双向伸缩均匀的光纤光栅调谐装置的制作方法

文档序号:2724927阅读:175来源:国知局
专利名称:双向伸缩均匀的光纤光栅调谐装置的制作方法
技术领域
本实用新型涉及一种双向伸缩均匀的光纤光栅调谐装置,主要用于光纤光栅峰值波长的调谐。特别涉及调谐装置中的应力驱动结构和在向短波调谐过程中避免光纤弯曲的导轨结构。
背景技术
光纤光栅是在单模石英光纤纤芯内部制作的周期性折射率分布。它具有窄带的反射特性,并且在使用过程中插入损耗小,体积小,可靠性高,与光纤系统可以直接连接,在光纤信息技术,如光纤通信、光纤传感、光纤干涉测量等,有广泛的应用。它可以用于半导体激光器和光纤激光器的选频、稳频元件;用于密集波分复用光纤通信系统中的光分插复用器;用于波长敏感型的光纤传感系统;用于光纤型光谱分析仪等等。由于光纤光栅反射谱的峰值波长可以随着温度和光纤的应变而变化,因此具有十分重要的调谐特性。从而可以构成可调谐激光光源、可动态配置的分插复用器、可调谐光纤传感器等等。在需要准确控制波长的应用中,利用光纤光栅的可调谐特性,配合反馈控制技术,可以实现光纤光栅峰值波长的高精度控制。因此光纤光栅的可调谐特性是研究和开发的一个热点。
在先技术中,对光纤光栅的应力调谐有多种机构,如用压电陶瓷(简称PZT)对光纤光栅施加应力,对光纤光栅施加侧应力进行调谐,基于悬臂梁的光纤光栅线性调谐等。各应力调谐机构的特点为1.用压电陶瓷(Piezoelectric Transducer,简称PZT)调谐,此机构最早出现在单模掺铒光纤激光器的波长调谐中。它是利用压电陶瓷在加电压情况下产生形变的特性,使构成光纤激光器的两段光纤光栅之间的距离变化,即激光谐振腔的长度发生改变,从而使输出波长不同。据在先技术[1]的报道(参见Ball G A,Morey W W.Continuously tunable single-mode erbium fiberlaser.opl.lett.,1992,17(6)420-422),PZT形变量达到90μm时,波长调谐范围达到0.72nm。对于单片的PZT,使形变量达到90μm,所加电压很高,这不符合实际应用的要求;层片的PZT形变量虽然大,但价格昂贵,实际使用也受到限制。而且PZT的调谐范围太小,满足不了实际的需要。利用PZT对光纤光栅的峰值波长向短波长方向调谐,当PZT形变大时,常常会引起光纤光栅弯曲而使调谐失效,严重时会使光纤光栅断裂。
2.对光纤光栅加侧应力进行调谐,在先技术[2]中(参见TetsuroKomukai,Yoshiaki Miyajima and Masataka NAKAZAWA.In-Line FiberGrating-Type Optical Bandpass Filter Tuned by Applying Lateral Stress.J.Appl.Phys.Vol.34(1995)pp.L306-L308 Part 2,No.3A,1 March 1995)报道了这一机构和实验结果。它是通过侧向对封装在塑料套管内的光纤光栅施加应力,从而使光纤发生应变。此结构调节灵敏度较低(1N的力1.26nm),操作不够简便,缺乏可控性。
3.基于悬臂梁的光纤光栅线性调谐,与侧应力调谐中简支梁调谐不同。在先技术[3](参见余有龙,刘治国,董孝义,王江,基于悬臂梁的光钎光栅线性调谐,光学学报Vol.19,No.5,May,1999)提出了悬臂梁调谐技术,利用附着其表面的光纤光栅的应变与自由端外力大小成线性关系,实现其反射谱中心波长的线性调谐。但在此调谐过程中会出现啁啾现象,即随着外加应力的增加,波长调谐量增加的同时,光纤光栅反射谱的带宽也呈增加的趋势。这是由于一方面全部格栅的布喇格反射波长发生了变化,另一方面不同格栅间变化程度不同所至,后者乃造成带宽增加的主要因素。特别是在光分插复用器(OADM)中,光纤光栅反射谱的带宽增加会引起信道间的串扰,使传输信号失真。
上述在先技术的应力调谐机构,一般只实现向长波单方向的调谐。因为在应力调谐中,对光纤实施拉伸比较容易。实施压缩时光纤很容易弯曲,不能达到轴向压缩应变的目的。然而,光纤的拉伸强度远远低于其压缩强度,所以要达到较大的调谐范围,同时要保证光纤光栅的长期调谐使用可靠性,就必须解决对光纤光栅实施压缩的不弯曲变形问题。

