光电倍增管和放射线检测装置的制作方法

文档序号:2933870阅读:180来源:国知局
专利名称:光电倍增管和放射线检测装置的制作方法
技术领域
本发明涉及光电倍增管和放射线检测装置。
背景技术
以往,公知有下述的光电倍增管利用由电极层叠体构成的电子倍 增部对由设在真空容器的一侧的光电面发射出的电子进行放大,并利用 由与各通道区域对应地排列的多个阳极构成的电子检测部对该电子进行 检测,所述电极层叠体通过层叠形成有多个通道区域的倍增极而成。(例 如,参照专利文献l、 2)。在这些光电倍增管中,电极层叠体从构成电极 层叠体的各倍增极突出有连接部,该电极层叠体由分别连接在各连接部 上的芯柱脚,以与电子检测部电绝缘的状态支承在电子检测部上。
并且,存在以下述方式构成的光电倍增管设置在制造光电倍增管 时用于使电子倍增部与光电倍增管的管轴平行地滑动的轴,在完成时将 电子倍增部固定在该轴上(例如,参照专利文献3)。并且,还公知有下 述的电子倍增管除了分别与各倍增极连接的芯柱脚外,通过将电极层 叠体配置在配置于电子检测部的周缘部的绝缘性的衬垫上来支承电极层
专利文献l:日本特开2000-149860号公报(第3页,第2图) 专利文献2:日本特开平9-288992号公报(第4页,第2图) 专利文献3:日本特开昭62-287560号公报(第4 5页,第1图) 在上述那样的光电倍增管中,希望通过提高配置在排列多个阳极而
构成的电子检测部上的电极层叠体的固定强度,来使耐震性充分高,从
而提高可靠性。

发明内容
因此,本发明就是为了解决上述课题而完成的,其目的在于提供耐 震性优异、可提高光电面和电子倍增部之间的位置精度并可确保预定的 检测特性的光电倍增管和放射线检测装置。
为了达到上述目的,本发明的光电倍增管在具有构成一侧端部的受 光面板和构成另一侧端部的芯柱的真空容器内具备光电面,其将通过 受光面板入射的入射光转换为电子;电子倍增部,其使光电面发射出的 电子倍增;以及电子检测部,其根据电子倍增部倍增后的电子送出输出 信号,其特征在于,电子倍增部具有电极层叠部,所述电极层叠部通过 将包含构成多个通道的倍增极的电极层叠多层而成,电子检测部具有多 个阳极,所述多个阳极与电极层叠部的最末层的电极分幵并对置,且与 通道对应地排列,在芯柱中设有用于载置最末层的电极的支承单元。
根据这样的结构,电子倍增部通过支承单元稳定地支承,耐震性良 好。并且,由于电子倍增部的位置被高精度地确定,因此能够对从光电 面至电子倍增部的距离进行准确地设定。另外,由于在阳极和倍增极之 间没有夹着绝缘物,因此能够防止由于绝缘物带电而产生漏电流或由于 倍增后的电子与绝缘物碰撞而产生的发光。
此时,优选多层电极相互夹着绝缘体而层叠,且绝缘体和支承单元 同轴地配置。
当支承单元和绝缘体这样同轴地配置时,能够在层叠方向上施加充 分的压力来对电子倍增部进行固定,耐震性进一步提高。
在上述任一光电倍增管中,作为电极层叠部的最末层的电极,也可 以设置具有使从倍增极发射出的电子到达阳极的开口部的引出电极。
根据这样的结构,在最末层的倍增极和电子检测部之间设置引出电 极,所述引出电极被赋予比最末层的倍增极的电位高、比电子检测部的 电位低的电位,由此,能够均匀地提高最末层的倍增极和电子检测部之 间的电场强度,即使是在构成电子检测部的各阳极的设置精度存在偏差 的情况下,也能够将电子均匀地从最末层的倍增极引出。
优选电子检测部是以二维方式配置有多个阳极的多阳极、或者以一 维方式配置有多个阳极的线性阳极中的任一个。
根据这样的结构,能够利用多个阳极对电子进行检测,能够对入射 至光电倍增管中的入射光的入射位置进行测定。 另外,优选支承单元由导电性材料形成。
根据这样的结构,即使电子与支承单元碰撞也不会发光,能够防止 噪声。
另外,优选支承单元具有从芯柱沿电极层叠部的层叠方向延伸的 支承部;以及载置最末层的电极的载置部,载置部在与层叠方向正交的 平面中的截面积比支承部在与层叠方向正交的平面中的截面积大。
根据这样的结构,由于载置部在与层叠方向正交的平面中的截面积 比支承部在与层叠方向正交的平面中的截面积大,因此能够可靠地规定 电极层叠体在层叠方向上的位置精度,同时能够将电极层叠体稳定地载 置在载置部的载置面上。
另外,优选在载置部的载置最末层的电极的面上形成有第一嵌合部, 在最末层的电极的载置于载置部的面上形成有第二嵌合部,当最末层的 电极载置在支承单元上时,第一嵌合部和第二嵌合部相互嵌合。
根据这样的结构,能够提高电极层叠部在与层叠方向正交的平面方 向上的位置精度。
如果在上述任一光电倍增管的受光面板的外侧设置将放射线转换成 光并输出的闪烁器,则能够得到起上述作用的适当的放射线检测装置。
根据本发明,能够提供耐震性高、光电面和电子倍增部之间的位置 精度提高从而可确保预定的特性的光电倍增管和放射线检测器。


图1是本发明的一个实施方式的放射线检测装置1的示意剖面图。
图2是沿图i的n — n面的光电倍增管io的示意剖面图。
图3是示出芯柱29的内侧面29a、管状部件31以及延伸部32的俯 视图。
