金属有机框架吸音件和发声装置模组的制作方法

文档序号:12724069阅读:210来源:国知局
金属有机框架吸音件和发声装置模组的制作方法

本发明属于发声装置技术领域,具体地,本发明涉及一种金属有机框架吸音件和发声装置模组。



背景技术:

发声装置模组作为一种将电信号转换为声音信号的能量转换器,是电声产品中不可或缺的部件,常被应用在手机、电脑等消费类电子产品中。发声装置模组通常由外壳和发声装置单体组成,发声装置单体将整个模组外壳内腔分隔成前声腔和后声腔两个腔体。

为了改善发声装置模组的声学性能,现有技术中常采用在后声腔内增设吸音件的手段,以吸收声能,等效于扩大后腔体容积,从而达到降低模组F0效果。传统的吸音件为发泡类泡棉,如聚氨酯类泡棉、三聚氰胺类泡棉等。

近年来,随着穿戴式电子产品的日益轻薄化,发声装置模组的体积也相应地减小,其后声腔体积不断被压缩,从而使得填充于其内传统的泡棉类吸音件的体积也相应变得越来越小,难以使发声装置模组的谐振频率F0降到足够低,已无法保证发声装置模组的中低频音质。

因此,有必要提供一种新型的、效果更佳的吸音件,来代替传统的发泡类泡棉。在电子产品小型化的情况下,使发声装置模组能够达到声学性能的要求。



技术实现要素:

本发明的一个目的是提供一种吸音件的新技术方案。

根据本发明的第一方面,提供了一种金属有机框架吸音件,所述金属有机框架吸音件包括金属有机框架多孔材料,所述金属有机框架多孔材料由金属离子与有机小分子配体,形成具有周期性网络结构的多孔材料,所述金属有机框架多孔材料中具有微孔和介孔,所述微孔的孔径范围为0.3-0.8纳米,所述介孔的孔径范围为2-40纳米,所述金属有机框架吸音件中具有大孔,所述大孔的孔径大于0.1微米。

可选地,所述金属离子至少包括铜、铁、锌、锰、铟、镉、钴中一种元素的离子。

可选地,所述小分子配体至少包括甲酸、丙二酸、酒石酸或柠檬酸中的至少一种。

可选地,所述金属有机框架吸音件包括大孔件,所述金属有机框架材料配置为附着在大孔件上,所述大孔件上具有所述大孔。

可选地,所述大孔件为有机高分子微球,所述有机高分子微球具有孔道结构,所述金属有机框架多孔材料结晶复合在所述高分子微球的表面和孔道结构内。

可选地,所述有机高分子微球由甲基丙烯酸缩水甘油酯聚合制成。

可选地,所述大孔件为泡棉,所述泡棉具有孔道结构,所述金属有机框架多孔材料附着在所述有机泡棉的表面和孔道结构上。

可选地,所述金属有机框架多孔材料制备成吸音粉末,所述吸音粉末通过粘接剂和模具形成预定形状的金属有机框架吸音件,所述吸音粉末中的颗粒间的间隙构成所述大孔。

可选地,所述金属有机框架吸音件配置为能直接喷涂在发声装置模组的声腔中的吸音层,所述金属有机框架多孔材料制备成吸音粉末,所述吸音粉末与粘接剂混合,粘接固定在发声装置模组的声腔内壁上,形成吸音层,所述吸音粉末的颗粒间的间隙构成所述大孔。

可选地,所述微孔的孔径局部峰值在0.4-0.7纳米,所述介孔的孔径局部峰值在2-40纳米,所述大孔的孔径局部峰值在0.1-25微米,所述金属有机框架吸音件的比表面积分布范围为200-900m2/g。

可选地,所述金属有机框架吸音件配置为用于设置在发声装置模组中能够接收声音的区域。

本发明还提供了一种发声装置模组,包括模组壳体和发声装置单体以及上述的金属有机框架吸音件,所述发声装置单体和金属有机框架吸音件设置在所述模组壳体中。

本发明的一个技术效果在于,相对于传统的泡棉作为吸音件,本发明提供的金属有机框架吸音件具有更好的声学性能改善效果。

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。

附图说明

被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。

图1是本发明一种具体实施方式提供的金属有机框架吸音件的结构示意图;