发明内容
本实用新型为克服上述在先技术中对光纤光栅实施压缩时,光纤光栅容易弯曲变形的问题,将光纤光栅置于一导轨内,使其既可以自由拉伸,同时又限制它在压缩时不会弯曲。为此,本实用新型的光纤光栅调谐装置,主要含有中心轴线在同一条水平线上并列置放的第一横臂2和第二横臂4。在第一横臂2和第二横臂4之间与两者同中心轴线地置有内腔6为等角正三角形的导轨3。光纤光栅5置于导轨3的内腔6里,光纤光栅5两端的光纤分别固定在第一横臂2和第二横臂4上。第一横臂2和第二横臂4连接有能够作相向运动和相反运动的驱动机构1。如图1所示。
当驱动机构1作相向运动或相反运动时,带动第一横臂2和第二横臂4两者作相向运动或相反运动,则使置于导轨3内腔6里的光纤光栅5压缩或拉伸,达到调谐目的。因为光纤光栅5是置于导轨3内腔6里,当它被压缩时,不会弯曲变形。
所说的能够作相向或相反运动的驱动机构1所用的驱动力是电磁力。
所说的导轨3等角正三角形的内腔6的内切圆柱的直径D1大于光纤光栅5的外径D2,即D1>D2。而且内切圆柱与等角正三角形均匀分布的三条切线l1,l2和l3与光纤光栅5外径D2的公差配合是间隙配合。如图2所示。
所说的导轨3的等角正三角形的内腔6是由并排置于槽板8上凹槽内直径相等的两根圆管901和902之间的上面盖一块盖板7构成,如图3所示。或者是由并排固定在平板10上,直径相等的两根圆管901和902之间的上面盖一块盖板7构成。为了使两圆管901和902固定得牢靠,在它们的两端分别再固定圆管903和904,如图4所示。或者是由三根直径相等的圆管901,902,903构成,如图5所示。或者是由刻有60°角V形槽的厚板12的V形槽上盖上盖板7构成,如图6所示。
下面详细叙述本实用新型调谐装置的结构。
要实现光纤光栅5的轴向压缩应变,需要一种能够把直径不到0.13毫米的光纤光栅5限制在直线方向运动的刚性导轨3内。如上述,导轨3从内腔6的横截面上看,是一个等角正三角形。如图2所示,被调谐的光纤光栅5放在导轨3的内腔6中,内腔6的内切圆柱直径D1大于光纤光栅5的外径D2,通常D1=1.0001 D2,所以光纤光栅5与内腔6的内切圆柱上均匀分布的三条切线l1,l2和l3的公差配合为间隙配合,这是为了保证光纤光栅5被拉伸或被压缩时既可以在内腔6里自由作直线运动又不致于弯曲。
由于光纤光栅5两端连接着包有涂敷层的普通光纤,其外径为0.25毫米,是光纤光栅5直径的二倍,所以为防止光纤光栅5在与光纤的连接处断裂,该导轨3是可装配式的。所说的构成内腔6的盖板7是可拆卸的,是随时可以盖上和拿下的。内腔6的长度由被调谐的光纤光栅5的长度决定。
如图1所示的驱动机构1驱动第一横臂2和第二横臂4作相向或相反运动,从而使固定在第一横臂2和第二横臂4之间的光纤光栅5被压缩或拉伸,达到调谐目的。
本实用新型的导轨3提供上述四种构成方式,均可以保证光纤光栅5在调谐过程中,无论是被拉伸还是被压缩,光纤光栅5不仅可以在导轨3内腔6里自由地在直线上拉伸或压缩,而且不会弯曲。
所说的导轨3如图3所示的第一种结构。光纤光栅5被限制在二条直径相等、外表面抛光的不锈钢管(或不锈钢丝)作为圆管901、902和盖板7之间。两不锈钢管901、902被固定在加工了凹槽的槽板8的凹槽内。根据几何关系,不锈钢管901、902外径应为光纤光栅5外径D2的4倍。
所说的导轨3如图4所示的第二种结构。基本结构与第一种相似。采用了四条相同的不锈钢管作为圆管901、902、903和904,两旁的不锈钢管903,904起着对中间二条不锈钢管901,902的定位作用。平板10是一块不锈钢平板,它不需要象第一种结构那样需要加工精度要求很高的凹槽。四条不锈钢管901、902、903和904用胶粘结在平板10上即可。
所说的第三种结构的导轨3如图5所示。光纤光栅5被限制在三条不锈钢管(或不锈钢丝)作为圆管901、902和903三者中间。三条不锈钢管的二端分别用二个具有可变内径的不锈钢管的套管11固定。圆管901、902和903的外径应为光纤光栅5外径D2的 倍。
