压力流体流通管道及其制造方法

文档序号:2222006阅读:178来源:国知局

专利名称::压力流体流通管道及其制造方法
技术领域
:本发明涉及可以在路基下埋设的流体流通管道,尤其是涉及用于压强大约为几巴的高压流体的流通管道。本发明尤其涉及具有很大横截面积例如大于2m2的管道结构,但是也可以很好地用于普通尺寸的管道结构。本发明还涉及构造该管道的方法。流体输送管道可以简单地制成金属或混凝土管单元的形式并对接连接,这些管单元的端头通过插入接头而彼此嵌入。当下陷时,某些单元可能变松,从而承受较高的压力。例如,对于水电站的加压输送管道,优选是采用在其相邻端头焊接起来的金属管单元。这时,该管道由预制的管道单元或者曲形壁板构成,将它们运送到现场并就地焊接。不过,此时该管并没有处于压力状态下,因此会变形而成椭圆形,这使得焊接更困难,因为板材将会不再对齐。而且,例如当作为输油管或煤气管时,该管通常要被掩埋。当该管处于压力状态时,它很容易支承由路基施加的外部负载。但是,该压力是变化的,甚至可能相对于外部变成负压。这时该管有很大的变形危险。因此,通过焊接金属管元件而形成的管的截面积相对有限,通常小于2m2。本发明人通过数年研究,发明了一种新的用于压力流体输送的管道的制造方法,该方法没有上述缺点。在该方法中,管道由固定在刚性支承体上的密封薄壁管构成,该薄壁管通常为金属管,该刚性支承体通常由钢筋混凝土或预加负载的混凝土制成。这样,该金属管使得系统能密封并承受内部压力,薄壁仅仅承受拉伸应力,而该混凝土体使得管道具有刚性,同时其通过更宽的表面而支承在铺设表面上,这使得施加的负载分散,并能更好地承受局部下陷。在文献EP0767881所公开的方法中,混凝土支承体优选由三个部分组成,分别是一个支承在地面上的水平基座和沿管的各侧形成垂直支脚的两个侧向支承部分。因此,该组件成环绕管的整个底部的U形形状。这样,所述管在横截面上由四个板构成,分别是一个在基座上的底板、分别在两侧边支脚上的两个侧板以及一个两侧边与两侧板的相应端相切连接的顶板。所述侧板由支承体的两支脚支持,因此它们的相对侧边能够很好地定位,以便于焊接。这样的管道很容易由预制件制成,该预制件的长度可以与运输和搬运的能力相适应。本发明人进行了进一步研究,以便简化该管道的制造方法,尤其是使各预制件更轻且更容易安装,同时还能使其保持现有技术所具有的各种优点。因此,本发明通常涉及流体流通管道,该管道包括安装在刚性支承体上的密封管,该刚性支承体形成一支承在铺设表面上的基座,所述管有纵向轴线,并由薄阻挡壁构成,该薄阻挡壁自身闭合以形成密封的管状壳体,该管状壳体包括上部和下部,该下部将装在所述支承体的内表面上。根据本发明,该支承体在壳体两侧包括一单件部分,该单件部分在横截面上成L形,包括一基本垂直的分支和一基本水平的分支,该垂直分支形成支承体的侧向翼板,该侧向翼板沿管下部的相应侧面延伸,该水平分支在管的所述下部的下面延伸,并形成置于铺设表面上的支承体基座的至少一部分。特别优选的是,至少在管的某一段长度上,支承体的两侧翼板和基座形成一U形的单件。根据本发明的另一实施例,至少在管的某一段长度上,该支承体包括两个L形轮廓的零件,两零件的水平分支在通过纵向轴的管中间平面的两侧处相连,以便形成连续的基座。通常,支承体由钢筋混凝土制成,并可按传统方法进行增强,以支承施加的负载,尤其是支承将向侧面部分传播开的负载。不过,根据本发明的另一优选特征,该增强件可以由至少一个曲面薄板制成,该曲面薄板插入混凝土支承体中,并有两分支,分别是水平的和垂直的,这两分支都延伸到支承体的各个L形部分的相应分支中。优选是,为了保证负载传播的连续性,支承体的各个L形侧向部分包括一内表面,以便铺设和安装壳体,该内表面的方向在基本水平的底部和基本垂直的顶部之间逐渐变化。