扩展三角晶格式光子带隙光纤的制作方法

文档序号:2728850阅读:196来源:国知局
专利名称:扩展三角晶格式光子带隙光纤的制作方法
技术领域
本发明涉及一种光子带隙光纤(以下,简称为PBGF),尤其涉及传输频带较宽,且可用于从紫外光区域至可见光区域、近红外区域及远红外区域的光传输、或光纤激光传输的扩展三角晶格(ETLextendedtriangular lattice)型PBGF。
本申请对2006年3月29日提交的日本国专利申请第2006-89676号主张优先权,并在此引用其内容。
背景技术
如K.Takenaga,N.Guan,R.Goto,S.Matsuo,K.Himeno,“ANewphotonic Bandgap Fibre with Extended Triangular Lattice andCapillary Core”,ECOC 2005 Proceedings-Vol.2 Paper Tu 1.4.2所示,本发明人等发明了一种具有毛细管芯的扩展三角晶格式PBGF。图1及图2是表示以往的扩展三角晶格式PBGF1、6的结构的图。
图1所示的扩展三角晶格式PBGF1具有如下结构,即,由石英玻璃构成的光纤,沿长度方向有规则地设置了多个空孔2,在其截面上,在光纤中心部设有将七个空孔2密集地排列成三角晶格状的毛细管芯4,在其周围设有将空孔2及石英玻璃部分3配置成扩展三角晶格状的包层5。
图2所示的扩展三角晶格式PBGF6具有如下结构,即,在光纤中央设有毛细管芯7,该毛细管芯7是将共计三十七个空孔2密集地排列成三角晶格状而形成的,具体为,中心一个,包围该中心的第一层六个,第二层十二个,进而包围该第二层的第三层十八个,在该毛细管芯7的周围设有包层5,该包层5是将空孔2及石英玻璃部分3配置成扩展三角晶格状而形成的。
在这些扩展三角晶格式PBGF1、6中,毛细管芯4、7的空孔2与包层5的空孔2为相同的孔径。并且,根据PBGF的制造条件,例如拉丝时空孔内部与光纤母材外部的压力差及温度等,可将空孔2的截面形状设定为圆形或六边形。
上述K.Takenaga等的文献所述的扩展三角晶格式PBGF,通过采用毛细管芯,与使用空芯(air core)的以往PBGF相比,可大幅扩宽传输频带。
另一方面,可以预想光纤的利用领域将越来越广泛,而需要光纤所具有的传输频带的宽度范围,今后会越来越宽,由此迫切希望提供一种具有较宽范围的传输频带的光纤。

发明内容
本发明就是鉴于上述情况而做出的,其目的在于提供一种与以往的PBGF相比,传输带宽特别大且高性能的PBGF。
为达成上述目的,本发明提供一种扩展三角晶格式PBGF,其在石英玻璃部分沿光纤长度方向设有多个空孔,具有该空孔排列成扩展三角晶格状的包层,并且具有多个空孔排列成三角晶格状的毛细管芯,其中,毛细管芯的空孔与包层的空孔相比,各个空孔的截面积小。
在本发明的扩展三角晶格式PBGF中,优选构成包层的扩展三角晶格的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成扩展三角晶格状,并且,构成毛细管芯的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成三角晶格状,构成包层的扩展三角晶格的壁厚wb与构成毛细管芯的三角晶格的壁厚wc满足wb<wc的关系。
在本发明的扩展三角晶格式PBGF中,优选毛细管芯具有空孔结构,该空孔结构包括共计七个空孔,其中,中心一个,包围该中心的一层六个;或共计三十七个空孔,其中,中心一个,包围该中心的第一层六个,第二层十二个,第三层十八个;或中心一个空孔和包围该中心的五层空孔,共计九十一个空孔;或者,中心一个空孔和包围该中心的七层以上的空孔。
在本发明的扩展三角晶格式PBGF中,优选包层的扩展三角晶格的节距为Λ时,该扩展三角晶格的壁厚wb满足0.03Λ≤wb≤0.4Λ的关系。
进而,优选毛细管芯的三角晶格的壁厚wc满足0.05Λ≤wc≤0.6Λ的关系。
在本发明的扩展三角晶格式PBGF中,优选仅存在60%以上的传输功率集中于毛细管芯区域的纤芯模式,不存在40%以上的传输功率存在于毛细管芯区域以外的表面模式。
在本发明的扩展三角晶格式PBGF中,优选(a)在0.8Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.12Λ≤wc≤0.25Λ时,在波长λ满足0.9≤Γ/λ≤1.8的范围内存在传输模式,(b)在0.8Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.25Λ≤wc≤0.35Λ时,在波长λ满足0.9≤Γ/λ≤2.4的范围内存在传输模式,或者(c)在0.8Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.25Λ≤wc≤0.35Λ时,在波长λ满足0.9≤Γ/λ≤2.4的范围内存在传输模式,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
