显示设备及其主动式阵列开关基板的制作方法

文档序号:11772401阅读:195来源:国知局
显示设备及其主动式阵列开关基板的制作方法与工艺

本发明涉及一种显示设备及其主动式阵列开关基板,特别是涉及一种显示设备及其主动式阵列开关,可增加太阳能的产生效益。



背景技术:

太阳能是一种具有无污染的能源,可解决目前能源短缺与石化能源污染的问题,一直是最受瞩目的焦点。而太阳能电池(solarcell)可直接将太阳能转换为电能,因此成为目前相当重要的研究课题。在目前的太阳能电池市场中,使用单晶硅与多晶硅的电池约占百分之九十以上。但是,这些太阳能电池需使用厚度约150微米至350微米的硅芯片作为材料,其成本较高。再者,由于太阳能电池的原材料采用高质量的硅晶锭,近年来因使用量的明显成长,已日渐不足。因此,具有低成本、容易大面积生产与模块化制程简单的薄膜太阳能电池(thinfilmsolarcell)研发乃成为新的发展方向。

依照光电效应,当光线照射在导体或半导体上时,光子与导体或半导体中的电子作用,会造成电子的流动,而光的波长越短,频率越高,电子所具有的能量就越高,例如紫外线所具有的能量便高于红外线,因此,同一材料被紫外线照射产生的流动电子能量将较高。并非所有波长的光都能转化为电能,只有频率超越可产生光电效应的标准值时,电流才能产生。

现有技术的太阳能电池的光电转换层通常使用非晶硅(a-si)薄膜,但因为其能隙介于1.75至1.8ev之间,只能吸收波长小于750nm的太阳光,不能吸收到整个太阳能光谱,导致硅薄膜太阳能电池的光电转换效率偏低。



技术实现要素:

为了解决上述光电转换效率偏低的问题,本发明的目的即在于提供一种主动式阵列开关基板,包括:一基板;一主动式阵列开关,形成于所述基板上,所述主动式阵列开关包括有一源极电极;一太阳能结构,配置于所述源极电极上,所述太阳能结构包括一太阳能电池;以及一可透光电极,覆盖于所述太阳能电池上;其中,所述太阳能电池包括一n型层、一微晶硅结构i型层及一p型层,自远离所述源极电极的方向依序堆栈而成。

在本发明的实施例中,所述微晶硅结构i型层是由硅甲烷与氢气以等离子体辅助化学气相沉积制成,所述氢气与所述硅甲烷的混成比值介于40~200。

在本发明的实施例中,所述可透光电极的材质选自氧化锌、二氧化锡、氧化铟锡及氧化铟其中之一。

为了解决上述光电转换效率偏低的问题,本发明的另一目的即在于提供一种主动式阵列开关基板,包括:一基板;一主动式阵列开关,形成于所述基板上,所述主动式阵列开关包括有一源极电极;一第一太阳能结构,配置于所述源极电极上,所述第一太阳能结构包括一第一太阳能电池;一第二太阳能结构,配置于所述第一太阳能结构上,所述第二太阳能结构包括一第二太阳能电池;以及一可透光电极,覆盖于所述第二太阳能电池上;其中,所述第一太阳能电池包括一n型层、一微晶硅结构i型层及一p型层,自远离所述源极电极的方向依序堆栈而成,所述第二太阳能电池包括一n型层、一非晶硅结构i型层及一p型层,自远离所述源极电极的方向依序堆栈而成。

在本发明的实施例中,所述微晶硅结构i型层是由硅甲烷与氢气以等离子体辅助化学气相沉积制成,所述氢气与所述硅甲烷的混成比值介于40~200。

在本发明的实施例中,所述可透光电极的材质选自氧化锌、二氧化锡、氧化铟锡及氧化铟其中之一。

为了解决上述光电转换效率偏低的问题,本发明的又一目的即在于提供一种显示设备,包括:一显示面板;至少一堆栈式太阳能结构,配置于所述显示面板的周围,用以吸收光线并转换成电能供所述显示设备使用;以及一主动式阵列开关,配置于所述显示面板的一侧,用以控制所述显示面板的显像功能。

在本发明的实施例中,所述堆栈式太阳能结构包括:一透明基板;多个可透光电极,等间距配置于所述透明基板上;多个太阳能结构,以适当的距离分别沉积在对应的所述可透光电极上,使得每一可透光电极与其对应太阳能结构定义为一个太阳能电池单元;以及多个金属电极,分别形成于对应的所述太阳能结构上;其中,所述太阳能结构包括一第一太阳能电池与一第二太阳能电池,所述适当的距离使得所述透明电极可以局部露出而不被所述太阳能结构完全覆盖。