其它优选特征是从属权利要求的主题。通过下面对特定实施例的说明,可以更好地理解本发明,该特定实施例是用于解释的目的,并由附图表示出来。图1是本发明管道的一部分的横向透视剖视示意图。图2示意表示了管道在相对于外部来说压力降低时的变形情况。图3所示为另一实施例。图4是支承体的侧面部分的细部图。图5是另一实施例的横剖图。图6是用于连接管道和支承体的装置的详图。图7示意表示了预制件的形成和运输。图8所示为带有互联横梁的另一实施例。图9和10表示可以改变管道轴线方向的实施例。图1是本发明管道的一部分的透视示意图,该管道通常包括与混凝土支承体B相连的管A。该管A包括沿相邻边焊接在一起的曲面金属板,而板的数目取决于所要求的通道的截面。对于大约2米宽的通道截面,管A可以仅包括两个板,分别是构成管状壳体下部的底板1和构成上部的顶板2,所述板1、2沿它们的纵向相邻边11、21、11’、21’焊接。各板0、2沿管道的纵向轴线0,0’的方向所覆盖的长度L取决于输送能力。管的两个连续部分的板1a、1b、2a、2b沿它们的相对的横向边12a、12b、22a、22b焊接,以便构成承受内部压力的密封管状壳体A。将该管状壳体A铺设到支承体B上,该支承体B环绕管状壳体的整个底部,因此成U形,包括基座3和两个侧向翼板31、31’,侧向翼板31、31’沿壳体A的两侧面垂直上升。该组件相对于通过纵向轴线0,0’的垂直中心平面P1对称。基座B的两翼板31、31’向上基本延伸到管的通过轴线0,0’的水平直径平面P2的高度,甚至在图1所示实施例中还稍微高于该平面。壳体A的底板1的两侧面13、13’也可以高于平面P2,因为它们由基座的两翼板31、31’加强,因此它们的纵向边11、11’保持平行,并与已有管道部分的相应边对齐,这有利于顶板2的安装和焊接。这样,底板1覆盖的扇形角度大于180°,成凹角,而顶板2覆盖其余角度的扇形部分。管1的上部由顶板2和底板1的侧壁13、13’构成,底板1的侧壁13、13’与顶板2相切连接,管1上部的形状优选是中心在0,0’轴线上的旋转圆柱的一段扇形部分,并至少一直向下到直径平面P2。因此,壳体A能够以最佳状态承受施加的负载。实际上,施加的内部压力仅仅是确定了金属壁的拉伸负载,该拉伸负载容易计算,且该金属壁的厚度相对较小。应当注意,半圆形的壁2、13、13’使其处于承受内部压力和外部负载的最佳状态,例如,在管道埋入地基下且在向壳体A内加入压力流体之前可以最佳状态承受内部压力和外部负载。下部1并不是半圆形,甚至可以是扁平的,因为混凝土支承体B的基座3和支承体增强件需要适于承受弯曲应力。在本发明人的在先专利申请EP0767861中所述的实施例中,支承体由三个部分构成,分别是一个在壳体底部下面延伸的基座和两个支持壳体侧壁的侧向支承部分,这两个侧向支承部分通过预负载的拉杆而压靠基座的侧表面。在该布置方式中,支承体的两个侧向支承部分和基座之间的接头成铰链连接。相反,在本发明中,至少在壳体A两侧的支承体B的侧边部分31由一单件部分构成,该单件部分的横截面成L形剖面,该L形剖面包括一基本垂直的分支32和一基本水平的分支33,该垂直分支32沿壳体A的相应侧壁延伸,该水平分支33在管下面延伸,并构成支承在地面上的基座3的至少一部分。这样的设计能够保证负载传递的连续性,从而使得由壳体A的侧壁13、13’施加在支承体B的两翼板32、32’上的传播应力由所述支承体的基座3吸收。这样,可以取消预负载的拉杆,该拉杆在现有技术的实施例中紧固在基座内,因此现有技术中的基座将受到很高的压缩应力。在本发明中,基座仅受到由于侧壁32、32’的散开趋势而产生的弯曲应力,其由管A的重量和施加在其底面14上的压力来补偿。