包括纤维素和合成纤维的纤维结构及其制造方法

文档序号:2425557阅读:301来源:国知局
专利名称:包括纤维素和合成纤维的纤维结构及其制造方法
技术领域
本发明涉及纤维结构和用于制造包括纤维素纤维和合成纤维相结合的纤维结构的方法。更具体地讲,本发明涉及具有包括合成纤维与短纤维素纤维相混合的至少一个层和主要包括长纤维素纤维的至少一个层的纤维结构。
背景技术
纤维结构例如纸幅已为本领域所熟知。并且目前常用于纸巾、卫生纸、面巾纸、餐巾纸、湿擦拭物等等。典型的薄页纸主要由纤维素纤维(通常为木基的)构成。尽管纤维素纤维的种类很广,此类纤维一般干模量高并且直径较粗大,对于某些用途,其会引起其抗弯刚度比所预期的要高。此外,纤维素纤维当干燥时可具有较高的硬度,其可负面影响制品的柔软性,以及当润湿时可具有较低的硬度,其可引起所得的制品吸收性较差。
要成型一个纤维网,典型的一次性纸制品中的纤维通过化学相互作用彼此粘合到一起并且通常粘合限于在纤维素分子上的羟基之间自然产生的氢键。如果希望暂时性或永久性湿强度较大,则可使用加强添加剂。这些添加剂典型地或是通过与纤维素共价反应或是通过在现有的氢键周围形成保护性分子层而起作用。然而,它们也可产生较刚性的和无弹性的键,对制品的柔软性和吸收性产生不利影响。
合成纤维与纤维素纤维一起使用可帮助解决某些前面提到的局限性。可将合成纤维制成具有系列直径的纤维,包括非常小的纤维直径在内。此外,可将合成纤维的模量制成比纤维素纤维的要低。因此,合成纤维可被制成低抗弯刚度,其有助于良好的制品柔软性。另外,合成纤维的工作截面可进行微加工。合成纤维也可被用来在润湿时保持模量,因此用此类纤维制成的纤维网在吸收性任务期间可抗皱缩。此外,使用合成纤维可有助于纤维网和/或其均匀性的形成。因此,在薄页纸制品中使用热粘合的合成纤维会导致非常柔韧的纤维(对柔软性有益)与耐水高弹性键(对柔软性和湿强度有益)结合起来的坚固网络。然而,合成纤维与纤维素纤维相比比较昂贵。因此,希望包括仅如所需要的一样多的合成纤维以获得纤维提供的所期望的有益效果。我们已经发现,将短纤维素纤维与合成纤维混合可帮助分散合成纤维并因此可单独或彼此共同提供合成纤维的很多有益效果,同时与假设没有混合短纤维素纤维相比,在纤维网中需要的合成纤维较少(或较小量)。
因此,提供包括纤维素和合成纤维相结合的改进的纤维结构和用于制造此类纤维结构的方法是有利的。提供一种具有集中在所得纤维网某些所期望的部分中的合成纤维的制品和一种便于此类纤维如此非随机分布的方法也是有利的。具有一种制品和用于制造一种包括设置在至少一个层中的短纤维素纤维和合成纤维和主要设置在一个或多个其它层中的长纤维的制品的方法也是有利的。
发明概述为解决对于现有技术的问题,我们已经发明了一种具有至少两个层的一体纤维结构,其中结构的至少一个层包括长纤维素纤维和至少一个层包括短纤维素纤维与合成纤维的混合物。
此外,我们已经发明了一种用于制造纤维结构的方法,该方法包括以下步骤提供合成纤维与短纤维素纤维的混合物到一个成型构件上以形成包括合成纤维与短纤维素纤维的混合物的一个或多个层;提供多根长纤维素纤维到合成纤维与短纤维素纤维的混合物上以形成主要包括长纤维素纤维的一个或多个层;和成型一个包括包括合成纤维与短纤维素纤维的混合物的一个或多个层和主要包括长纤维素纤维的一个或多个层的一体纤维结构。
附图简述

图1为本发明方法的一个实施方案的示意性侧视图。
图2为具有基本连续骨架的成型构件的一个实施方案的示意性平面视图。
图3为一个示例性成型构件的有代表性的剖面视图。
图4为具有基本半连续骨架的成型构件的一个实施方案的示意性平面视图。
图5为具有不连续图案骨架的成型构件的一个实施方案的示意性平面视图。
图6为一个示例性成型构件的有代表性的剖面视图。
图7为显示分布在成型构件中所形成的槽中的示例性合成纤维的示意性剖面视图。
图8为显示本发明的一种一体纤维结构的剖面视图,其中纤维素纤维随机分布在包括合成纤维在内的成型构件上。
图9为本发明的一种一体纤维结构的剖面视图,其中纤维素纤维大体随机分布以及合成纤维大体非随机分布。
图9A为本发明的一种一体纤维结构的剖面视图,其中合成纤维大体随机分布以及纤维素纤维大体非随机分布。
图10为本发明的一体纤维结构的一个实施方案的示意性平面视图。
图11为在一个压制表面和模塑构件之间的本发明的一体纤维结构的示意性剖面视图。
图12为双组分合成纤维与另一个纤维互连的示意性剖面视图。
图13为一个具有基本连续图案骨架的模塑构件的一个实施方案的示意性平面视图。
图14为沿着图13的线14-14截取的示意性剖面视图。
图15为一种一体纤维结构的剖面视图,其中合成纤维和短纤维素纤维被设置在一个层中以及长纤维素纤维被设置在一个相邻的层中。
发明详述本文所用下列术语具有下述含义。
“平均纤维素纤维宽度”为用购自乔治亚州Narcoss的MetsoAutomation Kajaani,Ltd.的Kajaani FiberLab设备所测量的纤维素纤维的平均纤维宽度。
“平均合成纤维直径”为由以下公式得来的合成纤维的平均纤维直径平均合成纤维直径=(质量丹尼尔×K/密度)的平方根,式中质量丹尼尔只是一个纤维丹尼尔的质量部分(克)(例如,一个3丹尼尔纤维是3g/9000m,那么那个纤维的质量丹尼尔是3g)以及K=141.5。常数K=141.5是对于圆柱纤维而言的。对于非圆柱纤维,必须用纤维的非圆柱横截面积重新计算不同的常数K1。因此,纤维直径的单位将为微米。
“粗度”的定义是每单位长度纤维的重量,表示成毫克每100m,如TAPPI Method T 234cm-02中所述。
“互连的纤维”意思是已经通过熔化、胶粘、卷绕、化学或机械粘合彼此进行熔合或粘合、或换句话讲结合到一起,同时至少部分保持其各自的单独纤维特性的两个或更多个纤维。
“纤维长度比”为通过涉及采用下面的实施例中所述的KajaaniFiberLab设备测量的长度加权平均纤维长度(LL)的TAPPI T 271om-02,8.2节中所阐述的方法测量的不同纤维种类的长度加权平均纤维长度之间的比率。