图4是沿图3的IV — W平面的剖面图。 图5是图2的局部放大图。
图6是图4的局部放大图。 图7是图1的局部放大图。图8是从z轴上方侧观察阳极25及其z轴下方侧的结构的概观图。 图9是图8的局部放大图。图10是从x轴上方观察倍增极Dyl2及其z轴下方侧的结构的概观图。图11是图IO的局部放大图。图12是从z轴上方侧观察聚焦电极17及其z轴下方侧的结构的概 观图。图13是图12的局部放大图。图14是将从光电面14到倍增极Dyl的电子轨道投影到xy平面和 xz平面上进行表示的图。图15是示出设置于通常的倍增极的隔壁的图。 图16是示出设置于预定的倍增极的隔壁的图。 图17是设置了很多隔壁的倍增极的整体图。图18是图n的剖面图。图19是示出排气管40附近的结构的剖面图。图20是示出排气管40和芯柱29的制造方法的图。图21是示出排气管40和芯柱29的制造方法的图。图22是示出排气管40和芯柱29的制造方法的图。图23是示出第一变形例的阳极125的立体图。图24是示出第二变形例的放射线检测装置100的示意剖面图。图25是示出第三变形例的放射线检测装置200的示意剖面图。图26是示出第四变形例的放射线检测装置100的示意剖面图。图27是示出延伸部32的开口部的形状的变形例的俯视图。符号说明1:放射线检测装置;3:闪烁器;5:入射面;7:出射面;10:光 电倍增管;13:受光面板;14:光电面;15:侧管;17:聚焦电极;19: 引出电极;21:支承脚;23:绝缘部件;25:阳极;27:芯柱脚;29:
芯柱;31:管状部件;32:延伸部;33:上升部;35:轴;47:引线脚。
具体实施方式
以下,参照

本发明的实施方式。图1 图22是示出包含本发明的一个实施方式的光电倍增管的放射 线检测装置的图。在各图中对实质上相同的部分赋予同一标号,省略重 复说明。另外,在以下的说明中,"上"、"下"等用语是基于图面所示状 态为了方便而采用的。图1是本实施方式的放射线检测装置1的示意剖面图,图2是沿图i的n — n面的光电倍增管10的示意剖面图。如图1、图2所示,放射线检测装置1是对入射的放射线进行检测并作为信号输出的装置,其具 有将入射的放射线转换为光并输出的闪烁器(scintillator) 3;以及将入 射的光转换为电子并倍增后进行检测的光电倍增管10。光电倍增管10具 有截面为大致矩形的管状形状,设管轴的方向为z轴、与图1的纸面垂 直的轴为x轴、与z轴和x轴垂直的轴为y轴。闪烁器3在z轴方向一端侧具有入射面5,在另一端侧具有输出面7, 该闪烁器3具有截面为大致矩形的形状。在闪烁器3中,放射线从入射 面5侧入射,入射的放射线在闪烁器3的内部被转换为光并在闪烁器3 内传输,从输出面7侧被输出。光电倍增管10连接在闪烁器3的输出面 7侧,闪烁器3的中心轴和光电倍增管10的管轴大致同轴地设置。光电倍增管10是通过气密地连接和固定下述部件而形成的真空容 器构成z轴方向一侧端部的受光面板13;构成另一侧端部的芯柱29; 管状部件31,其设在芯柱29的周缘部;排气管40,其设在芯柱29的xy 平面的大致中央;以及侧管15,其具有筒形形状。在光电倍增管10的真 空容器内部配置有聚焦电极17;具有多个倍增极Dyl Dyl2的电极层 叠部;电子检测部,其具有对电子进行检测并将其作为信号输出的多个 阳极25;以及引出电极19,其位于电极层叠部和电子检测部之间。受光面板13具有例如由玻璃形成的大致矩形的板状形状,在其内部 侧、即z轴方向下表面侧设有将入射光转换为电子的光电面14。光电面14例如通过使碱金属蒸气与预先蒸镀过的锑反应而形成。光电面14设置 在受光面板13的内部侧的大致整个面上,将从闪烁器3输出并通过受光 面板13入射来的光转换为电子并发射出。侧管15具有例如由金属形成 的截面呈大致矩形的筒形形状,构成光电倍增管10的侧面。在侧管15 的一端部相互气密地固定有受光面板13,在侧管15的另一端部经由管状 部件31相互气密地固定有芯柱29。此处,光电面14与侧管15电连接, 且电位相同。图3是示出芯柱29的内侧面29a、管状部件31以及延伸部32的俯 视图。如图1 图3所示,芯柱29具有例如由科瓦铁镍钴合金玻璃(Kovar glass)形成的大致矩形的板状,具有靠光电倍增管10内部侧的内侧面 29a;外侧面29b;以及连接内侧面29a和外侧面29b的周缘部29c。在芯 柱29中,气密地贯穿有与阳极25的通道数量对应数量(此处为64根) 的导电性的芯柱脚27,该芯柱脚27用于支承阳极25。在芯柱29的周缘部29c上气密地装配有包围周缘部29c的管状部件 31。管状部件31具有例如由金属形成的截面呈大致矩形的管形状,并且 与侧管15也气密地连接。延伸部32从管状部件31沿着芯柱29的内侧 面29a向光电倍增管10的内部侧延伸。延伸部32具有例如由金属形成 的俯视为大致矩形状的环形状。在延伸部32的x轴方向两边缘部形成有多个贯通孔部22、 48,分 别贯穿并固定有支承脚21、引线脚47。并且,在图3的x方向左侧边缘 部中,在延伸部32上立设有聚焦脚51。