因此,支承体的基座3能够更轻,即使对于很大截面的管,例如直径大约3米,也可以形成单件的支承体,如图1所示。通常,支承体B包括钢筋混凝土,如图1的局部剖面所示。增强件5必须成合适的U形,并通常可以包括与横向增强件52相连的纵向增强钢条51。管状壳体底面14的曲率半径可以大于顶面2的曲率半径,甚至还可以是扁平的。不过,板1的基本水平的底面14和基本垂直的侧壁13、13’贴靠在支承体B的L形部分31的内表面38上,优选是,在垂直分支32和水平分支33之间有一逐渐过渡的区域,以便保证应力传播的连续性,而不会有任何角点。为了举例,图2以实线示意表示了本发明的包括与混凝土基座B相连的金属管A的管道,并以混合线表示了例如在路基重量的压迫下当管道外部相对于管道内部有过高压力时通过计算所确定的变形A’、B’。显然,变形的比例已经被放大,以便能看得更清楚,但是,应当知道,由于施加到混凝土支承体B的翼板32、32’上的传播应力连续传播到该混凝土支承体B的基座3、33、33’上,使得混凝土支承体B逐渐变形,因此,两翼板32、32’使得管状壳体在所述壳体的侧壁13、13’处保持刚性,并且在与混凝土支承体B连接的部位不会有任何破裂的危险。由于应力在整个单件混凝土支承体B的体积内的良好分布,所述支承体的质量可以相对于现有技术的实施例而显著减小。为了使该结构更轻,优选是可以采用“高性能混凝土”,该“高性能混凝土”的压缩和拉伸的承受能力远远大于普通的混凝土,例如超过40Mpa。这样的承受能力增强了金属管A和混凝土支承体B之间的相互连接和配合。另一方面,增强混凝土的性能可以采用高承受能力的钢筋。这样,金属壁的厚度可以减小,因此,元件的总重也可以减小。而且,如图3和4所示,可以采用角铁7、7’来增强金属壁A和支承体B之间的连接,各角铁7、7’至少形成一个角,该角的一边71盖住支承体B的各翼板32、32’的上表面30’,另一边72向上延伸并在该支承体B的开口处与薄壁A的相应侧壁13、13’的外表面相切。边71封入混凝土中,另一边72焊接在侧壁13、13’的外表面上,因此而使其加强并支承在支承体B的翼板32、32’上,从而能避免由于分离而导致例如水进入的危险。角铁7、7’配有封闭部分73,优选是该封闭部分可以覆盖支承体B的上表面30’的外侧边缘,以减小混凝土开裂的危险。优选是,角铁7、7’沿支承体B的整个表面30’延伸,但是它们也可以包括以一定距离彼此间隔开的简单封闭接头。根据另一特别优选的特征,应力在支承体B内的连续传播能够简化增强件的形成,如图3和4所示。这时,该增强件实际上可以主要由简单的薄板54构成,该薄板54以与壳体A的壁面1和支承体B的内表面38相同的曲率弯曲,所述薄板54嵌入混凝土30中。在薄板54的整个表面上有孔55,以保证混凝土的渗透,从而更好地相互连接。而且,如图4所示,薄板54还可以在其两个表面都有凸出件56,以便完全相互连接。两个平行薄板1和54通过混凝土30连接,并结合在一起形成弯曲的横梁,从而吸收侧壁32、32’的传播应力。为了防止开裂,在支承体B的角部,尤其是沿该支承体的外表面放置一个较轻的增强件5’例如焊接的铁丝网就足够了。如图4所示,由于简化了增强件,因此在支承体的各拐角处可以有自由空间,该自由空间内可以放置对接的管子58,该对接的管子58可包含在支承体B中,并形成纵向空间,以便使例如电缆、导管或纵向预负载杆通过。根据如图4所示的另一优选特征,混凝土30可以是纤维增强混凝土,众所周知,纤维增强混凝土包括大量的在混凝土支承体内规则分布并随机定向的金属纤维57。这样,该混凝土支承体B能够更轻。通常,为了能随机分配金属纤维57,纤维增强混凝土将采用小的填充物,较大的部分实际上也小于8mm。而且,通常都采用添加剂以增强流动性,尤其是对于高性能混凝土。