“长纤维质纤维”或“长纤维素纤维”为通常来自软木且以平直构型进行测量时最长的长度尺寸大于约2mm的纤维。长纤维素纤维的非限制性实施例可来自松、云杉、冷杉和杉木树种。
“PTP因子”为平均合成纤维直径与平均纤维素纤维宽度之比,如下面的实施例中所详述。不希望被理论所束缚,PTP因子据认为与形成合成纤维和纤维素纤维之间的官能键的趋势有关。这种有利的成键趋势可由合成纤维在合成纤维与短纤维素纤维的混合物中更均匀分布产生。
“重新分布”意思是在本发明的一体纤维结构中所包括的多个纤维中的至少一些至少部分熔化、移动、收缩和/或换句话讲改变它们在纤维网中的初始位置、状态和/或形状。
“短纤维质纤维”或“短纤维素纤维”为典型地来自硬木并且以平直构型进行测量时最长的长度尺寸小于约2mm的纤维。在某些实施例中,短纤维素纤维的长度小于约1mm。短纤维素纤维的非限制性实施例可来自桉树、金合欢和枫木树种。
“一体纤维结构”是一种包括多个相互缠结的或连接的纤维素和合成纤维的排列,以形成一个具有某种预定的显微几何、物理和美学性质的片制品。纤维素和/或合成纤维可被成层或换句话讲排列在一体纤维结构中。
本发明的纤维结构可采取很多不同的形式,但一般而言,其包括具有合成纤维与纤维素纤维相混合的至少一个层和包括纤维素纤维的至少一个邻层。更具体地讲,在本发明的一个实施方案中,纤维结构可包括包括合成纤维与短纤维素纤维相混合的一个或多个层,如本文所述。合成纤维/短纤维素纤维混合可比较均匀,因为不同的纤维大体随机散布在整个层上,或可进行进一步组织使得合成纤维和/或纤维素纤维大体非随机散布。此外,在纤维网制造期间或之后混合的纤维素纤维和合成纤维的一个或多个层可进行成形或经受某些种类的处理,以预定的图案或其它非随机图案提供混合的合成纤维和纤维素纤维的一个层或几个层。
纤维结构可包括不同的纤维种类。例如,该结构可包括天然存在的纤维,例如来源为硬木、软木或其它非木植物的纤维。表1中确定了适用的天然纤维的非限制性实施例。源自植物的其它天然纤维包括但不限于阿巴丁(albardine)、细茎针草、小麦、稻子、玉米、甘蔗、纸草、黄麻、芦苇、桧属、酒椰、竹子、三元麻、洋麻、马尼拉麻、印度麻、棉花、大麻、亚麻和苎麻。然而,其它天然纤维也可包括来自其它非植物来源的纤维,例如绒毛、羽毛、蚕丝等等。天然纤维可进行机械或化学处理或改性以提供所需的特性,或可呈通常类似于它们在自然界所见的形式。天然纤维的机械和/或化学处理把它们从本文所述研制所考虑的天然纤维中排除。
表1
纤维结构也可包括任何适用的合成纤维。合成纤维可为任何材料,例如选自由以下材料组成的组群的那些材料聚烯烃、聚酯、聚酰胺、聚羟基链烷酸酯、多糖和它们的任何组合。更具体地讲,合成纤维的材料可选自由以下材料组成的组群聚丙烯、聚乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二醇酯、聚-1,4-环己烯二亚甲基对苯二甲酸酯、间苯二酸共聚物、乙二醇共聚物、聚己酸内酯、聚羟基醚酯、聚羟基醚酰胺、聚酯酰胺、聚乳酸、聚羟基丁酸、淀粉、纤维素肝糖和它们的任何组合。此外,合成纤维可为单组分(即,单一合成材料或混合物构成整个纤维)、双组分(即,纤维被分成各个区域,各个区域包括两种不同的合成材料或其混合物)或多组分纤维(即,纤维被分成各个区域,各区域包括两种或更多种不同的合成材料或其混合物)或它们的任何组合。同样,在本发明的工序之前、之中或之后可处理任何或全部合成纤维以改变纤维的任何所需的性质。例如,在某些实施方案中,最理想的是在造纸工序之前或之中处理合成纤维以使它们更加亲水、更可润湿等等。
在本发明的某些实施方案中,最理想的是具有特定的纤维组合以提供所需的特性。例如,最理想的是具有某些长度、宽度、粗度或其它特性的纤维组合在某些层中或彼此分开。很明显,纤维可具有某些所需的特性。例如,长纤维素纤维可具有符合上述定义的任何所需特性。在某些实施方案中,最理想的是长纤维素纤维的平均纤维素纤维宽度小于约50微米、小于约40微米、小于约30微米、小于约25微米或者平均纤维素纤维宽度位于约10至约50微米范围内。此外,最理想的是短纤维素纤维的平均纤维素纤维宽度小于约25微米、小于约20微米、小于约18微米或者平均纤维素纤维宽度位于约8至25微米范围内。关于合成纤维,最理想的是它们具有某些特性,例如平均纤维直径大于约10微米、大于约15微米、大于约25微米、大于约30微米,或者平均合成纤维直径位于约10至约50微米范围内。
将纤维混合在一个或多个层中使得一个或多个层中的特定纤维相对于彼此具有在特定范围内的本文所定义的纤维长度比或PTP因子也是理想的。在某些实施方案中,尽管设想纤维长度比的其它极小值是在约1至20的范围内变化,具有该范围内的任何上下限,在混合层105中的合成纤维101与短纤维素纤维102的纤维长度比大于约1、大于约1.25、大于约1.5或大于约2为理想的。在某些实施方案中,尽管设想PTP因子的其它极小值是在约0.75至10的范围内变化,具有该范围内的任何上下限,混合层105的PTP因子大于约0.75、大于约1、大于约1.25、大于约1.5或大于约2也是理想的。尽管设想粗度值的其它极大值是在约5mg/100m至约75mg/100m的范围内变化,具有该范围内的任何上下限,混合层的粗度值小于约50mg/100m、小于约40mg/100m、小于约30mg/100m或小于约25mg/100m也是理想的。
如在下面的实施例中所见,本发明提供一种纤维网和一种用于制造一种具有令人惊讶特性的纤维网的方法。例如,本发明的纤维结构可提供在例如柔软性、较好的和/或更均匀的组织和湿裂性方面优于当前可获得的纤维网的单一的或组合的有益效果,以及由于在所得的纤维网中得到同样性质对于精制纤维素纤维的需要减少,也可通过增加生产率提供加工有益效果。