并且,本发明提供一种在上述的本发明的扩展三角晶格式PBGF中单模动作的扩展三角晶格式PBGF。
在上述单模动作的扩展三角晶格式PBGF中,优选构成包层的扩展三角晶格的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成扩展三角晶格状,并且,构成毛细管芯的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成三角晶格状,构成包层的扩展三角晶格的壁厚wb与构成毛细管芯的三角晶格的壁厚wc满足wb<wc的关系。
上述单模动作的扩展三角晶格式PBGF,优选包层设置有圆形或六边形的空孔,毛细管芯设置有圆形或六边形的空孔的结构。
在上述单模动作的扩展三角晶格式PBGF中,优选毛细管芯由共计七个空孔构成,其中,中心一个,包围中心的一层六个。
在上述单模动作的扩展三角晶格式PBGF中,优选包层的扩展三角晶格的节距为Λ时,该扩展三角晶格的壁厚wb满足0.03Λ≤wb≤0.2Λ的关系。
并且,优选毛细管芯的三角晶格的壁厚wc满足0.05Λ≤wc≤0.25Λ的关系。
在上述单模动作的扩展三角晶格式PBGF中,优选仅存在60%以上的传输功率集中于毛细管芯区域的纤芯模式,不存在40%以上的传输功率存在于毛细管芯区域以外的表面模式。
在上述单模动作的扩展三角晶格式PBGF中,优选在0.6Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.06Λ≤wc≤0.18Λ时,在波长λ满足0.8≤Γ/λ≤1.8的范围内存在单模,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
本发明的扩展三角晶格式PBGF,具有空孔排列成扩展三角晶格状的包层,且具有多个空孔排列成三角晶格状的毛细管芯,在该扩展三角晶格式PBGF中,由于毛细管芯的空孔与包层的空孔相比,各个空孔的截面积小,因此可以提高纤芯的等效折射率,其结果,可以扩展光纤的动作区域,从而可提供一种与以往的PBGF相比,具有特别宽的传输带宽且高性能的PBGF。


图1是表示以往的扩展三角晶格式PBGF的一个例子的截面图。
图2是表示以往的扩展三角晶格式PBGF的其他例子的截面图。
图3是表示本发明的扩展三角晶格式PBGF的第一实施方式的截面图。
图4是表示本发明的扩展三角晶格式PBGF的第二实施方式的截面图。
图5是表示构成本发明的扩展三角晶格式PBGF的包层的扩展三角晶格的单位晶格的截面图。
图6是表示构成本发明的扩展三角晶格式PBGF的纤芯的三角晶格的单位晶格的截面图。
图7是本发明的扩展三角晶格式PBGF的包层的要部截面图。
图8是表示图7所示的扩展三角晶格的能带结构的曲线图。
图9是比较例1中制作的扩展三角晶格式PBGF的要部截面图。
图10是表示比较例1中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图11是实施例1中制作的扩展三角晶格式PBGF的要部截面图。
图12是表示实施例1中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图13是实施例2中制作的扩展三角晶格式PBGF的要部截面图。
图14是表示实施例2中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图15是比较例2中制作的扩展三角晶格式PBGF的要部截面图。
图16是表示比较例2中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图17是实施例3中制作的扩展三角晶格式PBGF的要部截面图。
图18是表示实施例3中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图19是比较例3中制作的扩展三角晶格式PBGF的要部截面图。
图20是表示比较例3中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图21是实施例4中制作的扩展三角晶格式PBGF的要部截面图。
图22是表示实施例4中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
图23是实施例5中制作的扩展三角晶格式PBGF的要部截面图。
图24是表示实施例5中制作的扩展三角晶格式PBGF的带隙内的色散的曲线图。
具体实施例方式
以下,参照附图,对本发明的实施方式进行说明。
图3是表示本发明的扩展三角晶格式PBGF的第一实施方式的截面图。本实施方式的扩展三角晶格式PBGF10,在石英玻璃部分13沿光纤长度方向设有多个空孔11、12,具有该空孔12排列成扩展三角晶格状的包层15,并且具有多个空孔11排列成三角晶格状的毛细管芯14,该扩展三角晶格式PBGF的特征在于,毛细管芯14的空孔11与包层15的空孔12相比,各个空孔的截面积小。