图2是本发明另一种具体实施方式提供的金属有机框架吸音件的结构示意图;

图3是本发明具体实施方式中金属有机框架吸音件置于发声装置模组中的示意图。

具体实施方式

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。

在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。

本发明提供了一种金属有机框架吸音件,该吸音件中主要发挥吸音作用的是金属有机框架多孔吸音材料。所述金属有机框架多孔吸音材料由金属离子与有机小分子配体,通过自组装过程形成的具有周期性网络结构的多孔材料。所述金属有机框架多孔材料中具有微孔和介孔,所述微孔的孔径范围在0.3-0.8纳米之间。这种微孔主要起到吸附、脱附空气分子的作用,是吸音件中直接起到吸音作用、吸收声压作用的结构。所述介孔的孔径范围为2-40纳米之间。所述介孔也能够起到吸附、脱附空气分子的作用,并且,所述介孔还能够使空气分子快速的进入或脱出微孔,起到加快空气进出的作用。由于发声装置的后声腔中声压变化的频率很快,所以,有必要使空气分子能够快速进出所述微孔,达到虚拟增加声容性能要求。

对于金属有机框架多孔材料形成金属有机框架吸音件的方式,本发明不进行具体的限制,本发明的后续内容中也会例举出可选的实施方式。特别的,所述金属有机框架吸音件中还具有大孔,所述大孔的孔径大于0.1微米。所述大孔的作用是提高空气进出金属有机框架吸音件的速度,使空气分子能够快速的从后声腔中进入到金属有机框架吸音件内部的介孔和微孔中,相反的,也使空气分子快速脱出。本发明中可以采用多种形式形成所述大孔,本发明不对此进行限制。

可选地,所述金属离子至少包括铜、铁、锌、锰、铟、镉、钴中一种元素的离子。所述小分子有机配体则可以至少包括甲酸、丙二酸、酒石酸或柠檬酸中的至少一种。通过自组装过程形成的具有周期性网络结构形成金属有机骨架多孔材料。金属有机框架多孔材料具有材质稳定的特点,形成的吸音件的结构可靠性更高,金属有机骨架材料孔道尺寸大小可通过选择不同长度的配体实现。可选地,本发明并不对构成金属有机框架多孔材料的金属离子和羧酸进行特别的限制,以上为列举的,也符合吸音材料性能要求的金属离子和有机小分子配体,也属于本发明的变换形式。

可选地,所述金属有机框架吸音件还包括大孔件,所述大孔件中具有孔道结构,这些孔道结构构成所述大孔。所述金属有机框架多孔材料配置为附着在所述大孔件的表面和孔道结构中。在这种实施方式中,所述金属有机框架吸音材料可以配置成粉末或者浆料,使金属有机框架多孔材料能够更好的附着在大孔件上。

进一步的,在本发明的一种具体实施方式中,所述大孔件可以为有机高分子微球。所述有机高分子微球中具有孔道结构,可以作为金属有机框架吸音件的大孔。所述有机高分子微球可以是金属有机框架多孔材料的长晶基材,即有机高分子微球作为金属有机框架多孔材料结晶、生长的基材。所述金属有机框架多孔材料直接在有机高分子微球上形成结晶。在制备所述金属有机框架吸音件时,可以将金属有机框架多孔材料的原材料和有机高分子微球一同置于结晶反应釜中,这样,合成的晶化金属有机框架多孔材料会直接生长复合在所述有机高分子微球的表面和孔道结构内。

可选地,所述有机高分子微球可以由甲基丙烯酸缩水甘油酯聚合制成。当然,其它适合结晶复合金属有机框架多孔材料的有机高分子材料也可以作为所述有机高分子微球,本发明不对此进行特别限制。

在本发明的另一种实施方式中,如图1所示,金属有机框架吸音件1的所述大孔件可以为泡棉20,所述泡棉20经发泡材料发泡形成,自身具有良好的多孔疏松结构特点。所述泡棉20的孔道结构可以作为所述大孔。所述金属有机框架多孔材料10附着在所述泡棉20的表面和孔道结构内。在这种实施方式中,可选的成型方法是,将所述金属有机框架多孔材料10配置成吸音浆料,之后将所述泡棉20浸渍在吸音浆料中,使金属有机框架多孔材料10浸入泡棉20,附着在泡棉20的孔道结构内。之后,再进行烘干、干燥处理,使金属有机框架多孔吸音材料在泡棉20上固结,形成所述金属有机框架吸音件1。