如实施例1所述,制造了一个包括NSK和桉木纤维的两层纸幅。所得纤维网的湿裂强度为约374g。在实施例2中,以和实施例1的纤维网同样的方法制造了一个两层的纸幅,然而它用按重量计10%的合成双组分聚酯纤维(3mm长)代替按重量计10%的桉木纤维。合成/桉木混合物的纤维长度比为4.2、PTP因子为1.2以及粗度值为11.0mg/100m。实施例2的所得纤维结构的湿裂强度为约484g,其高于实施例1中所制造的典型制品的湿裂强度。在实施例3中,以和实施例1的纤维网同样的方法制造一个两层纸幅,然而用按重量计5%的合成双组分聚酯纤维(6mm长)代替按重量计5%的桉木纤维。合成/桉木混合物的纤维长度比为8.4、PTP因子为1.2以及粗度值为11.6mg/100m。具有按重量计更少的合成纤维的实施例3的所得纤维结构的湿裂强度为约472g,其仍然远高于实施例1的制品的湿裂强度。因此,可以看出,本发明的结构和用于制造该结构的方法使用很小重量百分比的合成纤维与短纤维素纤维混合提供用于增强纤维网湿裂性的令人惊讶的手段。当然,这些实施例不应该被认为是本发明有益效果的最好实施例,并且应该理解的是,可设想其它实施方案,并且基于本文讲授的此类其它实施方案可容易被本领域的技术人员实施。此外,即使本文未详细描述具体的有益效果或性能,任何这样的补充的或改进的实施例也均被认为是在本发明的范围之内。
一般而言,用于制造纤维结构100的本发明的方法将根据成型一个具有多个合成纤维101与多个短纤维素纤维102相混合并设置在一个或多个层中的纤维网进行描述。通常该结构将也包括包括较长纤维(典型地长纤维素纤维103)的一个或多个层。在一个实施方案中,可成型包括合成纤维101和短纤维素纤维102的混合层105使得其至少部分以大体非随机图案进行设置。典型地,较长纤维103的层106将被大体随机设置(例如,如图9所示),尽管这样的层106可被非随机形成图案或设置。本发明的方法和装置也适于成型一个具有以大体非随机图案设置的多根长纤维素纤维103和在一个层105中混合在一起并大体随机设置的多个合成纤维101和短纤维素纤维102(例如,如图9A所示)。
在其中合成纤维101和短纤维素纤维102的混合物104被非随机设置的实施方案中,本方法可包括以下步骤提供合成纤维101和短纤维素纤维102的混合物到一个成型构件上使得合成纤维101和短纤维素纤维102的混合物104被至少部分设置在预定区域或槽中;提供大体随机分布的多个较长的纤维素纤维103到合成和短纤维素纤维102的混合物104上和成型一个包括随机设置的纤维素纤维和非随机设置的合成纤维/短纤维素纤维混合物104的一体纤维结构。
在其中合成纤维101和短纤维素纤维102的混合物104被大体随机设置和较长的纤维素纤维103被非随机设置的实施方案中,本方法可包括以下步骤提供多根长纤维素纤维到一个成型构件上使得长纤维素纤维103被至少部分设置在成型构件上的预定区域或槽中;提供随机分布的较短的纤维素纤维102和合成纤维101的混合物到长纤维素纤维103上和成型一个包括非随机设置的长纤维素纤维103和随机设置的合成纤维/短纤维素纤维混合物104的一体纤维结构。
图1显示本发明的连续生产过程的一个示例性实施方案,其中来自流浆箱12的纤维的含水浆液11被沉积到一个成型构件13上成型一个胚网10。(然而,对于本发明的纤维网而言,这仅是可被采用的包括具有附加或较少步骤的类似方法或诸如气铺法等之类的不同方法在内的众多方法之一。此外,本发明的方法可包括用于制造纤维网的这些或其它已知方法中的一种或多种的组合)。在这个特定实施方案中,成型构件13被辊13a、13b和13c所支撑并绕其在箭头A的方向上连续行进。浆液11可包括任何数目的不同纤维种类并可被沉积到层中。在一个实施方案中,浆液11包括包括合成纤维101和短纤维素纤维102的混合物104的至少一个层,如本文所述。另外,浆液11也可包括一个或多根长纤维素纤维103层,如本文所述。如果希望将短纤维素纤维102和合成纤维101的混合物104形成非随机图案,可在长纤维素纤维103沉积之前将混合物104沉积到成型构件13上使得混合物104的至少一部分可被引导进预定区域例如存在于成型构件13的槽53中(例如如图7-8所示)。在某些实施方案中,可利用一个以上的流浆箱12和/或可将混合物104沉积到一个成型构件13上,然后转移到一个不同的成型构件上,在此处,长纤维素纤维103接下来被沉积到混合物104上。
在本发明的一个实施方案中,提供了合成纤维101和短纤维素纤维102的混合物104使得至少合成纤维104主要被设置在成型构件13的槽53中。也就是说,当纤维网10进行成型时,合成纤维101的一半以上被设置在槽53中。在某些实施方案中,当纤维网10进行成型时,希望至少约60%、约75%、约80%或基本上所有的合成纤维101被设置在槽53中。另外,希望所得的制品纤维网100包括设置在一个或多个层中的某一百分比的合成纤维101。例如,最理想的是由最先沉积的或最靠近成型构件13的纤维构成的层的合成纤维101的浓度大于约50%、大于约60%或大于约75%。可供选择地,最理想的是具有这样的层,其包括合成纤维101和短纤维素纤维102的混合物104的大部分、全部或某一百分比。(一种用于测量一层纤维网制品中特定种类纤维百分比的适用方法被公开于1993年1月12日授予Bruce Janda的美国专利5,178,729中)。此外,在某些实施方案中,希望提供长纤维素纤维103使得其主要被设置在与合成纤维101和短纤维素纤维102的混合物104相邻的至少一个层中。在其它实施方案中,希望至少某一百分比的长纤维素纤维103被设置在纤维网100的至少一个层中,例如大于约55%、大于约60%或大于约75%。典型地,将大体随机设置至少一个长纤维素纤维103层。因此,所得的纤维网100可具有非随机图案的合成纤维101和/或接合于大体随机分布的长纤维素纤维103的一个或多个层上的合成纤维101和短纤维素纤维102的混合物104(例如,图9和10)。此外,可成型一种纤维结构使其具有不同基重的微观区域。