在本发明的实施例中,所述可透光电极的材质选自氧化锌、二氧化锡、氧化铟锡及氧化铟其中之一。

在本发明的实施例中,所述金属电极的材质选自铝(al)、银(ag)、钼(mo)、铜(cu)、钛(ti)及其合金其中之一。

由于微晶硅在太阳光中可吸收长波长的太阳光,上述各实施例应用在显示设备中,可有效的增加太阳能的产生效益。

附图说明

图1是本发明主动式阵列开关基板的结构示意图。

图2是本发明另一实施例的主动式阵列开关基板的结构示意图。

图3是本发明采用p-i-n微晶硅的薄膜式太阳能电池的光波长-光电流光谱图。

图4a至4c是本发明堆栈式p-i-n微晶硅的薄膜式太阳能电池的示意图。

图5是本发明采用堆栈式p-i-n微晶硅的薄膜式太阳能电池的显示设备的式意图。

具体实施方式

以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。

附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本发明不限于此。

在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。可以理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。

另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种显示设备及其主动式阵列开关基板,其具体实施方式、结构、特征及其功效,详细说明如后。

请参阅图1。图1是本发明主动式阵列开关基板的结构示意图。如图1所示,本发明主动式阵列开关基板包括:一基板21;一主动式阵列开关22形成在基板21上,用来驱动显示设备内部的液晶结构(图未示),且主动式阵列开关22具有一源极电极221;一太阳能结构23配置在源极电极221上,可吸收光线转换成电能供显示设备使用;以及一可透光电极234,覆盖于太阳能结构23上。

在本实施例中,太阳能结构23为p-i-n微晶硅结构的薄膜式太阳能电池,其底层为n型层231,中间为微晶硅结构的i型层232,上层为p型层233,也就是说,p-i-n三层是自远离源极电极221的方向依序堆栈而成,其中微晶硅结构的i型层232是光电转换的主要区域。

范例性的显示设备,其常用的主动式阵列开关为薄膜晶体管(tft),而目前硅基太阳能电池中以非晶硅/微晶硅多接面薄膜式太阳能电池的效率最佳,且其制程设备可选用与薄膜晶体管相同的等离子体辅助化学气相沉积(pecvd)来制作,因此非常适合将两者加以结合。由于薄膜晶体管的制作方法已为本领域具备通常知识者所熟知的技术,因此本文不再加已赘述。在作为主动式阵列开关的薄膜晶体管完成之后,可于主动式阵列开关22的源极电极221上继续沉积n型非晶硅作为薄膜式太阳能电池的n型层231,然后在n型层231上制作微晶硅结构的i型层232。微晶硅结构藉由混成气体源硅甲烷(silane,sih4)及氢气(h2)以等离子体辅助化学气相沉积制成i型层232,其中,氢气的掺杂量需占有混成气体中相当高的比例以提升微晶硅结构的结晶度,在本发明的实施例中,氢气与硅甲烷的混成比例可介于40~200。当i型层232完成之后,继续在其上接着沉积p型非晶硅作为p型层233,然后在其上镀上可透光的透明电极234协助将产生的电流导出,即完成了太阳能结构23的制作。其中,透明电极234的材质可以选自氧化锌(zno)、二氧化锡(sno2)、氧化铟锡(ito)及氧化铟(in2o3)其中之一。

请参阅图2,图2是本发明另一实施例的主动式阵列开关基板的结构示意图。详细的制程大致如上一实施例所述,在作为主动式阵列开关的薄膜晶体管完成之后,可于主动式阵列开关32的源极电极321上依序沉积n型非晶硅作为一第一太阳能结构33的n型层331,然后在n型层331上制作微晶硅结构的i型层332,接着在其上沉积p型非晶硅作为p型层333,即可完成第一太阳能结构33形成一p-i-n微晶硅的薄膜式太阳能电池。

接着以相同的方式在第一太阳能结构33制作第二太阳能结构34,即在第一太阳能结构33上依序沉积n型非晶硅作为第二太阳能结构34的n型层341,然后在n型层341上制作i型层342,i型层342的材质可以依需求选择非晶硅或锗氧化层(geoc),本实施例是采非晶硅,但不限于此,接着在其上沉积p型非晶硅作为p型层343,最后在p型层343上镀上可透光的透明电极344协助将产生的电流导出,即可完成第二太阳能结构34形成一p-i-n非晶硅的薄膜式太阳能电池。换而言之,p-i-n微晶硅的薄膜式太阳能电池包括n型层、微晶硅结构i型层及p型层,自远离源极电极321的方向依序堆栈而成,而p-i-n非晶硅的薄膜式太阳能电池包括n型层、非晶硅结构i型层及p型层,自远离源极电极321的方向依序堆栈而成,微晶硅与非晶硅的的薄膜式太阳能电池的i型层分别为提供光电转换的主要区域。