支承脚21由导电性材料形成,在本实施方式中,在x轴方向两边缘 部上分别设有3根总计设有6根。另外,图2示出沿图3的V—V面的 剖面,如图2所示,支承脚21贯通芯柱29并向z轴方向上方延伸,载 置引出电极19,并且与引出电极19电位相同。如图5所示,支承脚21由支承部21a和载置部21b构成,所述支承 部21a贯穿芯柱29中并在z轴方向延伸,所述载置部21b设在支承部21a 的z轴方向上端,用于载置电极层叠部。此处,载置部21b形成为在xy 平面上的截面积比支承部21a的大,电极层叠部以最下层的电极(本实 施方式中为引出电极19)的下表面与载置部21b的上表面(载置面)接 触的形式载置在支承脚21上。此处,由于载置部21b形成为在xy平面 上的截面积比支承部21a的大,所以能够可靠地规定电极层叠体在z轴 方向上的位置精度,并且,能够将电极层叠体稳定地载置在载置部21b 的载置面上。引线脚47由导电性材料形成,在本实施方式中,在x轴方向两边缘 部总计设有35根。图4示出沿图3的IV — IV面的剖面,如图4所示,引 线脚47贯通芯柱29并向z轴方向上方延伸,分别与预定的倍增极Dyl Dyl2以及引出电极19连接,以提供预定的电位。另外,各引线脚47形 成为与各自所连接的倍增极Dyl Dyl2的位置对应的长度。聚焦脚51 由导电性材料形成,从芯柱29向z轴方向上方延伸,并连接在聚焦电极 17上。聚焦电极17经由焊接在管状部件31上的聚焦脚51与侧管15电 连接,与光电面14电位相同。图5是图2即沿图3的V—V面的剖面的局部放大图,图6是图4 即沿图3的IV — IV面的剖面的局部放大图。如图5、图6所示,在贯通孔 部22、 48中的支承脚21和引线脚47与芯柱29的内侧面29a的连接部 分,形成有通过芯柱29隆起而成的上升部33。此处,若设上升部33与 支承脚21或引线脚47的接点为点Pl,设没有上升部33的情况下内侧面 29a与支承脚21或引线脚47的假想接点为点P2,设上升部33与延伸部 32的接点为点P3,则点Pl —点P3之间的距离比点P3 —点P2之间的距 离长。因此,在本实施方式中,由于存在上升部33,从而可确保支承脚 21或引线脚47与管状部件31的沿面距离很长。如图1、图2所示,聚焦电极17配置成与光电面14隔开预定的距 离对置。聚焦电极17是具有在x轴方向延伸的多个聚焦片17a、和由多 个聚焦片17a形成的多个狭缝状的开口部17b的大致矩形薄型电极,用 于将电子有效地会聚到倍增极Dyl的电子倍增孔18a (参照图7)。聚焦 电极17经由立设在延伸部32上的聚焦脚51 (参照图3)与侧管15电连 接,并与光电面14电位相同。倍增极Dyl Dy12是用于使电子倍增的电极,以大致平行地对置的
方式层叠在聚焦电极17的z轴方向下方。图7是图1的局部放大图。如 图7所示,倍增极Dyl Dyl2是通过yz平面的截面具有凹凸的电子倍 增片18相互离开并平行地排列而成的大致矩形薄板型电极。因此,在倍 增极Dyl Dyl2中,在邻接的电子倍增片18之间形成有在x轴方向延 伸的狭缝状的电子倍增孔18a。预定数量的电子倍增孔18a与各阳极对应, 在与阳极25的各通道的x轴方向边界部对应的位置上,设有在y轴方向 延伸的隔壁71 (参照图15),规定倍增极Dyl Dyl2的多个通道的y轴 方向边界。并且,如图2和图5所示,在各倍增极Dyl Dyl2之间配置 有绝缘部件23。通过引线脚47对倍增极Dyl Dyl2提供从光电面14侧 向芯柱29侧依次升高的电位。引出电极19以与倍增极Dyl2隔着绝缘部件23分开并大致平行地对 置的方式配置在倍增极Dyl2的芯柱29侧。引出电极19是由与倍增极 Dyl Dyl2相同的材料形成的薄板型电极,具有在x轴方向延伸的多个 引出片19a和由多个引出片19a形成的多个狭缝状的开口部19b,该开口 部19b用于使从倍增极Dyl2发射出的电子通过到阳极25,与倍增极 Dyl Dyl2的电子倍增孔18a不同。因此,开口部19b设计成尽量不与 从倍增极Dyl2发射出的电子碰撞。引出电极19被赋予比倍增极Dyl2 的电位高且比阳极25的电位低的预定的电位,使倍增极Dyl2的二次电 子面上的电场强度均匀。此处,所谓二次电子面是指有助于各倍增极Dy 的电子倍增孔18a中形成的电子的倍增的部分。在没有引出电极19的情况下,用于从倍增极Dy12引出电子的电场 依赖于倍增极Dyl2—阳极25之间的电位差和距离。从而,例如,在各 阳极25相对于xy平面稍微倾斜地配置的情况下,倍增极Dyl2 —阳极25 之间的距离根据各个位置而不同,因此,相对于倍增极Dyl2的电场强度 不均匀,不能均匀地引出电子。但是,在本实施方式中,由于在倍增极 Dyl2 —阳极25之间配置有引出电极19,因此相对于倍增极Dy12的电场 由倍增极Dyl2 —引出电极19之间的电位差和距离确定。由于倍增极 Dyl2—引出电极19之间的电位差和距离恒定,因此倍增极Dy12的二次 电子面上的电场强度均匀,从倍增极Dyl2引出电子的力也变得均匀。因 此,即使在各阳极25相对于xy平面稍微倾斜地配置的情况下,也能够 从倍增极Dy 12均匀地引出电子。