成型构件13可为任何适用的结构以及典型地为至少部分流体可透过的。例如,成型构件13可包括多个流体可透过区域54和多个流体不可透过区域55,例如如图2-6所示。流体可透过区域或孔54可从纤维网侧51至背侧52贯穿成型构件13的厚度H。在某些实施方案中,由孔构成的某些流体可透过区域54可为“盲的”或“闭口的”,如1999年10月26日授予Polat等人的美国专利5,972,813中所述。流体可透过区域54,无论是通的、盲的或闭口的,形成其中可被引导进纤维的槽53。多个流体可透过区域54和多个流体不可透过区域55中的至少一种典型地形成一种遍及模塑构件50的图案。这样一种图案可包括随机图案或非随机图案并为基本连续的(例如,图2)、基本半连续的(例如,图4)、不连续的(例如,图5)或它们的任何组合。
成型构件13可具有任何合适的厚度H,实际上,根据需要,可将厚度H加工成在整个成型构件13上改变。此外,槽53可为任何形状或不同形状的组合以及可具有任何深度D,深度D可在整个成型构件13上变化。同样,槽53可具有任何所需的容积。根据需要,可改变槽53的深度D和容积,帮助确保槽53中的合成纤维101和/或短纤维素纤维102的所需浓度。在某些实施方案中,最理想的是槽53的深度D小于约254微米或小于约127微米。此外,可改变沉积到成型构件13上的合成纤维101和/或短纤维素纤维102的量以确保所需比率或百分比的合成纤维101和/或短纤维素纤维102被设置在特定深度D或容积的槽53中。例如,在某些实施方案中,最理想的是提供足够的合成纤维101或合成纤维101和短纤维素纤维102的混合物104以完全填满槽53,使得在纤维网加工过程中实际上没有长纤维素纤维103将被设置在槽53中。在其它实施方案中,最理想的是提供合成纤维101和/或短纤维素纤维102仅够填满槽53的一部分,使得至少一些长纤维素纤维103也可被引导进槽53中。
某些示例性的成型构件13可包括如图2-8所示的结构,其包括一个流体可透过的加强元件70和一个在那里延伸形成多个槽53的图案或骨架60。在一个实施方案中,如图5和6所示,成型构件13可包括接合于一个加强元件70上或与其成整体的多个不连续的突起61。加强元件70通常起到提供或帮助整体性、稳定性和耐久性的作用。加强元件70可为流体可透过的或部分流体可透过的,可具有多个实施方案和编织图案,以及可包括多种材料例如多个交织纱(包括提篮型等编织图案)、毡、塑料或其它合成材料、网状物、具有多个孔的平板或它们的任何组合。适用加强元件70的实施例被描述于1996年3月5日授予Stelljes等人的美国专利5,496,624、1996年3月19日授予Trokhan等人的美国专利5,500,277和1996年10月22日授予Trokhan等人的美国专利5,566,724中。可供选择地,可利用包括提篮型编织等的加强元件70。说明性的带子可见于以下美国专利中1995年7月4日授予Chiu等人的5,429,686;1997年9月30日授予Wendt等人的5,672,248;1998年5月5日授予Wendt等人的5,746,887和2000年1月25日授予Wendt等人的6,017,417。此外,可利用各种样式的提篮型图案作为成型构件13。
以下美国专利说明了示例性的适用骨架元件60和用于将骨架60应用于加强元件70上的方法,例如1985年4月30日授予Johnson的4,514,345;1985年7月9日授予Trokhan的4,528,239;1985年7月16日授予Trokhan的4,529,480;1987年1月20日授予Trokhan的4,637,859;1994年8月2日授予Trokhan的5,334,289;1996年3月19日授予Trokhan等人的5,500,277;1996年5月7日授予Trokhan等人的5,514,523;1997年5月13日授予Ayers等人的5,628,876;1998年9月8日授予Phan等人的5,804,036;1999年5月25日授予Trokhan的5,906,710;2000年3月21日授予Trokhan等人的6,039,839;2000年8月29日授予Trokhan等人的6,110,324;2000年9月12日授予Trokhan的6,117,270;2001年1月9日授予Trokhan的6,171,447B1和2001年2月27日授予Trokhan的6,193,847B1。此外,如图6所示,骨架60可包括贯穿骨架元件60的一个或多个孔或洞58。此类洞58不同于槽53并可用来帮助使浆液或纤维网脱水和/或有助于防止沉积到骨架60上的纤维完全移动进槽53中。
可供选择地,成型构件13可包括适于接收纤维并包括其中合成纤维101和/或短纤维素纤维102可被引导进的某些槽53图案中的任何其它结构,包括但不限于丝网、复合带和/或毡。总之,如上所述,图案或骨架60可为不连续的或基本不连续的,可为连续的或基本连续的,或可为半连续的或基本半连续的。通常适用于本发明方法的某些示例性成型构件13包括美国专利5,245,025;5,277,761;5,443,691;5,503,715;5,527,428;5,534,326;5,614,061和5,654,076中所描述的成型构件。
如果成型构件13包括一个压毡,则其可依照以下美国专利的说明进行制造,1996年12月3日授予Ampulski等人的5,580,423;1997年3月11日授予Phan的5,609,725;1997年5月13日授予Trokhan等人的5,629,052;1997年6月10日授予Ampulski等人的5,637,194;1997年10月7日授予McFarland等人的5,674,663;1997年12月2日授予Ampulski等人的5,693,187;1998年1月20日授予Trokhan等人的5,709,775;1998年7月7日授予Ampulski等人的5,776,307;1998年8月18日授予Ampulski等人的5,795,440;1998年9月29日授予Phan的5,814,190;1998年10月6日授予Trokhan等人的5,817,377;1998年12月8日授予Ampulski等人的5,846,379;1999年1月5日授予Ampulski等人的5,855,739和1999年1月19日授予Ampulski等人的5,861,082;在一个可供选择的实施方案中,可依照1996年10月29日授予Cameron的美国专利5,569,358的说明将成型构件13制成一个压毡或任何其它适用结构。适于用作成型构件13的其它结构根据任意的模塑构件50在下文进行描述。
