有外抗反射层的三层型(曲线a)。图1显示了应用于制备太阳能电池的根据本发明的载体基底1的示例性实施方案。该载体基底1包括基底2,基底2优选由极透明的玻璃制备,具有非常低的铁氧化物含量,例如由Saint-Gobain Vitrage出售的商标名称为“DIAMANT”的类型,面对着银,在其内表面沉积结合元素(tie element)的层3,优选由Si3N4制备。接下来,在该组件上沉积电极,其已知能够具有导电性和透明性。根据本发明,此电极由导电的特别是在至少一个方向上非周期性设置的具有亚毫米尺寸开口的金属微筛4 构成。微筛4的线具有亚毫米尺寸,优选具有几百纳米到数十微米的级别。微筛4以透明的、至少在可见光和近红外线的范围内透明的方式布置在或分布在基底2上。优选地,根据专利申请W0-A-2008/132397 (PCT/FR2008/050505)的教导获得微筛 4。更精确地,在第一步中,在所述的层上沉积由分散在溶剂中的稳定胶体颗粒溶液得到的一层或多层,在覆盖基底2的层3上首先形成掩膜层,然后干燥该掩膜层。干燥引起较后的层收缩,并导致表面上的纳米颗粒摩擦,导致在层中产生拉伸应力,所述层通过释放形成了空隙,其构成了具有基本上是直线边缘和在至少一个方向上网孔单元是随机和非周期性的二维网。在第二步中,典型地通过物理汽相淀积并尤其通过溅射或蒸发,将特别是基于金属例如银的导电的微筛材料沉积在掩膜层的空隙中,直到空隙的部分深度已被填充,然后将掩膜层除去,直到露出基于所用导电微筛材料的微筛。在本发明的该实施方案中,优选使用银,但当然也可以使用(至少)一层具有良好导电性能的其他的金属或金属合金层,尤其例如金。作为一个方案,微筛4包括薄膜多层叠片,该薄膜多层叠片至少包括金属第一层和基于氧化物、基于透明导电层和基于电介质的两个涂层,其中一个涂层在金属第一层之下另一个在其之上,以及保护性金属层位于紧密位于金属第一层之上并与之接触。此多层叠片结构的实施方案可以在以下的专利申请中找到EP 718 250、EP 847 965、EP 1 366001、EP 1 412 300、EP 1 151 480或EP 722 913,或可回火的多层叠片包括至少三个银层,如专利申请EP 1 689 690所描述的。下面给出的实例是所述多层叠片图案的组成层的厚度,所述多层叠片由三层构成,所述三层优选是ZnO/Ag/· . . ZnO/Si3N4 (7 到 15/10 到 17/. · · 7 到 15/25 到 65nm)以及优选ZnO/Ag/Ti/ZnO/Si3N47 到 15/10 到 17/0. 2 到 2/7 到 15/25 到 65nm相似地,所述图案组成层的厚度,对于由四层组成的多层叠片,优选ZnO/Ag/. . . ZnO/Si3N4 (7 到 15/7 到 15/. · · 7 到 15/23 到 65nm)和优选ZnO/Ag/Ti/ ZnO/Si3N47 到 15/7 到 15/0. 2 到 2/7 到 15/23 到 65nm。然后,在构成载体基底前电极的金属微筛4上覆盖抗反射元件,其可能是单层型, 或优选由干涉层构成的多层叠片,该元件基于在所需要的波长范围内是透明的材料,特别是在可见光和近红外线范围内,至少在400到IlOOnm的波长范围内。抗反射涂层至少存在于微筛的开口处,在这些开口的内部和/或之上。在一个实施方案中,有利的从易于制造载体基底的观点来看,抗反射涂层覆盖整个微筛。抗反射元件的层或多层用来提供两个功能, 即一方面减少功能元件7的层与基底2相接触的界面的反射,和另一方面,在沉淀硅或锗期间保护玻璃组件免受氢等离子体影响和保护其免受环境空气的湿气的影响。包括干涉层的多层叠片由轻微导电的材料制成的薄层形成,即半导体例如轻微掺杂的TC0,优选氧化物或氮化物类型,其折射率是交替地高和低。多层叠片可能的类型可以在专利申请WO 01/94989的描述中找到。根据本发明的一个实施方案,对于和基底2相接触的干涉多层叠片5的层的折射率规定,是尽可能地接近所述基底的折射率,即在玻璃杯基底2的情况下,接近于η = 1.5。 相似地,与功能元件7相接触的干涉多层叠片5的层的折射率具有可能地接近与其接触的所述叠片的折射率,例如在本实例中的硅层具有的折射率η = 4。对于中间层的数量、厚度和指数的测定属于本领域技术人员普通技术知识的范畴,可以利用处理方法和软件来优化这些不同参数。