所说的导轨3第四种结构如图6所示。光纤光栅5被限制在加工了光滑V型槽的厚板12和盖板7之间。V型槽的顶角取为60°角。根据几何关系,60°角的V型槽的深度应为光纤光栅5外径D2的1.50015倍。
如上所述,本实用新型对通过驱动机构1使固定光纤光栅5的第一横臂2和第二横臂4产生相向或相背运动,从而对光纤光栅5施加压缩应力或拉伸应力进行应力调谐。驱动机构1产生驱动力的方式有电磁力、压电效力(PZT)、微型电机(步进电机或伺服电机)的转动力或者热膨冷缩的张力等方式。
本实用新型的驱动机构1的驱动力是采用电磁力,如图7所示,含有固定在外壳113内的底板101,在底板101的两端分别通过第一弹片102和第二弹片112与第一支臂103和第二支臂108的底端相连。在底板101上,于第一支臂103和第二支臂108之间置有第一电磁线圈105和第二电磁线圈109,在第一电磁线圈105内有第一磁芯104,在第二电磁线圈109内有第二磁芯110,两磁芯104和110的中心轴线重合。第一磁芯104和第二磁芯110的一端分别与第一支臂103和第二支臂108相连,第一磁芯104和第二磁芯110的另一端,两相对端之间有缓冲层107,在外壳113的顶板106上第一横臂2和第二横臂4之间是导轨3,第一横臂2和第二横臂4分别与第一支臂103和第二支臂108的顶端相连,光纤光栅5放入导轨3的内腔6里后两端的光纤分别固定在第一横臂2和第二横臂4上。所说的第一横臂2和第二横臂4是从外壳113的顶板106的方孔伸出以保证光纤光栅5放入导轨3的内腔6里后两端的光纤可以水平地固定在第一横臂2和第二横臂4上。通过控制第一电磁线圈105、第二电磁线圈109中电流的方向可以使第一磁芯104、第二磁芯110相吸引或相排斥,从而带动第一横臂2和第二横臂4产生相向或相背运动,相应地使固定在第一横臂2和第二横臂4上的光纤光栅5受到轴向压应力或拉应力,达到调谐目的。第一磁芯104、第二磁芯110之间有一块由海绵构成的弹性缓冲层107,以防止第一磁芯104、第二磁芯110完全吸住后,因吸力过大而使光纤光栅5弯曲过度而断裂。装配时要保证导轨3,缓冲层107,底板101的中心线重合。
与在先技术相比,本实用新型调谐装置的进步在于1.本实用新型中的光纤光栅5是放在导轨3的内腔6里,从而保证了光纤光栅5压缩调谐过程中光纤光栅5不会弯曲,同时也就没有因为弯曲形变而使调谐失效甚至断裂,从而解决了常规介质膜带通滤波器难以实现的透射中心波长双向可调的问题。
2.本实用新型调谐装置在调谐过程中,由于导轨3的等角正三角形内腔6的均匀分布三条切线l1、l2和l3的限制作用,光纤光栅5各处应力均匀,不会引起光纤光栅反射谱带宽增大,即啁啾现象。
3.本实用新型调谐装置中由第一横臂2和第二横臂4固定光纤光栅5两端的光纤,采用上述驱动机构1拉伸和压缩并且所构成的导轨3保护结构使被调谐的光纤光栅在裸纤和涂敷纤的接头处不会因弯曲而断裂,所以易于维护,调谐装置便于组合,装卸简单,满足系统实用化的要求。
4.本实用新型中采用的导轨3结构和由电磁线圈构成的电磁场驱动机构都易于加工,成本较低,所以本实用新型的调谐装置有良好的经济实用性。
5.本实用新型中采用的电磁场驱动机构1由于用直流电流进行控制,因此易于控制所加的应力,所以调谐回复性良好。


图1为本实用新型的光纤光栅调谐装置的示意图;图2为本实用新型的导轨3内腔6横截面的示意图;图3为本实用新型第一种构成导轨3内腔6的示意图;图4为本实用新型第二种构成导轨3内腔6的示意图;图5为本实用新型第三种构成导轨3内腔6的示意图;图6为本实用新型第四种构成导轨3内腔6的示意图;图7为本实用新型驱动机构1的驱动力采用电磁力的结构示意图;图8为本实用新型在实施例中所获得的调谐光谱图;图9为本实用新型在实施例中所获得的调谐回复曲线图。
具体实施方式
构成导轨3内腔6的结构方式如图3、4、5、6所示。采用的驱动结构1如图7所示。
光纤光栅5的具体参数,长10mm的均匀光纤布喇格光栅,其中心波长为1551.2nm,反射率大于90%,获得的结果如图8、图9所示。。