设置在成型构件13下面的真空装置例如真空装置14用来将流体压力差作用到设置在成型构件13上的浆液上以促进胚网10至少部分脱水。这种流体压力差也可帮助将所需的纤维例如合成纤维101和短纤维素纤维102的混合物104引导进成型构件13的槽53中。除了真空装置14之外或作为一种选择,可采用其它已知的方法使纤维网10脱水和/或帮助将纤维引导进成型构件13的槽53中。
如果需要,可将在成型构件13上所成型的胚网10从成型构件13转移到一个毡或其它结构例如模塑构件上。模塑构件是一个可被用作胚网支撑的结构元件,也是一个成型或“模塑”所需的纤维结构微观几何的成型单元。模塑构件可包括为其上所生产的结构赋予微观三维图案能力的任何元件,并包括(没有局限性)单层和多层结构,包括静止的平板、皮带、纺织物(包括提花型等编织图案)、带子和辊。
在图1所示的示例性实施方案中,模塑构件50为流体可透过的并且真空底板15施加足以使设置在成型构件13上的胚网10与其分离并粘附到模塑构件50上的真空压力。图1的模塑构件50包括一个由辊50a、50b、50c和50d所支撑并在箭头B的方向上绕其行进的带。模塑构件50具有一个纤维网接触侧151和一个与纤维网接触侧151相对的背侧152。
模塑构件50可采用任何合适的样式并可由任何适用的材料制成。模塑构件50可包括本文对于成型构件13所描述的任何结构并用本文对于成型构件13所描述的任何方法进行制造,尽管模塑构件50并不仅限于这样的结构或方法。例如,模塑构件50包括一个接合于一个加强元件170上的树脂骨架160,例如如图13-14所示。此外,可利用各种样式的提篮型编织图案作为模塑构件50和/或压制表面210。如果需要,模塑构件50可为一个压毡或包括一个压毡。供本发明使用的适用压毡包括但不限于本文根据成型构件13所描述的那些。
在某些实施方案中,模塑构件50可包括多个流体可透过区域154和多个流体不可透过区域155,例如如图13和14所示。流体可透过区域或孔154从纤维网侧151至背侧152贯穿模塑构件50的厚度H1。如上面对于成型构件13所述,模塑构件的厚度H1可为任何所需的厚度。此外,槽153的深度D1和容积可根据需要进行改变。此外,如上面对于成型构件13所述,由孔构成的一个或多个流体可透过区域154可为“盲的”或“闭口的”。多个流体可透过区域154和多个流体不可透过区域155中的至少一种形成遍及模塑构件50的图案。这样一种图案可包括随机图案或非随机图案以及可为基本连续的、基本半连续的、不连续的或它们的任何组合。加强元件170与模塑构件50中的孔154相对应的部分在制造一体纤维结构100的过程期间可提供对于被陷入模塑构件50的流体可透过区域中的纤维的支撑。加强元件可帮助防止所制造纤维网的纤维穿过模塑构件50,从而减少所得结构100中针孔的出现。在其它实施方案中,模塑构件50可包括多个从多个底部伸出来的悬垂部分,如2003年6月10日授予Trokhan等人的美国专利6,576,090所提出的那样。
当胚网10被设置在模塑构件50的纤维网接触侧151上时,纤维网10优选地至少部分适形于模塑构件50的三维图案。另外,可采用各种方法引起或促进胚网10的纤维素和/或合成纤维适形于模塑构件50的三维图案并成为图1中标为“20”的模塑网(要理解的是,本文可互换使用参考数字“10”和“20”以及术语“胚网”和“模塑网”)。一种方法包括将流体压力差施加到多个纤维上。例如,如图1所示,可排列设置在模塑构件50背侧152的真空装置16和/或17将真空压力施加到模塑构件50上并进而施加到设置在其上的多个纤维上。在由真空装置16和17的真空压力分别产生的流体压力差ΔP1和/或ΔP2的作用下,部分胚网10可陷入模塑构件50的槽153中并适形于它们的三维图案。
通过将部分胚网10陷入模塑构件50的槽153中,相对于模塑网20其它部分的密度而言,可降低在模塑构件50的槽153中形成的所得枕块150的密度。未陷入孔中的区域168稍后可通过在一个压制表面218和模塑构件50之间(图11)例如在图1所示的一个干燥转筒200的一个表面210和辊50c之间形成的压缩辊缝中压缩纤维网20而进行压印。如果压印,则区域168的密度相对于枕块150的密度增加很多。多个枕块150可包括对称枕块、非对称枕块或它们的组合。
微观区域的不同高度也可通过采用具有不同深度或高度的三雏图案的模塑构件50进行成型。这种具有不同深度/高度的三维图案可通过用砂纸打磨部分模塑构件50降低其高度进行制作。可供选择地,可采用一个包括不同深度/高度的凹陷/突起的三维屏蔽来形成一个具有不同高度的相应的骨架160。对于前述目的,也可采用成型具有不同高度表面的其它常规技术。应该认识到,本文所描述的用于成形模塑构件的技术也适于成形成型构件13。
在某些实施方案中,最理想的是在其进行成型时缩短本发明的纤维结构100。例如,可设定模塑构件50使其线速度小于成型构件13的线速度。在从成型构件13至模塑构件50的转移点处采用这样一种速度差可用来实现“微收缩”。美国专利4,440,597详细描述了湿法微收缩的一个实施例。这样的湿法微收缩可涉及将具有低纤维浓度的纤维网从任何第一构件(例如一个多孔成型构件)转移到比第一构件移动慢的任何第二构件(例如一个网眼织物)上。第一构件和第二构件间速度上的差异可根据所期望的纤维网结构100的最终特性而改变。描述实现微收缩的方法的其它专利包括例如美国专利5,830,321;6,361,654和6,171,442。