引出电极19如上所述,在边缘部载置于由导电体形成的支承脚21 的载置部21b上。如图5所示,由于支承脚21和多个绝缘部件23同轴 地配置在z方向轴35上,所以能够向z轴下方向施加高的压力来固定聚 焦电极17、倍增极Dyl Dy12以及引出电极19。
阳极25是对电子进行检测并经由芯柱脚27将与检测到的电子对应 的信号输出至光电倍增管10的外部的电子检测部,以与引出电极19大 致平行地对置的方式设在引出电极19的芯柱29侧。如图l、图2所示, 阳极25是与倍增极Dyl Dyl2的多个通道对应地设有多个的薄板型电 极,分别焊接连接在芯柱脚27上,并经由芯柱脚27被提供比引出电极 19的电位高的预定的电位。并且,为了在制造时使从排气管40导入的碱 金属蒸气扩散,在阳极25上设有多个狭缝。
以下,对聚焦电极17、倍增极Dyl Dy12、引出电极19以及阳极 25的结构进一步详细说明。
图8是从z轴方向上方侧观察电子倍增部的概观图,图9是图8的 局部放大图。如图8所示,电子倍增部通过将多个(在本实施方式中为 64个)阳极25以二维方式排列而构成,各阳极25分别支承在芯柱脚27 上,并经由芯柱脚27与未图示的电路电连接。
此处,为了方便将单位阳极从图8的左上开始设为阳极25 (l — l)、 25 (l—2)、…、25 (8 — 8)。在各阳极25 (l — l)、 25 (1—2)、…、25 (8 — 8)中,在与邻接的单位阳极之间相互对置地形成有凹部28,在凹 部28中残留有桥残留部26。阳极25在制造时形成为,邻接的单位阳极 彼此通过桥连接起来的一体的阳极板的状态,在一体的状态下将各阳极 焊接并周定在各芯柱脚27上。然后切断桥,使阳极25 (1 —1)、 25 (1 一2)、…、25 (8 — 8)相互独立。桥残留部26是切开桥后残留的部分。
并且,在与x轴方向两边缘部相当的阳极25 (l — l )、 25 (2—1)、、 25 (8 — 1)和阳极25 (l—8)、 25 (2—8)、…、25 (8 — 8)中,除了阳 极25 (1 — 1)、 25 (l—8)、 25 (8 — 1)、 25 (8—8)的角部83夕卜,形成 有缺口部24。由此,通过该缺口部24,避免阳极25和支承脚21、弓l线 脚47以及聚焦脚51接触,并且,电子检测部的有效面扩展至侧管15的 附近。图10是从z轴上方观察倍增极Dy12的概观图,图11是图10的局 部放大图。另外,在图IO、图ll中省略了电子倍增片18的开口部18a、 引出电极19的开口部19b。如图11所示,倍增极Dyl2和引出电极19 在xy平面中与阳极25具有大致相同的外形。gp,在x轴方向两边缘部 形成有避幵支承脚21、弓l线脚47等的缺口部49。在引出电极19的缺口 部49中形成有突出部55,支承脚21通过载置突出部55来载置引出电极 19整体。并且,倍增极Dyl2同样也具有突出部55。对于倍增极Dyl2 的情况,由于其与引线脚47A、 47B连接并被提供预定的电位,所以在 引线脚47A、 47B周围形成有突出部53。并且,在y轴方向两边缘部, 电极一直形成到侧管15的内壁面的附近,特别是在4处的角部突出有角 部85。另外,倍增极Dyl Dy11也是和倍增极Dy12实质上相同的结构, 各引线脚47在z轴方向延伸并与预定的倍增极Dy连接。图12是从z轴上方侧观察聚焦电极17的概观图,图13是图12的 局部放大图。另外,在图12、图13中,省略了图1和图2中示出的聚焦 片17a和开口部17b。如图12、图13所示,聚焦电极17以覆盖阳极25 的缺口部24、倍增极Dyl Dy12以及引出电极19的缺口部49的方式一 直设置到x轴方向周缘部。另外,聚焦电极17的覆盖缺口部24或者缺 口部49的部分形成没有形成狭缝的平板电极部分16, 4个角部成为具有 狭缝的角部87。以下,对上述那样的聚焦电极17、倍增极Dyl Dy12、引出电极19 以及阳极25的xy平面外形给光电倍增管10内部的电子轨道带来的作用 进行说明。图14是将从光电面14到倍增极Dyl的电子轨道投影到xy平 面和xz平面进行表示的图。如图14所示,从光电面14的x轴方向周缘 部发射出的电子通过聚焦电极17的以覆盖缺口部24、 49的方式设置的 平板电极部分16集束到x轴方向中央侧的电子倍增孔用开口部89,如轨 道61那样入射至倍增极Dyl。并且,从光电面14的与角部87对置的区