同样的,透明电极344的材质可以选自氧化锌(zno)、二氧化锡(sno2)、氧化铟锡(ito)及氧化铟(in2o3)其中之一。而第一太阳能结构33与第二太阳能结构34的串接即形成一多接面薄膜式太阳能电池,对于光吸收效应将有显著的提升。

进一步的,请参阅图3。图3是本发明采用p-i-n微晶硅的薄膜式太阳能电池的光波长-光电流光谱图。一般的太阳能电池通常都使用非晶硅薄膜来当作光电转换层,但因为其能隙通常介于1.75至1.8ev之间,只能吸收波长介于360~750nm之间的光波,效率偏低。因此为了增加太阳能电池对光波的利用,通常会再堆栈微晶硅薄膜层,形成堆栈式(tandem)太阳能电池以提升其效能。微晶硅的能隙通常介于1.1至1.2ev之间,能够吸收大于750nm小于1100nm的光波波长,可以补足非晶硅所无法吸收的光波段。此外,锗氧化层(geoc)可吸收的波长范围介于240~750nm之间,对于波长小于360nm的高能光波而言,也是可选择的材料之一。

请参阅图4a至4c,图4a至4c是本发明堆栈式p-i-n微晶硅的薄膜式太阳能电池的示意图。在前面实施例中,薄膜式太阳能电池是制作在tft侧基板与薄膜晶体管直接结合在一起,其优势为直接与电性组件连接,电性传导效能佳。然而在其上方还有具备彩色滤光色阻单元的上侧基板,因此在整个显示设备的位置而言较为偏向内侧底部,其对于外部光线的吸收效能偏低。因此在本实施例将薄膜式太阳能电池往上移至上侧基板的一侧,以提升其对外部光线吸收效能。

详细的制程步骤请参阅图4a至4c,首先取得一可透光的透明基板41,然后在其上等间距镀上多个可透光电极431,其材质可以选自氧化锌(zno)、二氧化锡(sno2)、氧化铟锡(ito)及氧化铟(in2o3)其中之一。接着以图案化制程蚀刻出间隔沟渠以定义出一个太阳能电池单元43的大小,然后再将多个太阳能结构432以适当的距离分别沉积在对应的可透光电极431上,使得每一个可透光电极431与其对应的太阳能结构432定义为一个太阳能电池单元43,也就是说,一个太阳能结构432包括一个p-i-n微晶硅的薄膜式太阳能电池与一个p-i-n非晶硅的薄膜式太阳能电池。同样的,再以图案化制程蚀刻出太阳能电池单元43彼此之间的间隔沟渠,此一间隔沟渠位置较前次可透光电极431的间隔沟渠略微偏移一段距离,让透明电极431可以局部露出而不会被太阳能结构432完全覆盖。最后再于p-i-n微晶硅结构432的上方镀上金属电极433,其材质可以选择铝(al)、银(ag)、钼(mo)、铜(cu)、钛(ti)或其他适合的金属或合金。同样的再以图案化制程蚀刻出太阳能电池单元43彼此之间的间隔沟渠,此一间隔沟渠位置也是较前次p-i-n微晶硅结构432的间隔沟渠略微偏移一段距离,让不同太阳能电池单元43的金属电极433可以完全分开,而且可以与相邻的太阳能电池单元43的透明电极431形成电性连接,所有的太阳能电池单元43因而形成了电性串联的结构,可将太阳能电池单元43产生的电流顺利导出加以运用。

请参阅图5,图5是本发明采用堆栈式p-i-n微晶硅的薄膜式太阳能电池的显示设备的式意图。如图5所示,显示设备,包括:一显示面板12;至少一太阳能结构13,配置在显示面板12的周围,用以吸收光线并转换成电能供显示设备使用;一主动式阵列开关阵列14,配置在显示面板12的一侧,用以可控制显示面板12的显像功能。依本实施例制作的显示设备,可由外部电源提供电能来显示影像,亦可以藉由外部的光源照射产生电能来驱动显示设备显示影像。

在不同实施例中,显示面板12可例如为液晶显示面板、oled显示面板、qled显示面板、曲面显示面板或其他显示面板。

本发明在范例性的显示设备内部加入薄膜式太阳能电池,其制作设备与原显示设备所使用的制程设备相同,不会造成额外的制程设备负担,而且所加入的薄膜式太阳能电池可为显示设备提供所需的电能,对于显示设备相关产品的开发,预期将可以有效提升效能。由于微晶硅在太阳光中可吸收长波长的太阳光,应用在显示设备中,更可增加太阳能的产生效益。

“在本发明一实施例中”与“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。

以上所述,仅是本发明的较佳实施例而已,幷非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而幷非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1