本实施方式的扩展三角晶格式PBGF10的毛细管芯14的共计七个空孔11配置成三角晶格状,其中,中心一个,包围该中心的一层六个。
图4是表示本发明的扩展三角晶格式PBGF的第二实施方式的截面图。本实施方式的扩展三角晶格式PBGF16,虽然具有与上述第一实施方式的扩展三角晶格式PBGF10相同的结构,但存在如下不同,即,其具有共计三十七个空孔11排列成三角晶格状的毛细管芯17,其中,中心一个,包围该中心的第一层六个,第二层十二个,第三层十八个。
图5是举例表示构成本发明的扩展三角晶格式PBGF的包层的单位晶格的结构的要部截面图。该扩展三角晶格的单位晶格结构是在光纤横截面上,使多个第一空孔列与第二空孔列交替叠置的周期结构,其中,第一空孔列形成为,多个六边形的空孔12隔着由石英玻璃构成的较薄的壁18以第一节距Λ排列成一列,第二空孔列形成为,多个六边形的空孔12隔着六边形的石英玻璃部分13以两倍于上述第一节距Λ的第二节距Γ(Γ=2Λ)排列。在本示例中,六边形的空孔12不是正六边形,而是如下的六边形形状,即,与石英玻璃部分13相接的两边比其他边短,且与石英玻璃部分13相接的两边之间的长度,比其他边之间的长度(Λ)长。并且,角度θ为30度。另外,构成本发明的扩展三角晶格式PBGF的包层的单位晶格的结构,不仅仅局限于本示例。
图6是举例表示构成本发明的扩展三角晶格式PBGF的毛细管芯的单位晶格的结构的要部截面图。在本示例中,毛细管芯14、17在光纤截面上,大致正六边形的多个空孔11隔着由较厚的石英玻璃构成的壁19配置成三角晶格状。
图8表示图7所示的扩展三角晶格的带结构。其中,设石英的折射率n=1.45。在图7中,黑色部分表示石英玻璃,白色部分表示空孔。并且,能带结构利用平面波展开法(参照S.G.Johnson and J.D.Joannopoulos,“Block-iterative frequency-domain methods forMaxwell’s equations in planewave basis”,Opt.Express,vol.8,No.3,pp.173-190,2001)计算。
在图8中,β表示传输方向(垂直于周期结构的方向)的波数,Γ=2Λ表示扩展三角晶格的晶格常数,ω表示角频率,c表示光速。并且,光线(n=1.05)表示光在以往的毛细管芯(wc/Λ=0.06)中传输时的色散曲线,能带所包围的区域,表示在周期结构截面内光不能向任何方向传输的区域、即带隙。
在PBGF的包层中使用该扩展三角晶格的周期结构,在纤芯中使用图1、图2所示的以往毛细管芯时,可在该扩展三角晶格PBGF的纤芯中进行光波导的频带,为与n=1.05的光线邻接,且存在于其上部的带隙。此时,传输频带大致为光线横穿带隙的范围。
如果增大毛细管芯的壁厚wc,则毛细管芯的等效折射率进一步增大,所以此时的光线进一步向下侧倾斜。图中表示了wc/Λ=0.18时(n=1.15)、以及wc/Λ=0.3(n=1.23)时的光线。如图所示,这些光线更宽地从带隙中横穿,所以传输频带变得更宽。并且,此时,传输频带向频率高的区域(短波长侧)移动,因此相对于所希望的传输频带,空孔直径也可设定得较大。由此,光纤易于制作。这里,毛细管芯的等效折射率使用下式(1)的近似,neff=nairSair+nsilicaSsilicaSair+Ssilica---(1)]]>其中,neff、nair、nsilica分别表示纤芯的平均折射率、空气折射率、石英玻璃的折射率,Sair、Ssilica分别表示空气在纤芯中占的面积、石英玻璃在纤芯中占的面积。
由于毛细管芯如图6所示,因此各面积可由下式(2)、(3)得出。
Sair=34(Λ-wc)2---(2)]]>Ssihca=34[Λ2-(Λ-wc)2]---(3)]]>本发明的扩展三角晶格PBGF,可组合多根石英玻璃制的毛细管芯与多根石英玻璃制的杆,并优选将它们装入石英玻璃管,进行加热一体化而制作成光纤母材,将该光纤母材设置于光纤拉丝装置中,与普通的光纤一样地进行拉丝制造。这里,优选构成纤芯的毛细管使用壁厚的毛细管,构成包层的毛细管使用壁薄的毛细管。
本发明的扩展三角晶格式PBGF,具有空孔排列成扩展三角晶格状的包层,并且具有多个空孔排列成三角晶格状的毛细管芯,在该扩展三角晶格式PBGF中,由于毛细管芯的空孔与包层的空孔相比,各个空孔的截面积小,因此可以提高纤芯的等效折射率,其结果,可以扩展光纤的动作区域,提供一种与以往的PBGF相比,具有特别宽的传输带宽且高性能的PBGF。
实施例比较例1关于图9所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.06的以往的具有一层毛细管芯(具有共计七个空孔的毛细管芯,其中,中心一个,包围该中心的六个)的光纤,计算了传输模式的色散。图10表示带隙内的色散。如图所示,在Γ/λ=0.85~1.32下存在传输模式。这里,λ表示波长。