因此,在浇铸过程中,这样的混凝土可以很容易流入增强件中,从而通常不需要振动。根据本发明的另一优选特征,为了保证混凝土体与金属薄板A的互锁,可以在金属薄板A的外表面上安装一波纹连接件,该波纹连接件优选是由带有纵向铁条81和横向铁条82的金属线网8构成。该线网可以由市场购得,并可以例如通过使其从有叠瓦形槽的辊子之间穿过而形成波纹,该波纹平行于纵向铁条81。这样的波纹铁丝网很容易在横向上变形,因此可以贴在壳体A的外表面部分14上,而混凝土体则贴在该壳体A上。该波纹的顶部83可以以公知方式电焊在壁1的外表面14上,其形成失模(lostmould),如图6所示。当采用小颗粒的混凝土,尤其是采用高性能纤维增强混凝土时,混凝土可以渗透到在顶部83之间延伸的铁丝网的部分84中,这样,该铁丝网整个埋入混凝土中,当混凝土凝固后,在壳体A和混凝土体B之间形成很好的互锁。如图6所示,在混凝土体B的上部,还可以通过有合适形状的铁丝网8的延伸部分85来增强连接。这样,可以避免水在壳体A和混凝土体B之间渗透的危险,并可省略前述的角铁7。而且,由于采用了纤维增强混凝土,前述的其它增强件52、54可以省略。该特征还增强了结构的韧性。由于本发明,预制件的形成和使它们构成管道的实施过程都可以进行简化。即使对于很大尺寸,管状壳体A的底部1也可以由薄板构成,该薄板被压弯或辊弯,以便获得所需的曲率半径。如图7所示,为了制成管道的预制件,将板1翻转并放置在模具6的底部,以构成失模。该板1预先在外拱侧形成互联件53,例如,如图6所示的焊接型材或用于使管与支承体相连的装置。在安装好模具的侧壁面61和增强件5后,浇铸混凝土,直至所需高度,以便使基座B有所需的厚度。应当知道,图3和图4中的薄板形增强件可预先以所需距离安装在板1上。凝固后,将该组件从模具上取下并翻转。为了搬运这样形成的预制件,显然该预制件在翼板32、32’的上部必须有锚固点,例如封入混凝土中的环40,从而使吊索能将其钩住。需要时,该环40也可以焊在封闭在支承体B上表面30’上的角铁7上。这样的预制件能够很容易地运送到施工现场,例如通过拖车62,如图6所示。这样,非常大的预制件也可以通过公路运送,只要该预制件的高度h加上拖车的高度后仍符合该公路的规定即可。实际上,只要这样对预制件的长度L进行说明就可以了,即,该预制件横向放置在拖车上,总体上不会超过许可的宽度。管的顶板2由弯曲薄板构成,其能够简单叠置,以便运送到现场。为了形成该管道,准备好安装表面C后,将该预制件一个接一个的沿纵向轴线0,0’放置,同时调整高度和位置,以便使将要安装的预制件B1与已安装的预制件B的板1a、1b的侧边11a、11b彼此对齐,从而使相应的横向边12a、12b相互接触。然后可以安装顶板2a,组件可以分别沿纵向接头11、21和横向接头12、22焊接。在预制件的各纵向端处,混凝土支承体B终止并稍微从薄板1处向内凹,以便在两相邻件B1、B2之间留下间隔34,从而使得预制件的安装和薄板的焊接更容易。纵向的增强件51有辅助部分,该辅助部分在间隔34内彼此交叉,然后被埋入密封的砂浆中。因此,该管道的形成非常容易,这是因为元件可在工厂中预制,然后输送到施工现场。不过,对于非常大的尺寸,也可以在现场形成该元件。实际上,薄板1、2可以在车间形成并叠置在拖车上而送至现场,其只需要与所需的模具6配合,因此模具特别简单。对于较大的管道,该元件可以在靠近现场的移动预制设备中制成。显然,如果支承体B可以做得更轻,则必须相对于所用环境而进行计算。例如,当管道位于潜水位(groundwatertable)内时,该混凝土支承体优选是作为平衡物,因此可确定它的质量。但是,本发明显然并不局限于上述实施例所介绍的细节,这是因为,在不脱离由权利要求所限定的范围的情况下,可以有其它的实施方式。