当然,透明导电的微筛,尽可能地在至少一个方向上非周期性的和随机的布置亚毫米尺寸的开口,可以通过除了以上所述的工艺来获得。图2显示了根据本发明的载体基底的透射光谱(曲线a)和,作为对比,具有相同类型的载体基底的透射光谱、其电极包括已知方式的氟掺杂氧化锡Sn02:F(曲线b)。该图显示出,一方面,在可见光到近红外线的区域(λ = 380到llOOnm),根据本发明的载体基底的透射更加均勻,特别是在近红外区域,与根据现有技术的载体基底相比更高。另一方面,也可以看出,在图2中,同时也分别显示了该两种载体基底的吸收光谱 (曲线c 根据本发明的载体基底的吸收,和曲线d 具有同类型载体基底的吸收,其电极包括已知方式的氟掺杂氧化锡Sn02:F),在可见光和近红外范围内根据本发明的载体基底的吸收与参考基底相比非常低。根据本发明,取决于所希望的具体应用,可以使用如上所述的单层抗反射元件或多层叠片。在本发明的第一变化实施方案中,所形成的载体基底中抗反射元件是单层类型的并包括铌掺杂二氧化钛Ti02:Nb,掺杂水平为0. 5到10%,从而使其轻微地导电和防止在近红外范围内的吸收。通过计算确定单层的厚度为60nm。因此,得到了折射率为2. 4的单层。 图4(曲线b)显示了这样的载体基底的反射光谱,在其之上已经沉积硅层以便模拟太阳能电池的活性层。在本发明的第二变化实施方案中,形成了同类型的载体基底,其中抗反射涂层是双层类型的和包括SiOSn = F第一层,其是混合的氧化物,其折射率可以通过简单的混合物定律来控制调整,和将该值设定为η = 1. 7,以及其沉积在玻璃基底2之上。该层是氟掺杂的,掺杂水平为0. 以便使其轻微地导电。第二层,与功能元件6的硅层7相接触,也是用铌掺杂的二氧化钛TiO2 = Nb来制备,其处于锐钛矿形式时折射率为2. 4或处于金红石形式时折射率接近于η = 2. 7。通过计算以已知的方式决定此多层抗反射叠片的第一和第二层的各自厚度,值分别为70nm和40nm。图4(曲线c)显示了根据本发明具有这样双抗反射层的载体基底的反射光谱,在其之上预先沉积硅层。在本发明的第三变化实施方案中,形成包括三层叠片的抗反射元件的载体基底, 最外层与基底2相接触和分别具有硅层7以及具有上面实例所描述的相同性质。处于这些层之间的是氟掺杂的二氧化锡SnO2 = F层。通过计算使用已知的方式确定这三层的厚度,第一至第三层的厚度分别为155nm、40nm和55nm。预先在第三层上覆盖硅层。如图3所示,基底2不同于先前所用之处在于,其本身容纳了抗反射涂层8。图4中使用曲线显示了该载体基底的反射光谱。从图4中可以看出,本发明(曲线a、b和C)使得同时在可见光和近红外范围内提高光的透射成为了可能。在曲线a代表的实施方案中,该提高在可见光区域中为10%以及在近红外区域中为15%。具有根据本发明的电极的基底的光透射率,在可见光范围和近红外范围(λ = 380到llOOnm)内都大于75%,优选在85%到89%之间(除了抗反射多层叠片之外)。根据本发明,可以在微筛的金属上沉积过阻隔(overblocker)元件,以便防止其氧化。在本发明的优选实施方案中,位于吸收体和抗反射元件之间界面处的层是轻微掺杂的或者是不掺杂的,从而使得其功函数与功能层的材料相匹配。例如如果与硅接触的轻微掺杂的层是Al-掺杂ZnO,可以使用本征的ZnO层或轻微掺杂的ZnO层,厚度在几纳米到数十纳米之间。相似地,如果多层叠片以TiO2 Nb层终止, 工函数匹配层将为不掺杂或轻微掺杂的TiO2层,厚度为几纳米。根据本发明的另一实施方案,为了改善抗反射效果,位于吸收材料界面的抗反射多层叠片的最后一层要进行织构处理。因此本发明被证明特别有益地适用于所有应用,在这些应用中在可见光和近红外范围内载体基底具有优化透射和减少吸收的能力是重要的,和其电极具有的本征电导率足以解除位于其上的抗反射层在有关导电性方面的束缚。根据本发明,抗反射涂层是半导电的,和导电的微筛和太阳能电池的吸收元件接触,与载体基底的前电极集成在一起。因此, 半导电的抗反射涂层能够在导电的微筛方向上收集来自吸收元件的电荷。特别地,根据本发明,抗反射涂层的至少一层与微筛接触以及打算与装备有载体基底的太阳能电池的功能元件接触,所述载体基底是半导电的,载体基底可以包括在具有玻璃功能的基底和抗反射涂层的半导电层之间的其他层 。该其他层或这些其他层可以在微筛之下或放在微筛的开口中,以及优选也是半导电的。