实施例1制作厚度为wc/Λ=0.18的光纤。关于图11所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.18的具有一层毛细管芯(具有共计七个空孔的毛细管芯,其中,中心一个,包围该中心的六个)的光纤,计算了传输模式的色散。图12表示带隙内的色散。如图所示,在Γ/λ=0.92~1.74下存在传输模式,频带扩大为比较例1的光纤的1.8倍。图中的模式2表示高次模。
实施例2关于图13所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.3的具有一层毛细管芯(具有共计七个空孔的毛细管芯,其中,中心一个,包围该中心的六个)的光纤,计算了传输模式的色散。图14表示带隙内的色散。如图所示,在Γ/λ=0.92~2.35下存在传输模式,频带扩大为比较例1的光纤的3倍。图中的模式2表示高次模。
比较例2关于图15所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.06的以往的具有三层毛细管芯(具有共计三十七个空孔的毛细管芯,其中,中心一个,包围该中心的第一层六个,包围该第一层的第二层十二个,进而包围该第二层的第三层十八个)的光纤,计算了传输模式的色散。图16表示带隙内的色散。如图所示,在Γ/λ=0.85~1.18下存在传输模式。
实施例3仅将wc加厚,由此制作厚度为wc/Λ=0.30的光纤。关于图17所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.18的具有三层毛细管芯(具有共计三十七个空孔的毛细管芯,其中,中心一个,包围该中心的第一层六个,包围该第一层的第二层十二个,进而包围该第二层的第三层十八个)的光纤,计算了传输模式的色散。图18表示带隙内的色散。如图所示,在Γ/λ=1.02~2.20下存在传输模式,频带扩大为比较例2的光纤的3.5倍。图中的模式2、模式3表示高次模。
比较例3关于图19所示的wr/Λ=0.7、wb/Λ=0.1、wc/Λ=0.1的以往的具有三层毛细管芯(具有共计三十七个空孔的毛细管芯,其中,中心一个,包围该中心的第一层六个,包围该第一层的第二层十二个,进而包围该第二层的第三层十八个)的光纤,计算了传输模式的色散。图20表示带隙内的色散。如图所示,在Γ/λ=1.0~1.9下存在传输模式。
实施例4仅将wc加厚,制作了厚度为wc/Λ=0.20的光纤。关于图21所示的wr/Λ=0.7、wb/Λ=0.1、wc/Λ=0.2的具有三层毛细管芯(具有共计三十七个空孔的毛细管芯,其中,中心一个,包围该中心的第一层六个,包围该第一层的第二层十二个,进而包围该第二层的第三层十八个)的光纤,计算了传输模式的色散。图22表示带隙内的色散。如图所示,在Γ/λ=1.02~2.8下存在传输模式,频带扩大为比较例3的光纤的2倍。图中的模式2、模式3表示高次模。
实施例5在与比较例1相同的光纤中,使厚度为wc/Λ=0.12,制作单模动作的光纤。关于图23所示的wr/Λ=1、wb/Λ=0.06、wc/Λ=0.12的具有一层毛细管芯(具有共计七个空孔的毛细管芯,其中,中心一个,包围该中心的六个)的光纤,计算了传输模式的色散。图24表示带隙内的色散。如图所示,在Γ/λ=0.83~1.60下存在传输模式,动作频带扩大为比较例1的光纤的1.6倍。
以上,对本发明的优选实施例进行了说明,但本发明不局限于这些实施例。在不脱离本发明的主旨的范围内,可以实施结构的追加、省略、置换、以及其他变更。本发明不由上述说明限定,仅由附加的权利要求的范围限定。
权利要求
1.一种扩展三角晶格式光子带隙光纤,在石英玻璃部分沿光纤长度方向设有多个空孔,具有该空孔排列成扩展三角晶格状的包层,并且具有多个空孔排列成三角晶格状的毛细管芯,其特征在于,毛细管芯的空孔与包层的空孔相比,各个空孔的截面积小。
2.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,构成包层的扩展三角晶格的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成扩展三角晶格状;并且,构成毛细管芯的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成三角晶格状;构成包层的扩展三角晶格的壁厚wb与构成毛细管芯的三角晶格的壁厚wc满足wb<wc的关系。
3.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯由共计七个空孔构成,其中,中心一个,包围该中心的一层六个。
4.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯由共计三十七个空孔构成,其中,中心一个,包围该中心的第一层六个,第二层十二个,第三层十八个。
5.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯由中心的一个空孔、包围该中心的五层空孔共计九十一个空孔构成。
6.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯由中心的一个空孔、以及包围该中心的七层以上的空孔构成。