例如,为了使支承体更轻,可以如图3所示,使得管状壳体A具有圆形轮廓,这样,该管状壳体A自身能承受内部压力,而不会向基座3上施加任何弯曲应力,该基座3主要使壳体具有刚性,尤其是在装配过程中,并且该基座能将负载分配到较大表面。不过,该元件的总高度H将增加,因此,在大通道截面情况下,优选是通常采用如图1所示的扁平基座的实施例。而且,根据图7,成两部分的管状壳体结构尤其有利于横截面非常大的管道,但是,由于所具有的优点,本发明也可用于通常尺寸的管道,例如直径为0.5米的管道。这时,优选是直接用闭合管。例如,在已知技术中,可对很大长度的薄板进行偏压辊压,并对相邻的卷面侧面进行焊接,以构成管状闭合壳体,再将该管状闭合壳体切成小件,其长度与搬运和输送能力相适应。这样的管状件可以放置在模具的两侧壁之间,该模具在管的各侧有两个底座,该底座置于足够的高度,例如到该管的中部。再将互锁件如波纹线网8装在该管上部的凸出部分上。如前所述,然后可以向这样构成的模具内浇铸混凝土,直到其高度高于管的上部分,从而使混凝土体具有规定的厚度。另一方面,尽管采用U形的单件混凝土支承体特别有利,但是也可以如图5所示,提供两个有水平分支33、33’的L形部分36、36’,其在管道的中心平面P1处相连。然后,构成该壳体,以便在两分支33、33’的相对面之间留下一自由空隙37,在该自由空隙37中,两个元件中的辅助增强件彼此交叉并与纵向增强件配合,然后,将该组件埋入密封砂浆中,以使该基座连续。另外,纵向接头11、21的高度可以变化,侧壁32、32’的高度(h’)也可以变化,但是该侧壁32、32’必须有足够的高度,以便在相对于外部环境而降压时使侧壁13、13’保持刚性,并承受该管道的挤压应力。显然,该混凝土支承体B必须足够能承受预制件的搬运、输送和安装。实际上,由于金属壁A和混凝土体B之间的互锁,因此整体的刚性增强。不过,为了使支承体B尽可能轻,有时可以用安装在两翼板32、32’上端的连接横梁来增强,以便在搬运过程中使下面的部件具有刚性。将该支持横梁可拆卸地安装,以便在安装好下面的部件后将其拆下,从而安装顶板2。不过,该连接横梁在管道构成后仍然很有好处。实际上,如图8所示,它可以形成机械焊接结构的支架41,并横跨管道,其内部形状42与上壁面2的形状一致。当支承体B足以承受搬运操作时,该支架41也可以预先装在顶板2上。支架41能提供外部保护并增强板2,板2的厚度可减小,而所述厚度可以仅仅通过由于内部压力而导致的拉伸负载来计算。这样,通过一个或几个支架41增强的板2能够在管道相对于外部环境而降压时更好地承受挤压。本发明的管道还有其它优点。例如,在管道的弯曲部分,相邻的混凝土件可以相互连接,以便防止管道滑移。如图9所示,该预制件很容易这样形成,即,壳体A的横向边缘12、22所在的横向接头平面Q相对于各预制件的纵向中心平面P1而倾斜,以便能逐步改变方向。相邻的元件再通过预负载的拉杆43而互联,该拉杆43优选是插入图4所示的管子58中,其末端压靠在各元件B1、B2端部外侧的凸台35上。类似地,如图9所示,接头平面Q也可以相对于水平轴线而倾斜,以便适合于铺设表面C的倾角变化。如图6所示,如上所述,为了保证混凝土体B和管A之间的互锁,优选是在管A上安装波纹形铁丝网8,该波纹形铁丝网8很便宜并能很容易地形成。不过,这样的能让混凝土渗透并能成波纹形的有孔的板也可以以其它方式获得,例如通过用栅格形成一种网格,或者通过将薄板撕裂成叶片而获得caillebotis。而且,显然,构成管A的壁的特征和特性必须适合于所运送的流体和所承受的压力。应当注意,该管道的特殊结构可以相对于普通金属管道而减小管壁的厚度。这样,可以用特定的金属制成该管,例如用不锈钢,这时增加的成本可以通过取消衬层来补偿,该衬层通常需要用于改进流动状态。