除此之外或可供选择地,纤维结构100可在其已经被成型和/或充分干燥后进行缩短。例如,缩短可通过从一个硬表面例如一个干燥转筒200的表面210处使结构100起绉来实现,如图1所示。这种型式的起绉和其它型式的起绉已为本领域所熟知。1992年4月24日授予Sawdai的美国专利4,919,756描述了一种起绉纤维网的适用方法。当然,设想未被起绉的(例如,无绉的)和/或换句话讲未被缩短的纤维结构100在本发明的范围之内,未被起绉然而用别的方式进行缩短的纤维结构100也一样。
在某些实施方案中,最理想的是至少部分熔化或软化至少一些合成纤维101。当合成纤维至少部分熔化或软化时,它们变得能够与相邻的纤维不管是短纤维素纤维102、长纤维素纤维103还是其它合成纤维101相互连接。纤维的互连可包括机械互连和化学互连。当至少两个相邻的纤维在分子水平上结合到一起使得个体互连纤维的特性在互连的区域基本消失时发生化学互连。当一个纤维仅仅适形于相邻纤维的形状并且在互连的纤维间没有化学反应时发生纤维的机械互连。图12显示机械互连的一个实施方案,其中一个纤维111被一个邻近的合成纤维112物理“捕捉”。纤维111可为合成纤维或纤维素纤维。在图12所示的一个实施例中,合成纤维112具有双组分结构,双组分结构包括一个芯112a和一个鞘或壳112b,其中芯112a的熔化温度大于鞘112b的熔化温度,以便在加热时仅鞘112b熔化同时芯112a保持其完整性。然而,要了解的是,如可采用单组分纤维一样,在本发明中可采用不同种类的双组分纤维和/或包括多于两种组分的多组分纤维。
在某些实施方案中,最理想的是在纤维网100被成型之后重新分布纤维网100中的至少一些合成纤维101。这样的重新分布可发生在纤维网100被设置在模塑构件50上或处在本方法中不同的时间和/或位置之时。例如,在纤维网100被成型之后可采用加热装置90、干燥表面210和/或干燥转筒的通风帽(例如,杨琪干燥通风帽80)对其进行加热,重新分布至少一些合成纤维101。不希望被理论所束缚,据信在施加足够高的温度之后,合成纤维101在两种现象的至少一种的影响下可移动。如果温度高到足以熔化合成纤维101,由于表面张力的缘故,所得的液体聚合物将趋于使其表面积/体积降至最低,并在纤维受热影响小的部分的末端形成球形形状。另一方面,如果温度处于熔点之下,具有高残余应力的纤维将通过纤维的收缩或卷曲软化到消除应力的程度。相信这会发生,因为聚合物分子典型地更趋向于处在非线性卷曲状态。在加工期间已经进行高度拉伸然后进行冷却的纤维由已被拉伸成亚稳态构型的聚合物分子构成。在随后的加热过程中,纤维试图恢复到最小自由能卷曲状态。
重新分布可在任何数目的步骤中被完成。例如,合成纤维101可首先在纤维网100被设置在模塑构件50上的时候进行重新分布,例如通过将热气吹过纤维网100的枕块以便合成纤维101依照第一图案进行重新分布。然后,纤维100可被转移到另一个模塑构件50上,其中合成纤维101可依照第二图案进行进一步重新分布。
加热纤维网100中的合成纤维101可通过加热与模塑构件50的流体可透过区域154相对应的多个微观区域来实现。例如,可将来自加热装置90的热气吹过纤维网100。也可采用预干燥机作为热能的来源。总之要了解的是,根据本方法,热气的流动方向可相对于图1所示的方向倒转,以便热气穿过模塑构件50透入纤维网。因而,热气将主要影响纤维网设置在模塑构件50的流体可透过区域154中的“枕块”部分150。模塑构件50将使纤维网100的其余部分免于受到热气的影响。因此,合成纤维101将主要在纤维网10的枕块部分150中被软化或熔化。此外,由于最有可能发生合成纤维101的熔化或软化,这个区域为纤维进行互连的地方。
尽管上面已经将合成纤维101的重新分布描述成通过某些纤维101的至少一些上通过热气而起作用,可执行用于加热纤维101的任何适用的方法。例如,可采用热流体,以及微波、无线电波、超声能量、激光或其它光能、加热的带或辊、热棒、磁能或这些方法的任何组合或用于加热的其它已知方法。此外,尽管合成纤维101的重新分布通常已经被称为通过加热纤维101而起作用,重新分布也可由于一部分纤维网10的冷却而发生。正如加热的情况一样,合成纤维101的冷却可使纤维101改变它们的形状和/或相对于纤维网的其余部分重新定位。此外,合成纤维可由于与一种重新分布材料反应而重新分布。例如,合成纤维101可具有一种软化或换句话讲控制合成纤维101的化学组分以在纤维网10的内部使它们的形状、方向或位置发生某些改变。此外,重新分布可受到机械和/或诸如磁、静电等之类的其它方法的影响。因此,如本文所述,合成纤维101的重新分布不应该被认为限于只是合成纤维101的热重新分布,而是应该被认为包括所有已知的用于重新分布(例如,改变形状、方向或位置)纤维网10内合成纤维101的任何部分的方法。
尽管合成纤维101可在某种意义上并通过本文所述的方法进行重新分布,可选择用于生产纤维网的方法使得长纤维素纤维103和/或短纤维素纤维102的分布不会明显受到重新分布合成纤维101的所用方法的影响。因此,所得的纤维结构100无论进行重新分布与否均可包括随机分布在整个纤维结构上的多根长纤维素纤维103和以非随机图案分布的多个合成纤维101。图10显示纤维结构100的一个实施方案,其中长纤维素纤维103被随机分布在整个结构上以及合成纤维101和短纤维素纤维102的混合物104被以非随机重复图案分布。
制造本发明的纤维网的方法也可包括任何其它所需的步骤。例如,该方法可包括转换加工步骤,例如将纤维网缠绕到一个卷轴上、压光纤维网、压花纤维网、印刷纤维网和/或将纤维网接合到一个或多个其它纤维网或材料上形成多层结构。某些描述压花的示例性专利包括美国专利3,414,459;3,556,907;5,294,475和6,030,690。另外,该方法可包括一个或多个增加或增强纤维网性质的步骤,例如对制品的表面或在纤维网进行成型时增加软化、强化和/或其它处理。此外,纤维网可具有乳胶或类似物,例如如美国专利3,879,257或其它专利中所述。