图8为电磁线圈中的电流为300mA时,本实用新型调谐装置的调谐光谱图。从图中可以看出,调谐过程中光纤光栅5的布喇格反射峰从B位置到达A位置,调谐量为1.38nm,值得注意的是,反射谱带宽基本上没有变化,信道隔离度达到了15dB以上。
图9为本实用新型调谐装置的回复曲线,可见,磁场调谐良好的回复性,可以使光纤光栅5的布喇格波长得到精确控制。由上述结果表明本调谐装置具有上述的优点。
权利要求1.一种双向伸缩均匀的光纤光栅调谐装置,主要含有中心轴线在同一条水平线上并列置放的第一横臂(2)和第二横臂(4),第一横臂(2)和第二横臂(4)连接有能够作相向运动和相反运动的驱动机构(1),其特征在于在第一横臂(2)和第二横臂(4)之间与两者同中心轴线地置有内腔(6)为等角正三角形的导轨(3),光纤光栅(5)置于导轨(3)的内腔(6)里,光纤光栅(5)两端的光纤分别固定于第一横臂(2)和第二横臂(4)上;所说的驱动机构(1)所用的驱动力是电磁力。
2.根据权利要求1所述的双向伸缩均匀的光纤光栅调谐装置,其特征在于所说的导轨(3)的等角正三角形内腔(6)里的内切圆柱的直径D1大于光纤光栅(5)的外径D2,而且内切圆柱与等角正三角形均匀分布的三条切线(l1,l2,l3)与光纤光栅(5)外径D2的公差配合为间隙配合。
3.根据权利要求1或2所述的双向伸缩均匀的光纤光栅调谐装置,其特征在于所说的导轨(3)的等角正三角形的内腔(6)是由并排置于槽板(8)上凹槽内直径相等的两根圆管(901,902)之间的上面盖一块盖板(7)构成,或者是由并排固定在平板(10)上,直径相等的两根圆管(901,902)之间的上面盖一块盖板(7)构成,或者是由三根直径相等的圆管(901,902,903)构成,或者是由刻有60°角的V形槽的厚板(12)的V形槽上盖上盖板(7)构成。
4.根据权利要求1所述的双向伸缩均匀的光纤光栅调谐装置,其特征在于所说的驱动力是电磁力的驱动机构(1)含有固定在外壳(113)内的底板(101),在底板(101)的两端分别通过第一弹片(102)和第二弹片(112)与第一支臂(103)和第二支臂(108)的底端相连,在底板(101)上,于第一支臂(103)和第二支臂(108)之间置有第一电磁线圈(105)和第二电磁线圈(109),在第一电磁线圈(105)内有第一磁芯(104),在第二电磁线圈(109)内有第二磁芯(110),第一磁芯(104)与第二磁芯(110)的中心轴线重合,第一磁芯(104)与第二磁芯(110)的一端分别与第一支臂(103)和第二支臂(108)相连,第一磁芯(104)与第二磁芯(110)的另一端,两相对端之间有缓冲层(107),在外壳(113)的顶板(106)上,在第一横臂(2)和第二横臂(4)之间是导轨(3),第一横臂(2)和第二横臂(4)分别与第一支臂(103)和第二支臂(108)的顶端相连,光纤光栅(5)放入导轨(3)的内腔(6)里后两端的光纤分别固定在第一横臂(2)和第二横臂(4)上。
专利摘要一种双向伸缩均匀的光纤光栅调谐装置,主要用于光纤光栅峰值波长的调谐。主要含有固定光纤光栅两端光纤的第一横臂和第二横臂,在第一横臂和第二横臂之间置有内腔为等角正三角形的导轨。光纤光栅置于导轨的内腔里,两端的光纤分别固定在第一横臂和第二横臂上。第一横臂和第二横臂与驱动力用电磁力的驱动机构相连。当驱动机构作相吸或相斥运动时,带动第一横臂和第二横臂作相向或相背运动,从而使置于导轨内腔里的光纤光栅被压缩或拉伸。与在先技术相比,本实用新型的调谐装置保证光纤光栅在调谐过程中各处应力均匀,在压缩调谐时,光纤光栅不会弯曲变形,不会引起光纤光栅反射谱带宽增大,易于控制所加的应力,调谐回复性良好。
文档编号G02B6/34GK2507019SQ0125500
公开日2002年8月21日 申请日期2001年11月30日 优先权日2001年11月30日
发明者赵岭, 方祖捷, 蔡海文 申请人:中国科学院上海光学精密机械研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1