这时,更优选是如图6所示,通过波纹形铁丝网而改善管和混凝土之间的互锁。在权利要求书中,所提及的技术特征后所插入的参考标号只是为了更便于理解,而决不是对其范围的限定。权利要求1.一种用于流体流通的管道,包括一封闭管(A),该封闭管(A)装在刚性支承体(B)上,该刚性支承体(B)形成支承在铺设表面(C)上的基座(3),所述管有纵向轴线,并由薄的阻挡壁构成,该薄阻挡壁自身闭合,以形成封闭的管状壳体,该管状壳体包括上部和下部(1),该下部(1)贴着并安装在所述支承体(B)的内表面(38)上,其中,该支承体(B)在管状壳体(A)的纵向轴线(0、0’)各侧包括一个单件部分(31、31’),该单件部分(31、31’)在横截面上成L形,包括一基本垂直的分支(32)和一基本水平的分支(33),该垂直分支(32)沿管(A)下部的相应侧而延伸,该水平分支(33)在管(A)下部的下面延伸,并形成支承在地面(C)上的支承体(B)的基座(3)的至少一部分。2.根据权利要求1所述的管道,其中至少在某一段长度上,将该支承体(B)浇铸成一个单件,而两个L形部分(31、31’)的水平分支(33、33’)交汇,以形成支承体(B)的基座(3)。3.根据权利要求1所述的管道,其中至少在某一段长度上,该支承体(B)由两个带有水平分支(33、33’)的L形部分(36、36’)构成,其相对的端头在经过纵向轴线(0、0’)的壳体(A)中心平面(P1)处相互连接,从而构成连续的基座。4.根据上述任意一个权利要求所述的管道,其中该支承体(B)由钢筋混凝土制成。5.根据上述任意一个权利要求所述的管道,其中支承体(B)的各L形部分(31)包括一内表面(38),用于外壳的应用和安装,该内表面的方向在基本水平的底部和基本垂直的顶部之间逐渐变化。6.根据权利要求5所述的管道,其中各L形部分(31)的两分支(32,33)的内表面(38)与管状壳体(A)的相应部分有着同样的曲率半径,该曲率半径连续变化,没有任何角点。7.根据上述任意一个权利要求所述的管道,其中支承体(B)的各垂直分支(32、32’)至少部分被一金属件(7、7’)覆盖,该金属件至少形成一个这样的凹角,该凹角的一边(71)封盖在该支承体(B)的分支(32、32’)的上表面(30’)上,另一边(72)在支承体(B)的开口处与壳体(A)的侧壁(13、13’)相切,并焊接在该侧壁(13、13’)上。8.根据上述任意一个权利要求所述的管道,其中该支承体由增强的纤维混凝土制成。9.根据权利要求1所述的管道,其中该支承体(B)由高性能混凝土制成,该高性能混凝土的抗压能力超过40Mpa。10.根据上述任意一个权利要求所述的管道,其中至少在各L形部分(31、31’)内,支承体(B)由带有增强件(52)的混凝土构成,该增强件(52)埋入混凝土(30)中,并有两个分支,分别是水平分支和垂直分支,其各自在支承体(B)的L形部分(31)的相应分支(32、33)中延伸。11.根据上述任意一个权利要求所述的管道,其中支承体(B)由带有增强件的混凝土构成,该增强件包括至少一个埋入混凝土(30)中的弯曲薄板(53),并基本与壳体(A)的下面部分(1)平行,所述薄板(53)向上进入支承体(B)的垂直分支(32、32’)内。12.根据上述任意一个权利要求所述的管道,其中还有多个间隔开的支架(41),该支架(41)沿管道分布,并有环绕管状壳体(A)的上面部分(2)的内表面(42)。13.根据上述任意一个权利要求所述的管道,其中该管道包括相邻的预制件,各预制件在管道的某一段长度上延伸,各预制件包括一管单元(A),该管单元(A)形成一截面闭合的管状壳体,并且其外表面(14)的一部分形成用于模制混凝土体B单元的失模(lostcasing)。