域发射出的电子由聚焦电极17的角部87集束而如轨道63那样入射至倍 增极Dyl的角部85。这样,由于设有聚焦电极17的角部87和倍增极 Dyl的角部85,所以从光电面14周缘部发射出的电子也有效地入射至倍 增极Dyl。然而,如果从光电面14到倍增极Dyl的电子的行走距离产生差异, 会产生输出信号的时间性波动。例如,从光电面14的靠近中央部发射出 的电子如轨道65那样入射至倍增极Dyl 。虽然轨道61和轨道65入射至 倍增极Dyl的大致同一部分,但是从光电面14到倍增极Dyl的电子的 行走距离存在差异,因此产生输出信号的时间性波动。并且,从光电面 14的与角部87对置的区域发射出的电子利用斜向的轨道63入射至倍增 极Dy的x轴方向中央侧。因此,在各电极上没有设置角部83、 85、 87 的情况下,即,在各电极的角部部分不是有效区域的情况下,为了使从 光电面14的与角部87对置的区域发射出的电子入射至倍增极Dyl,需 要使其大量集束,因此,与轨道61相比,与轨道65的行走距离的差异 进一步变大。但是,在本实施方式中,在倍增极Dyl Dyl2、引出电极 19和阳极25上设有缺口部24、 49,角部83、 85、 87相对于电子的倍增 和检测成为有效区域,因此,以从光电面14的与角部83、 85、 87对置 的区域发射出的电子的行走时间差变小的方式集束。从而,能够将通过 各轨道61、 63、 65入射至倍增极Dyl的电子的时间性波动抑制在最小限 度。其次,对设置于倍增极Dyl Dyl2的隔壁的结构进行说明。图15 是示出设置于通常的倍增极的隔壁的图,图16是示出设置于预定的倍增 极的隔壁的图,图17是设置了很多隔壁的倍增极的整体图,图18是图 17的剖面图。另外,在图15、图16中省略了电子倍增片18。对于倍增极Dyl Dy12,在本实施方式中,如上所述,是在x轴方 向具有狭缝的结构,如图15所示,在y轴方向上设有与阳极25的多个 通道的y轴方向边界部对应的隔壁71。为了在光电倍增管10中获得宽广 的受光面板13的有效区域,使基于入射到受光面板13的周缘部附近的 光从光电面14的周缘部发射出的光电子向xy平面的中心侧集束。由于
来自周缘部的电子伴随着集束而产生损失(k)SS),所以,其结果是存在周缘部的电子倍增率的均匀性降低的倾向。因此,如图16、图17所示, 在倍增极Dy的除去y轴方向周缘部以外的区域设置在y轴方向延伸的隔 壁73,对电子的倍增率进行调节。在这样的结构中,在沿图17的A—A 线的剖面中,如图7所示,电子倍增片18存在于电极层叠部整体,但是, 在沿B—B的剖面中,如图18所示,倍增极Dy5的除去y方向周缘部以 外的部分都成为隔壁73。在隔壁73部分未形成电子倍增孔18a,入射至 隔壁73的电子对倍增没有帮助,因此,xy平面中央部的电子倍增被抑制, 从而电子的倍增率均匀化。其次,对排气管40的结构进行说明。图19是示出排气管40附近的 结构的剖面图。排气管40气密地连接在芯柱29的中央部。排气管40是 内侧管43和外侧管41的双重结构。为了使外侧管41与芯柱29密接, 外侧管41由与玻璃密接性好且热膨胀系数相等的例如科瓦铁镍钴合金金 属形成,厚度例如为0.5mm,外径例如为5mm,长度例如为5mm。另夕卜, 在芯柱29的厚度为例如4mm时,该情况下,外侧管41比芯柱29的外 侧面29b向外侧突出lmm。由于外侧管41比外侧面29b更向外侧突出, 从而防止芯柱29超过外侧管41进入内侧管43和外侧管41之间。并且, 为了容易进行密封(压接),排气管40构成为即使在密封后,内侧管43 也比外侧管41的下端突出。内侧管43例如由科瓦铁镍钴合金或铜形成,外径例如为3.8mm,切 断前的长度例如为30mm,与外侧管41同轴地配置,芯柱29的靠内侧面 29a侧的一端部与外侧管41气密接合。并且,由于在光电倍增管10制造 完成时气密地密封内侧管43的另一端部,因此优选使其厚度尽量薄,例 如为0.15mm。以向z轴方向上侧突出例如O.lmm的方式配置排气管40 与芯柱29的连接部41a,以免在排气管40与芯柱29的连接部41a处, 芯柱29的材料绕入排气管40的内侧。其次,对光电倍增管10的制造方法进行说明。图20 图22是示出 排气管40和芯柱29的制造方法的图。如图20所示,首先准备外侧管41 和内侧管43。接着,将内侧管43同轴地配置在外侧管41的内部。此时, 使内侧管43和外侧管41的一端彼此的位置对准,利用激光焊接对连接 部41a进行接合。接合后,在外侧管41的外表面上形成用于使其易于与 芯柱29进行熔接的氧化膜。并且,准备管状部件31和延伸部32,在管 状部件31和延伸部32上形成用于使其易于与芯柱29进行熔接的氧化膜。 如图21所示,在芯柱29上,分别形成有预定数量的装配支承脚21的贯 通孔38、装配芯柱脚27的贯通孔30等,并且,在一处形成装配排气管 40的贯通孔34。如图22所示,将排气管40、管状部件31、延伸部32、芯柱29、支 承脚21、芯柱脚27、引线脚47等分别配置在图示的位置并组装进石墨 夹具(未图示)中, 一边利用夹具以夹着芯柱29的内侧面29a、外侧面 29b侧的方式对芯柱29进行加压一边进行正式烧成,从而玻璃和各金属 气密地熔接。此时,通过将芯柱29的材料压出至贯穿延伸部32的贯通 孔部22、 48中的支承脚21和引线脚47与芯柱29的连接部分,从而产 生上升部33。熔接后,卸下夹具,除去氧化膜并进行清洗。这样,芯柱 部分就完成了。接着,将形成为一体的阳极25载置并固定在芯柱脚27上。固定后, 切断桥而独立为阳极25 (l — l)、 25 (1—2)、…、25 (8—8)。