7.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,包层的扩展三角晶格的节距为Λ时,该扩展三角晶格的壁厚wb满足0.03Λ≤wb≤0.4Λ的关系。
8.根据权利要求7所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯的三角晶格的壁厚wc满足0.05Λ≤wc≤0.6Λ的关系。
9.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,仅存在60%以上的传输功率集中于毛细管芯区域的纤芯模式,不存在40%以上的传输功率存在于毛细管芯区域以外的表面模式。
10.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,在0.8Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.12Λ≤wc≤0.25Λ时,在波长λ满足0.9≤Γ/λ≤1.8的范围内存在传输模式,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
11.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,在0.8Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.25Λ≤wc≤0.35Λ时,在波长λ满足0.9≤Γ/λ≤2.4的范围内存在传输模式,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
12.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,在0.5Λ≤wr≤0.9Λ、0.06Λ≤wb≤0.14Λ、0.15Λ≤wc≤0.25Λ时,在波长λ满足0.9≤Γ/λ≤2.8的范围内存在传输模式,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
13.根据权利要求1所述的扩展三角晶格式光子带隙光纤,其特征在于,该扩展三角晶格式光子带隙光纤进行单模动作。
14.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,构成包层的扩展三角晶格的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成扩展三角晶格状,并且,构成毛细管芯的单位晶格,其截面为六边形的多个空孔隔着由石英玻璃构成的壁排列成三角晶格状,构成包层的扩展三角晶格的壁厚wb与构成毛细管芯的三角晶格的壁厚wc满足wb<wc的关系。
15.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,包层设置有圆形或六边形的空孔,毛细管芯设置有圆形或六边形的空孔。
16.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯由共计七个空孔构成,其中,中心一个,包围该中心的一层六个。
17.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,包层的扩展三角晶格的节距为Λ时,该扩展三角晶格的壁厚wb满足0.03Λ≤wb≤0.2Λ的关系。
18.根据权利要求17所述的扩展三角晶格式光子带隙光纤,其特征在于,毛细管芯的三角晶格的壁厚wc满足0.05Λ≤wc≤0.25Λ的关系。
19.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,仅存在60%以上的传输功率集中于毛细管芯区域的纤芯模式,不存在40%以上的传输功率存在于毛细管芯区域以外的表面模式。
20.根据权利要求13所述的扩展三角晶格式光子带隙光纤,其特征在于,在0.6Λ≤wr≤Λ、0.04Λ≤wb≤0.12Λ、0.06Λ≤wc≤0.18Λ时,在波长λ满足0.8≤Γ/λ≤1.8的范围内存在单模,其中,Λ表示扩展三角晶格的节距,wr表示扩展三角晶格内的石英玻璃部分的直径,wb表示包层的扩展三角晶格的壁厚,wc表示毛细管芯的三角晶格的壁厚,Γ=2Λ。
全文摘要
本发明提供一种扩展三角晶格式光子带隙光纤,在其石英玻璃部分沿光纤长度方向设有多个空孔,具有该空孔排列成扩展三角晶格状的包层,并且具有多个空孔排列成三角晶格状的毛细管芯,毛细管芯的空孔与包层的空孔相比,各个空孔的截面积小。
文档编号G02B1/00GK101046527SQ200710090918
公开日2007年10月3日 申请日期2007年3月23日 优先权日2006年3月29日
发明者官宁, 竹永胜宏, 姬野邦治 申请人:株式会社藤仓
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1