权利要求
1.一种载体基底,其包括尤其具有玻璃功能的基底O),至少在可见光和近红外范围内是透明的,和容纳至少在可见光和近红外范围内透明的导电电极G),该电极载体基底用来和其他功能元件(6) —起构成太阳能电池,其特征在于-电极包括具有亚毫米尺寸开口的由导电材料制备的微筛;和-该微筛(4)与至少轻微导电的抗反射涂层(5)接触,该抗反射涂层面向其打算要接触的功能元件(6)中的一个(7)。
2.根据权利要求1的载体基底,其特征在于,微筛(4)基于金属或金属合金,特别是银或金。
3.根据权利要求1的载体基底,其特征在于,微筛(4)包括薄膜多层叠片,该薄膜多层叠片至少包括金属第一层和一个在金属第一层之下、另一个在金属第一层之上的两个基于电介质的层,以及紧密位于金属第一层之上并与之接触的保护性金属层。
4.根据权利要求1到3之一的载体基底,其特征在于,在至少一个方向上所述亚毫米尺寸的开口的分布是非周期性的。
5.根据权利要求1到4之一的载体基底,其特征在于,所述亚毫米尺寸的开口的分布是随机的。
6.根据前述权利要求之一的载体基底,其特征在于,抗反射涂层(5)由多层叠片构成, 该多层叠片包括至少两个由电介质材料制备的薄层,与玻璃基底( 接触的层和打算与功能元件(7)接触的层的折射率分别与所述基底和所述元件的折射率相近。
7.根据权利要求6的载体基底,其特征在于,抗反射涂层的多层叠片由至少三个薄层构成,它们的折射率交替地高和低。
8.根据权利要求7的载体基底,其特征在于,与基底(2)接触的抗反射多层叠片的层, 是基于混合的基于硅(Si)、锡(Sn)或锌(Zn)的氧化物、氮化物或氮氧化物,它们单独或作为混合物使用,并且任选地掺杂(氟、铝或锑),与功能多层叠片接触的层是基于至少一种透明导电的氧化物,特别选自TiO2、加0、SnO2、SnZnO、ITO、IZGO、IZO,并且任选掺杂(Nb、Ta、 Al、Sb 或 F)。
9.根据权利要求8的载体基底,其特征在于,与基底(2)接触的第一层起阻隔层的作用,用于阻止来自基底的碱金属。
10.根据前述权利要求之一的载体基底,其特征在于,基底( 在其外表面上包括抗反射层⑶。
11.根据前述权利要求之一的载体基底,其特征在于抗反射涂层的电阻率在0.1到50 微欧姆.cm之间。
12.根据前述权利要求之一的载体基底,其特征在于,金属微筛(4)用过阻隔元件覆盖。
13.根据前述权利要求之一的载体基底,其特征在于,抗反射元件的层,其将位于功能元件和抗反射元件之间的界面处,是轻微掺杂或甚至是不掺杂的,以便使其功函数与功能元件的材料相匹配。
14.根据权利要求13的载体基底,其特征在于,所述层由高度掺杂的透明导电的氧化物(TCO)构成,优选具有5到10纳米的厚度。
15.太阳能电池,其包括前述权利要求之一的载体基底。
16.权利要求1到14之一的载体基底用于构成太阳能电池的用途。
17.一种制备权利要求1到14之一的载体基底的方法,其特征在于包括以下步骤 -使用分散在溶剂中的稳定的胶体颗粒的溶液在基底( 上沉积掩膜层;-干燥掩膜层直到获得空隙的二维网络;-在这些空隙中沉积导电的、特别是金属的微筛材料,直到空隙的至少部分深度被填充;和-沉积轻微导电的抗反射涂层,该抗反射涂层面向其要接触的功能元件中的一个。
18.根据权利要求17所述的方法,其特征在于,沉积掩膜层于其上的基底( 在其外表面上具有抗反射涂层(8)。
全文摘要
本发明涉及一种载体基底,包括特别是具有玻璃功能的基底(2),至少在可见光和近红外范围内是透明的,和容纳至少在可见光和近红外范围内透明的导电电极(4),该电极载体基底用来和其他功能元件(6)一起构成太阳能电池。此载体基底使得电极包括具有亚毫米尺寸开口的由导电材料制备的微筛(4);和该微筛(4)与至少轻微导电的抗反射涂层(5)接触,该抗反射涂层面向其打算要接触的功能元件(6)中的一个(7)。本发明也涉及这样的载体基底作为太阳能电池的组成元件的用途和一种制备所述基底的方法。
文档编号C03C17/36GK102159514SQ200980136404
公开日2011年8月17日 申请日期2009年9月24日 优先权日2008年9月24日
发明者B·恩希姆, E·彼得, E·鲁瓦耶, G·扎格杜 申请人:法国圣-戈班玻璃公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1