在支承脚 21上,与阳极25大致平行地分开载置引出电极19。另外,在引出电极 19上载置电极层叠部,所述电极层叠部通过使倍增极Dyl2 Dyl和聚焦 电极17隔着绝缘部件23依次分开并对置而成。此时,将聚焦电极17与 聚焦脚51连接,并向z轴下方施加压力,将分别与电极Dyl Dyl2对 应的引线脚47固定在突出部53上。其后,将固定有受光面板13的侧管 15端部与管状部件31焊接固定来组装。接着,从排气管40利用真空泵等对光电倍增管10内部进行排气后, 导入碱蒸气,使光电面14和二次电子面活性化。再次对光电倍增管10 内部排气至真空后,将构成排气管40的内侧管43切断成预定的长度, 并对其前端进行密封。此时,为了在将放射线检测装置1载置到电路基 板上时不成为障碍,优选将内侧管43縮短至不损害排气管40与芯柱29 的连接部41a的密接度的程度。通过以上的工序得到光电倍增管10。
在如上构成的本实施方式的放射线检测装置1中,当放射线入射至闪烁器3的入射面5时,向输出面7侧输出与入射的放射线对应的光。 当闪烁器3输出的光入射至光电倍增管10的受光面板13上时,光电面 14发射出与入射的光对应的电子。与光电面14对置地设置的聚焦电极 17对从光电面14发射出的电子进行集束,并使其入射至倍增极Dyl。倍 增极Dyl使入射的电子倍增,并向下一层倍增极Dy2侧发射。这样通过 倍增极Dyl Dyl2依次倍增后的电子经由引出电极19到达阳极25。阳 极25对到达的电子进行检测,并将其经由芯柱脚27作为信号输出至外 部。如图5所示,在光电倍增管10中,具有用于载置电极层叠体的支承 脚21 。通过形成为将电极层叠部载置在构成支承脚21的载置部21b的载 置面上的结构,能够从z轴方向上侧施加大的压力来固定电极层叠部, 电极层叠部的固定强度提高,耐震性提高,同时,电极层叠部(构成电 极层叠部的各电极)的z轴方向的位置精度提高。并且,电极层叠部的 最下层的电极即引出电极19载置并支承在支承脚21的载置部21b上, 与阳极25之间没有夹着绝缘物。因此,能够防止电子与绝缘物碰撞而发 光从而在从阳极25输出的信号中产生噪声。另外,由于支承脚21由导 电性材料形成,所以即使电子发生碰撞也不会发光。因此,能够进一步 防止产生噪声。聚焦电极17、倍增极Dyl Dy12以及引出电极19在夹着与支承脚 21同轴配置的绝缘部件23而相互分开的状态下对置并层叠。因此,能够 在z轴方向上施加更高的压力来固定聚焦电极17、倍增极Dyl Dy12以 及引出电极19,因此耐震性进一步提高。并且,通过使聚焦电极17、倍 增极Dyl Dy12以及引出电极19夹着绝缘部件23层叠,能够正确地规 定各电极的xy平面内的位置。由于在倍增极Dyl Dyl2的光电面14侧设有聚焦电极17,所以能 够使光电面14发射出的电子有效地入射至倍增极Dyl。如图8和图10所示,在倍增极Dyl Dy12、引出电极19以及阳极 25上形成有缺口部49、 24,在缺口部49、 24中配置有支承脚21、引线
脚47。因此,能够充分确保各电极的有效面积,并且能够将由电子的行 走时间差产生的信号的波动降低至最小限度。并且,由于引线脚47朝z 轴方向延伸,形成在倍增极Dyl Dy12、引出电极19以及阳极25上的 缺口部49、 24在z轴方向上重叠,所以能够进一步确保有效面积。并且,如图12所示,由于聚焦电极17以覆盖倍增极Dyl Dy12的 缺口部49的方式一直设置到xy平面周缘部,所以能够使从光电面14中 的与形成在倍增极Dyl Dyl2、引出电极19以及阳极25上的缺口部49、 24对应的区域发射出的电子集束至倍增极Dyl的有效区域,能够大大地 确保光电倍增管10中的光检测的有效面积,并能够防止电子与引线脚47 碰撞而使倍增率降低。并且,如图14所示,聚焦电极17的开口部17b在x轴方向、即与 引出电极19和阳极25的形成有缺口部49、24的边缘部垂直的方向延伸。 优选使尽可能多的电子入射至开口部17b中,但是与聚焦片17a碰撞的 电子不入射至开口部17b中。因此,优选对电子的轨道进行控制,以使 其避开聚焦片17a。特别地,对于从光电面14的与平板状电极部分16对 置的部分入射来的电子,优选对电子的轨道进行控制,以使其避开平板 状电极部分16。此时,从与平板状电极部分16对置的部分入射来的电子 如轨道61那样在x轴方向上前进,但是,与y轴方向的控制相比,x轴 方向的控制、即电子本来前进的方向的控制难。因此,在本实施方式中, 开口部17b在x轴方向、即与引出电极19和阳极25的形成有缺口部49、 24的边缘部垂直的方向延伸,所以只要进行比较容易地y轴方向的控制, 就能够使电子有效地入射至开口部17b中。并且,如图5所示,由于在最末层倍增极Dyl2和阳极25之间设有 引出电极19,所以倍增极Dyl2的z轴方向下侧的电场强度均匀化。因 此,倍增极12的电子发射特性均匀化,例如即使各单位阳极在切断桥后 倾斜,阳极25 —引出电极19之间的距离产生偏差,也能够从倍增极Dy12 针对每个通道区域均匀地引出电子。并且,如图16和图18所示,在预定层的倍增极Dy中设有隔壁73, 能够对开口率进行调节以降低xy平面内的电子倍增率的偏差。