14.根据权利要求13所述的管道,其中各管单元(A)由至少两个弯曲的金属薄板构成,分别是一个有两纵向平行边(11、11’)的底板(1)和至少一顶板(2),该顶板(2)有两侧边(21、21’),这两侧边(21、21’)焊接到板的纵向边(11、11’)上,而混凝土体(B)在纵向边(11、11’)之间模制在板(1)的一部分上。15.根据权利要求13、14中的一个所述的管道,其中各管单元(A)通过连接件而与支承体单元(B)互锁,该连接件由有孔的金属板(8)构成,该金属板(8)形成有波纹,并贴在管单元(A)的外表面(14)的模制部分(14)上,所述各波纹有焊接在所述外表面上的顶部(83)和在两相邻顶部之间的凸出部分(84),该支承体单元(B)由混凝土构成,该混凝土在所述模制部分(14)上浇铸,并渗透到所述波纹内,以便将有孔的板(8)完全埋入。16.根据权利要求15所述的管道,其中有孔的板(8)是铁丝网板,包括平行于管(A)的纵向轴线的纵向直线条(81)和横向的波纹条(82)。17.根据权利要求15所述的管道,其中有孔的板是形成有平行于管(A)纵向轴线的波纹的金属栅格。18.根据权利要求14所述的管道,其中至少两个连续的元件(B1、B2)在它们的相邻端头终止于相对于管(A)的轴线(0,0’)而倾斜的横向连接平面(Q),以便使管道轴线(0,0’)的方向改变。19.一种由权利要求14至18中的预制件构成的管道的制造方法,其中对于各元件,至少两个薄板预先形成预定的曲率半径,而这两薄板分别是底板(1)和顶板(2),凸起的互联件(53、8)焊接到底板(1)的外表面上,所述板(1)放在模具(6)的底部,并将凸起的外表面向上翻转,将所需的增强件安装好,浇铸混凝土,直到其高度稍微超过翻转的板的顶高,混凝土凝固后将其取下,并将这样预制的管道单元翻转,然后将顶板(2)焊接在板(1)的上边,以闭合管道,将这样形成的预制件放置在铺设表面上,并连接起来以构成管道。20.一种由权利要求13所述的预制件构成的管道的制造方法,其中金属管是这样连续形成的,即,通过偏压辊压有很大长度的薄板,并将相邻卷面边焊接起来,以形成闭合的管,将所述管切成管状件,该管状件的长度与搬运和输送的能力相适应,互联件(53、8)焊接在各管状件的模制部分(14)上,通过使模制部分(14)向上翻转而将所述管状件放置在模具(6)中,所述模具(6)有两个平行于管状件纵向轴线的侧壁(61),并在管状件的两侧向上延伸,模具(6)的各侧壁(61)通过一个形成底部的平板而与管(A)的壁面相连,该底部处于中间高度,该高度确定了支承体的侧部的高度,然后将混凝土浇铸到这样形成的模具中,直到其高度稍微超过模制部分(14)的顶高,混凝土凝固后,将其取下,将这样预制的单元翻转,并可以将其放置到铺设表面上,以构成管道。全文摘要本发明涉及一种流体流通管道,包括管(1),该管(1)安装在一固体刚性支承体(B)上,以便形成置于安放表面(C)上的基座。该管(A)由薄阻挡壁制成,该薄阻挡壁形成密闭的管状壳体。在纵向轴线(0,0’)的两侧,固体刚性支承体(B)有一单件部分(31、31’),该单件部分的截面成L形,包括基本垂直的分支(32)和基本水平的分支(33),该垂直分支(32)沿壳体(A)的相应侧而延伸,该水平分支(33)在壳体(A)下面延伸,并形成置于地面上的固体支承体(B)中的基座(3)的至少一部分。文档编号E02B9/00GK1294647SQ00800235公开日2001年5月9日申请日期2000年1月28日优先权日1999年1月29日发明者马塞尔·马蒂埃雷申请人:马蒂艾尔专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1