可采用本发明的纤维结构100制造多种制品。例如,所得的制品可用于空气、油和水的过滤器、真空清洁器过滤器、炉过滤器、茶或咖啡袋、热绝缘材料和隔音材料、用于卫生制品例如尿布、妇女护垫和失禁制品的无纺材料、用于吸湿和穿戴柔软性的纺织物例如微纤维或可透气的织物、用于收集和去除灰尘的荷静电的结构纤维网、用于硬纸例如包装纸、书写纸、新闻纸、瓦楞纸的强化和纤维网和薄纸例如卫生纸、纸巾、餐巾纸和面巾纸的纤维网、医学用途例如手术单、伤口敷料、绷带和皮肤贴片。对于特定用途,纤维结构100也可包括气味吸收剂、驱蚁剂、杀虫剂、灭鼠剂等等。所得的制品可吸收水和油并可用于油或水溢出清理、或在农业或园艺应用场合控制水的保持和释放。
非限制性实施例实施例1在本实施例中采用了中试长网造纸机。在一个常规的二次制浆机中制成按重量计3%NSK的含水浆液。缓缓地精制NSK浆液并将2%的永久性湿强度树脂溶液(即,德拉瓦州Wilmington的Hercules incorporated所销售的Kymene 557LX)以按干纤维重量计1%的比率添加到母管中。Kymene 557LX对NSK的吸附通过一个在线搅拌器来增强。在在线搅拌器后面以按干纤维重量计0.2%的比率添加1%的羧甲基纤维素(CMC)溶液以增强纤维衬底的干强度。在一个常规的二次制浆机中制成按重量计3%的桉木纤维含水浆液。
NSK配料和桉木纤维在流浆箱中进行分层并在一个长网线上沉积成不同的层形成一个胚网。脱水通过长网线发生并受到一个导流板和一个真空箱的协助。长网线是一个5梭口缎纹构型,每英寸分别具有84个纵向和76个横向单丝。湿胚网在转移点以约22%的纤维浓度被从长网丝上转移到一种感光聚合物织物上,感光聚合物织物具有150个Linear Idaho单元每平方英寸、20%的叉节面积和17密耳的感光聚合物深度。通过真空辅助排水完成进一步的脱水,直到纤维网具有约28%的纤维浓度为止。成图案的纤维网通过透气法被预先干燥到按重量计约65%的纤维浓度。然后用一种包括0.25%聚乙烯醇水溶液的喷雾起绉粘合剂将纤维网粘附到一个Yankee干燥机的表面上。在用一个刮粉刀干法起绉纤维网之前,纤维浓度被增加到约96%。刮粉刀具有约25度的坡口角度并相对于Yankee干燥机提供约81度的冲击角度进行设置;Yankee干燥机以约600fpm(英尺每分钟)(约183米每分钟)的转速运行。干纤维网以约560fpm(171米每分钟)的速度被制成卷。
通过对两层纤维网压花和同时使用PVA粘合剂层压将其制成纸巾。纸巾的基重为约40g/m2并包括按重量计70%的北方软木牛皮纸浆和30%的桉木配料。所得纸巾的时效湿裂性为约374克。
实施例2
用与实施例1的方法相类似的方法制造纸巾,然而用按重量计10%的3mm合成双组分聚酯纤维代替按重量计10%的桉木。合成-桉木混合物的纤维长度比为4.2、PTP因子为1.2以及粗度值为11.0mg/100m。纤维长度比、PTP因子和粗度值用下面的测试方法部分所述的Kajaani程序进行确定。纸巾的基重为约40g/m2并在一个层中含有按重量计约70%的北方软木牛皮纸浆以及在另一个层中含有按重量计20%的桉木和10%的3mm长合成纤维的混合物。所得纸巾的时效湿裂性为约484克。
实施例3用与实施例1的方法相类似的方法制造纸巾,然而用按重量计5%的6mm合成双组分聚酯纤维代替按重量计5%的桉木。合成-桉木混合物的纤维长度比为8.4、PTP因子为1.2以及粗度值为11.6mg/100m,如实施例2中所述和如下面的测试方法部分所述进行测量。纸巾的基重为约40g/m2并在一个层中含有按重量计约70%的北方软木牛皮纸浆以及在另一个层中含有按重量计25%的桉木和5%的6mm长合成纤维的混合物。所得纸巾的时效湿裂性为约472克。
测试方法Kajaani方法纤维素纤维的长度加权平均纤维长度和纤维素-合成纤维混合物的粗度用一个Kajaani FiberLab纤维分析器进行确定。分析器根据厂商的建议进行操作,其中所设定的报告范围为0mm至7.6mm以及所设定的曲线把长度小于0.08mm的纤维排除在纤维长度和粗度的计算之外。这种尺寸的颗粒被排除在计算之外是因为据信它们在很大程度上由对于本发明针对的用途不起作用的非纤维碎片构成。
在样本制备过程中应该小心以确保将精确的样本重量输入到KajaaniFiberLab仪器中。对于样本制备而言,合格的方法具有下列步骤1)确定样本含水量,然后称出分析样本的重量。目标样本重量对于短硬木纤维是0.02-0.04克以及对于普通的长软木纤维是0.15-0.30克。对于粗度分析,称样本的重量应该精确到+/-0.1毫克。
2)通过用约150mL的温水填充手动离解机分解干样本,添加干样本并上下移动离解机的搅拌杆直到样本被完全分解为止,就是说在样本中没有纤维束或结合。然而,应该避免超过必需的分解时间和处理太粗糙以使得纤维不会碎裂。
3)将手动离解机中的牛皮纸浆液转移到一个2000mL的量瓶中并用自来水注满到2000mL刻度。搅匀以获得均匀性。对于粗度样本,稀释精度应该为+/-4mL。
4)采用下列公式确定样本的浓度并计算所需的样本量样本量=(目标浓度×2000)/(工序浓度),式中目标浓度对于硬木是0.005-0.010%以及对于软木是0.015-0.025%。
5)将样本量添加到一个2000mL的量瓶中,用自来水注满到2000mL刻度并搅匀。
6)用一个顶端开口至少2mm的吸液管取样本浆液的50mL等分试样并将该等分试样放入Kajaani样本容器中。
7)对于粗度分析,用下列公式计算存在于50mL等分试样中的样本总重量50mL等分试样中的纤维重量(mg/50mL)=(50mL/2000mL)×(所称重纤维的干重,mg)8)将样本容器放置在Kajaani样本单元上并开始分析。
9)Kajaani FiberLab设备自动按毫米报告长度加权平均纤维长度、按微米报告平均纤维素纤维宽度和按毫克/米报告粗度。
Kajaani FiberLab设备按单位毫克每米未加权的纤维长度(mg/m)报告粗度。这个值乘以100得到单位为毫克每百米的粗度,如上面的粗度定义所述。纸浆的粗度为采自混合物的三个纤维样本的三个粗度测量值的平均值。