由于阳极25形成为一体,在各阳极固定于所对应的芯柱脚27上之 后将桥切断使单位阳极25独立,因此能够简化将阳极25载置在芯柱脚 27上的工序,并且,各阳极25的设置位置的精度提高。此外,如图8和 图9所示,由于桥设置在凹部28内,因此能够充分确保阳极25的有效 面,并且,由于桥残留部26配置在凹部28内,因此能够防止桥留残部 26之间的放电。并且,通过使用这样以二维方式排列的多阳极 (multianode),能够对要检测的光的xy平面内的入射位置进行检测。如图3所示,芯柱29由玻璃形成,在周缘部29c上设有管状部件31, 在内侧面29a上设有延伸部32,在延伸部32中贯通有支承脚21、引线 脚47,并立设有聚焦脚51。由此,能够在侧管15附近设置各脚,能够 充分确保各电极的有效面。并且,如图6所示,在芯柱29与支承脚21、引线脚47的连接部分 形成有上升部33,能够使管状部件31和各脚的沿面距离增大,具有下述 效果防止产生沿面放电和倍增后的电子与绝缘物碰撞发光而引起的噪 声。并且,由于在延伸部32上设有贯通孔部22、 28,所以在制造芯柱 29时作为玻璃材料的逸出部分发挥功能,能够容易地对芯柱29的厚度进 行调节。另外,由于能够这样对芯柱29的厚度进行控制,所以芯柱29 的外侧面29b相对于受光面板13的位置精度提高,其结果是光电倍增管 10的全长的尺寸精度提高,因此例如在将光电倍增管IO表面安装在电路 基板等上进行使用时,光源和电子倍增管10的受光面板13的距离恒定, 能够进行误差少的光检测。并且,如图19所示,设在芯柱29上的排气管40为双重管结构,外 侧管41由与芯柱29密接性高的材料较厚地形成,内侧管43由柔软的材 料较薄地形成。通过形成这样的双重管结构,能够利用外侧管41的厚度 来防止激光焊接时的气孔等。并且,内侧管43仅在芯柱29的靠内侧面 29a侧的端部与外侧管41连接即可,能够利用外侧管41确保与芯柱29 的密接性,同时,不会对连接部造成损伤,能够将内侧管43很短地切断 为下述程度的长度并进行密封即使载置在电路基板上也不会成为障碍。 并且,能够使内侧管43为容易密封且密封性优异的材料。另外,还能够
增大排气管40的管径,在导入碱金属蒸气时,能够縮短处理时间,并且 导入的蒸气的均匀性也提高。另外,如图1所示,由于将闪烁器3设置在光电倍增管10的受光面 板13侦lj,因此能够对放射线进行检测并将其作为信号输出。其次,参照图23对第一变形例进行说明。图23是示出电子检测部 的变形例的立体图。在上述实施方式中,构成电子检测部的阳极25是以 二维方式排列的多阳极,但是在第一变形例中,构成电子检测部的阳极 是以一维方式排列的线性阳极(linearanode) 125。线性阳极125的边界 部设在与倍增极Dyl Dyl2的隔壁71相当的部分。各线性阳极125连 接并支承在贯通芯柱29而设置的芯柱脚127上,被供给预定的电位并输 出与检测到的电子对应的信号。优选在直线阳极125上也在与邻接的单 位阳极对置的部分设置具有桥的凹部(未图示),将阳极125整体固定在 芯柱脚127上之后切断桥。接着,参照图24对第二变形例进行说明。图24是示出釆用了闪烁 器的变形例的放射线检测装置100的示意剖面图。代替上述实施方式的 闪烁器3,以一维的方式配置多个与光电倍增管10的通道区域对应的尺 寸的闪烁器103来形成放射线检测装置100。其它结构与第一变形例相同。 根据这种结构,能够对放射线的xy平面内的入射位置进行检测。另外,参照图25对第三变形例进行说明。图25是示出采用了闪烁 器的其它变形例的放射线检测装置200的示意剖面图。代替第二变形例 的闪烁器103,以一维的方式排列多个比阳极125的尺寸小的、例如相当 于阳极125的二分之一的闪烁器203来形成放射线检测装置200。其它结 构与第二变形例相同。根据这种结构,能够对放射线的xy平面内的入射 位置更准确地进行检测。另外,参照图26对第四变形例进行说明。图26是载置部21b和引 出电极19的形状的变形例的说明图。在载置部21b的载置引出电极19 的面上形成有凸部21c,在引出电极19的载置在载置部21b上的面上形 成有凹部19c,在支承脚21载置引出电极19时,凸部21c和凹部19c相 互嵌合。根据这种结构,能够提高具有聚焦电极17和多个倍增极Dy1 Dyl2的电极层叠部在xy平面内的位置精度。另外,在没有配置引出电 极19的情况下,在最末层的倍增极Dyl2上形成凹部即可。并且,也可 以在载置部21b上形成凹部,在引出电极19上形成凸部。另外,本发明的光电倍增管和放射线检测装置当然不限于上述实施 方式,在不脱离本发明的主旨的范围内能够附加各种变更。例如,管状部件31在芯柱29的内侧面29a侧延伸出延伸部32,但 也可以在外侧面29b侧设置延伸部32。该情况下,光电面14的电位在延 伸部32的周围或贯穿延伸部32中的引线脚47之间露出。