可选地,在另一种实施方式中,所述金属有机框架吸音件不采用大孔件,而是通过金属有机框架多孔材料自身的固化连结形成所述大孔。所述金属有机框架多孔材料制备成吸音粉末。通过粘接剂和模具,可以将吸音粉末固结形成预定的形状,直接构成金属有机框架吸音件1。如图2所示,例如可以将吸音粉末和粘接剂充入特定的模具中,进行定型和固化加工,从而定型构成金属有机框架吸音件1。特别地,所述吸音粉末中的颗粒间的间隙构成所述大孔11。通过对粘接剂、固结工艺、吸音粉末颗粒的大小等条件进行控制,可以是颗粒间的间隙满足所述大孔11的条件要求。特别地,模具的形状可以与发声装置模组的声腔的结构相匹配,从而使成型的金属有机框架吸音件1与声腔的结构相匹配,充分利用声腔的空间。

在另一种实施方式中,同样不采用上述大孔件,所述金属有机框架吸音件可以直接配置为形成在发声装置模组的声腔中的吸音层。与上述实施方式类似的,将所述金属有机框架多孔材料制备成吸音粉末,之后将吸音粉末与粘接剂混合,将吸音粉末粘接固定在发声装置模组的声腔内壁上,形成吸音层。由于吸音粉末在声腔内壁上的堆积,吸音粉末的颗粒间的间隙能够构成所述大孔。

图3示出了所述金属有机框架吸音件1固定在发声装置模组的声腔中的结构。所述发声装置模组可以具有模组壳体30,模组壳体中具有后声腔31和单体区32,发声装置单体33置于所述单体区32中。所述金属有机框架吸音件1置于所述后声腔31中,发声装置单体33工作时产生的声音除了会从出声口传出外,也会传到所述后声腔31中,金属有机框架吸音件1能够起到吸收声音的作用。

优选地,在本发明的上述实施方式中,所述微孔的孔径局部峰值在0.4-0.7纳米,所述介孔的孔径局部峰值在2-40纳米,所述大孔的孔径局部峰值在0.1-25微米。优选地,所述大孔的孔径范围在0.1-25微米之间。

可选地,所述金属有机框架吸音件的比表面积分布范围为200-900m2/g。优选地,比表面的分布范围为250-550m2/g。

在上述参数范围内,所述金属有机框架吸音件的吸音效果更好,能够更有效的降低发声装置模组的F0。

特别地,本发明提供的金属有机框架吸音件可以用于发声装置模组。该吸音件设置在发声装置模组中能够接收到声音的区域,通常可以是模组的后声腔。当然,本发明并不对金属有机框架吸音件的应用进行具体限制,在其它实施方式中,所述金属有机框架吸音件还可以用在其它需要吸收声音的器件中。

本发明提供的金属有机骨架吸音件能够使发声装置模组谐振频率大大降低,优于传统吸音棉材料。金属有机框架材料孔道尺寸的大小可通过选择不同的金属离子和有机小分子配体进行调控。孔道极性可通过对配体侧链进行修饰来实现控制。由于该金属有机框架多孔材料易调变的孔道及孔道化学环境,发现具有此种多级孔结构的金属有机框架多孔材料的吸音件,在扬声器模组声学性能方面出现低频灵敏度提高、谐振频率F0降低的现象。

另一方面,该金属有机框架多孔材料化学稳定性好、耐高温、密度低、机械强度高等优点。制成的吸音件的寿命较泡棉类吸音件有效延长。

并且,本发明的金属有机框架吸音件合成工艺简单,可根据特定形状的声腔结构制作成形,产率较高,一定程度上可降低成本,极大扩展了金属有机框架多孔吸音材料在微型发声装置产品中的应用。

本发明还提供了一种发声装置模组,所述发声装置模组包括模组壳体、发声装置单体以及上述金属有机框架吸音件。所述发声装置单体和金属有机框架吸音件设置在所述模组壳体中。发声装置单体配置为能产生声音,并从模组壳体的出声口传出。所述金属有机框架吸音件则位于模组壳体的后声腔或其它位置,用于吸收模组壳体内的声音。

虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1