时效湿裂性湿裂性用一个Thwing-Albert耐破度测试仪类别号177进行确定,其装有一个2000克的测力传感器,购自宾夕法尼亚州19154Philadelphia的Dutton Road 10960号Thwing-Albert InstrumentCo.。将样本放置在温度约73华氏度+/-2华氏度以及相对湿度约50%+/-2%的处理室中处理至少约24小时。将纸在炉子中在105摄氏度下时效约5分钟。用一个切纸刀切割测试用的约11.43cm(4.5英寸)宽(横向)乘30cm(12英寸)长(纵向)八个条带。每个条带用蒸馏水进行润湿并放置在样本夹具的下环上,其中纸的反面朝上,因此样本完全覆盖下环的开口并且少量的样本伸到下环的外径以外。在将样本条带正确放在下环上之后,用气动夹具降下上环以便样本被保持在上下环之间。下环开口的直径为约8.9cm(3.5英寸)。冲杆的直径为约1.5cm(0.6英寸)。启动测试仪,使冲杆以约2厘米/分钟(5英寸每分钟)的速度上升并使纸破裂。测试仪在样本破裂的时候直接以克提供湿裂强度。将由八个样本条带获得的测试结果进行平均并记录下纸样本的湿裂性数值,精确到克。
权利要求
1.一种包括至少两个层的纤维结构,其中所述结构的至少一个层包括长纤维素纤维并且至少一个层包括短纤维素纤维与合成纤维的混合物,优选地,其中所述合成纤维中的至少一些被接合到所述短纤维素纤维中的至少一些上。
2.如权利要求1所述的纤维结构,其中所述短纤维素纤维与合成纤维的混合物的纤维长度比大于约1,优选地纤维长度比介于约1和约20之间。
3.如前述任一项权利要求所述的纤维结构,其中所述短纤维素纤维与合成纤维的混合物的PTP因子大于约0.75。
4.如前述任一项权利要求所述的纤维结构,其中所述短纤维素纤维的长度加权平均纤维长度小于约2mm,优选地其中所述短纤维素纤维的长度加权平均纤维长度小于约1mm并且平均纤维素纤维宽度小于约18微米。
5.如前述任一项权利要求所述的纤维结构,其中所述合成纤维的长度加权平均纤维长度大于约2mm并且平均合成纤维直径大于约15微米。
6.如前述任一项权利要求所述的纤维结构,其中所述长纤维素纤维的长度加权平均纤维长度大于约2mm并且平均纤维素纤维宽度小于约50微米。
7.如前述任一项权利要求所述的纤维结构,其中所述短纤维素纤维与合成纤维的混合物的粗度值小于约50mg/100m,优选地小于约25mg/100m。
8.如前述任一项权利要求所述的纤维结构,其中所述一体纤维结构是起绉的、未起绉的或压花的。
9.如前述任一项权利要求所述的纤维结构,其中所述纤维结构与分开的结构结合形成多层制品。
10.如前述任一项权利要求所述的纤维结构,所述纤维结构还包括设置在所述一体纤维结构的至少一部分上的乳胶。
11.一种制造纤维结构的方法,所述方法包括以下步骤提供合成纤维与短纤维素纤维的混合物到成型构件上以形成包括所述合成纤维与短纤维素纤维的混合物的一个或多个层;所述成型结构优选地具有槽的图案并且所述合成纤维中的至少一些被设置在所述槽中;提供多根长纤维素纤维到所述合成纤维与短纤维素纤维的混合物上以形成主要包括长纤维素纤维的一个或多个层;和成型包括包含所述合成纤维与短纤维素纤维的混合物的一个或多个层和主要包括长纤维素纤维的一个或多个层的一体纤维结构。
12.一种用于制造一体纤维结构的方法,所述方法包括以下步骤提供包括合成纤维与短纤维素纤维的混合物的第一含水浆液;提供包括多根长纤维素纤维的第二含水浆液;将所述第一和第二含水浆液沉积到具有槽图案的流体可透过的成型构件上;使所述已沉积的第一和第二浆液部分脱水以形成包括随机分布在所述纤维网的至少整个一个层上的多根长纤维素纤维和至少部分非随机分布在所述槽中的合成纤维与短纤维素纤维的混合物的纤维网;施加流体压力差到设置在所述模塑构件上的纤维网上,从而依照槽的图案模塑所述纤维网,其中设置在所述模塑构件上的纤维网包括与所述模塑构件的多个流体可透过区域对应的第一多个微观区域和与所述模塑构件的多个流体不可透过区域对应的第二多个微观区域;将所述纤维网从所述模塑构件转移到干燥表面上;和成型所述一体纤维结构,其中所述合成纤维与短纤维素纤维的混合物被设置在预定图案中并且所述多根长纤维素纤维保持大体随机分布在所述纤维结构的至少一个层上。
13.如权利要求11和12所述的方法,其中所述合成纤维与短纤维素纤维的混合物的纤维长度比大于约1,优选地其中所述合成纤维与短纤维素纤维的混合物的纤维长度比介于约1和约20之间。
14.如权利要求11至13所述的方法,其中所述合成纤维与短纤维素纤维的混合物的粗度值小于约50mg/100m。
15.如权利要求11至14所述的方法,所述方法还包括重新分布至少一些所述合成纤维的步骤,优选地通过加热或冷却一些所述合成纤维的至少一部分。
16.如权利要求11至15所述的方法,所述方法还包括在模塑构件和压制表面之间压缩所述纤维结构以致密所述纤维结构的多个部分的步骤。
17.如权利要求11至16所述的方法,其中所述成型构件以第一速度移动并且所述方法还包括以下步骤以小于所述第一速度的第二速度提供第二构件;和将所述胚网从所述成型构件转移到所述第二构件上以使所述胚网微收缩。
18.如权利要求11至17所述的方法,其中所述一体纤维结构是起绉的、未起绉的或压花的。
19.如权利要求11至18所述的方法,所述方法包括进一步提供乳胶给所述一体纤维结构的至少一个表面的至少一部分的步骤。
20.如权利要求11至19所述的方法,其中所述合成纤维与短纤维素纤维的混合物在提供所述多根长纤维素纤维之前被提供到所述成型构件上。
全文摘要
具有至少两个层的一体纤维结构(100)和用于制造所述纤维结构的方法,其中所述结构的至少一个层包括长纤维素纤维(103)和至少一个层包括短纤维素纤维(102)与合成纤维(101)的混合物(104)。
文档编号D21F11/04GK1745212SQ200480003370
公开日2006年3月8日 申请日期2004年2月4日 优先权日2003年2月6日
发明者O·波拉特, T·J·洛伦茨, D·V·潘, P·D·特罗汉 申请人:宝洁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1