由于大多在芯 柱29的外侧密接地配置电路基板,所以如果相对于阳极25的电位差最 大的光电面14的电位露出,则有可能在耐电压方面产生问题。因此,优 选延伸部32位于内侧。在制造方法中,排气管40在连接外侧管41和内侧管43之后与芯柱 29连接,但是也存在下述方法首先仅对外侧管41进行氧化并将其与芯 柱29连接,然后在除去氧化膜之后将内侧管43与外侧管41连接。光电倍增管和各电极的截面为大致矩形,但是截面也可以是圆形或 者其它形状。该情况下,优选根据光电倍增管的形状对闪烁器的形状也 进行变更。隔壁73在上述例中设在第5层的倍增极Dy5上,但也可以设在其它 层上,并且,也可以在多层倍增极上设置隔壁。引出电极19的开口部19b不限于线状,也可以是网状。如图27所示,也可以在延伸部32的x轴方向两边缘部上,代替贯 通孔22、 48而将多个开口 122、 148形成为梳齿状。与贯通孔22、 48的 情况相比,呈梳齿状敞开,因此能够列举出基于延伸部32的芯柱29的 强度提高的程度稍微劣化,以及芯柱29的材料从敞开部的逸出变大从而 稍微难以形成上升部33的情况,但是在该情况下也能够有效地确保电子 倍增部和电子线检测部的有效面积。产业上的可利用性本发明的放射线检测装置能够用于医疗用设备中的图像诊断装置等。
权利要求
1、一种光电倍增管(10),所述光电倍增管(10)在具有构成一侧端部的受光面板(13)和构成另一侧端部的芯柱(29)的真空容器内,具备光电面(14),其将通过所述受光面板(13)入射的入射光转换为电子;电子倍增部,其使所述光电面(14)发射出的电子倍增;以及电子检测部,其根据所述电子倍增部倍增后的电子送出输出信号,其特征在于,所述电子倍增部具有电极层叠部,所述电极层叠部通过将包含构成多个通道的倍增极(Dy1~Dy12)的电极层叠多层而成,所述电子检测部具有多个阳极(25),所述多个阳极(25)与所述电极层叠部的最末层的电极(19)分开并对置,且与所述通道对应地排列,在所述芯柱(29)中设有用于载置所述最末层的电极(19)的支承单元(21)。
2、 根据权利要求1所述的光电倍增管(10),其特征在于, 所述多层电极(17、 Dyl Dyl2、 19)相互夹着绝缘体(23)而层叠,所述绝缘体(23)与所述支承单元(21)同轴地配置。
3、 根据权利要求1所述的光电倍增管(10),其特征在于, 作为所述最末层的电极(19)设有引出电极(19),所述引出电极(19)具有使从所述倍增极(Dyl Dyl2)发射出的电子到达所述阳极(25) 的开口部(1%)。
4、 根据权利要求1所述的光电倍增管(10),其特征在于, 所述电子检测部是以二维方式配置有多个阳极的多阳极(25)、或者以一维方式配置有多个阳极的线性阳极(125)中的任一个。
5、 根据权利要求1所述的光电倍增管(10),其特征在于, 所述支承单元(21)由导电性材料形成。
6、 根据权利要求1所述的光电倍增管(10),其特征在于, 所述支承单元(21)具有从所述芯柱(29)沿所述电极层叠部的层叠方向(z)延伸的支承部(21a);以及载置所述最末层的电极(19) 的载置部(21b),所述载置部(21b)在与所述层叠方向(z)正交的平 面中的截面积比所述支承部(21a)在与所述层叠方向(z)正交的平面 中的截面积大。
7、 根据权利要求6所述的光电倍增管(10),其特征在于, 在所述载置部(21b)的载置所述最末层的电极(19)的面上形成有第一嵌合部(21c),在所述最末层电极(19)的载置于所述载置部(21b) 的面上形成有第二嵌合部(19c),当所述最末层的电极(19)载置在所 述支承单元(21)上时,所述第一嵌合部(21c)和所述第二嵌合部(19c) 相互嵌合。
8、 一种放射线检测装置(1),其特征在于,所述放射线检测装置(1)通过在权利要求1 7中的任一项所述的 光电倍增管(10)的所述受光面板(13)的外侧设置闪烁器(3)而构成, 所述闪烁器(3)将放射线转换成光并输出。
全文摘要
本发明提供光电倍增管和放射线检测装置。在侧管(15)的一侧端部气密地接合受光面板(13)、在另一侧端部经由管状部件(31)气密地接合芯柱(29)而构成的真空容器内,配置有光电面(14)、聚焦电极(17)、倍增极(Dy1~Dy12)、引出电极(19)以及阳极(25)。倍增极(Dy1~Dy12)和阳极(25)具有相互对应的多个通道。引出电极(19)载置在贯通芯柱(29)的导电性的支承脚(21)上,倍增极(Dy1~Dy12)相互夹着绝缘部件(23)而层叠。支承脚(21)和绝缘部件(23)位于同一轴上,能够在z轴方向上施加压力来对各电极进行固定,并能够抑制阳极(25)、引出电极(19)之间的发光,能够降低噪声。
文档编号H01J43/22GK101395692SQ200780007060
公开日2009年3月25日 申请日期2007年2月27日 优先权日2006年2月28日
发明者下井英树, 久嶋浩之, 永井克真 申请人:滨松光子学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1