立方晶氮化硼烧结体切削工具的制作方法

文档序号:11885630阅读:251来源:国知局
立方晶氮化硼烧结体切削工具的制作方法与工艺

本申请发明涉及一种以立方晶氮化硼(以下、由cBN表示)为主要成分,并对其在超高压、高温下进行烧结成型而成的cBN烧结体为工具基体的切削工具,并涉及一种强度和韧性优异,尤其在合金钢、轴承钢等高硬度钢的切削加工中,耐磨性和耐缺损性优异,且在长期使用中能够维持优异的切削性能的cBN烧结体切削工具。

本申请主张基于2014年3月28日于日本申请的专利申请2014-069233号、及2015年3月20日于日本申请的专利申请2015-58192号的优先权,并将其内容援用于此。



背景技术:

以往作为高硬度钢的切削工具,已知有以cBN烧结体为工具基体的cBN烧结体切削工具等,并作为提高工具寿命为目的而进行各种提案。

例如,专利文献1中公开有如下cBN烧结体工具,即,cBN烧结体含有cBN、绝热相及结合相,在cBN烧结体中包含60体积%以上且小于99体积%的cBN,绝热相包含由选自Al、Si、Ti、及Zr中的一种以上的元素和选自N、C、O、及B中的一种以上的元素构成的一种以上的第1化合物,该第1化合物在cBN烧结体中含有1质量%以上且20质量%以下,且具有小于100nm的平均粒径,并且cBN烧结体的导热率为70W/m·K以下,由此,降低工具基体的导热率的同时提高工具基体的硬度。

并且,专利文献2中公开有如下cBN烧结体,即,cBN烧结体包含cBN和结合相,cBN烧结体中包含25体积%以上且80体积%以下的该cBN,所述结合相包含Ti类化合物组,该Ti类化合物组至少包含一种以上包含有Ti的化合物,且包含由粒径为0.1μm以下的粒子构成的第1微粒成分,该第1微粒成分在所述cBN烧结体的至少一截面中占所述结合相所占的面积的10~60%,由此高度兼顾耐缺损性和耐磨性。

而且,专利文献3中公开有如下cBN烧结体,即,其作为结合材料含有选自元素周期表第4a族元素、第5a族元素、第6a族元素的氮化物、碳化物、硼化物、氧化物及它们的固溶体中的至少一种、选自Zr、Si、Hf、Ge、W、Co的单体、化合物及固溶体中的至少一种、及Al化合物,该cBN烧结体中,W和/或Co的总计重量小于1重量%,Si或Zr为0.01重量%以上且小于0.5重量%,Si/(Si+W+Co)或Zr/(Zr+W+Co)为0.05以上且1.0以下,而且,作为Ti化合物的TiN、TiB2的平均粒径为100nm以上且400nm以下,并且作为Al化合物的AlB2、AlN的平均粒径为50nm以上且150nm以下,由此提高强度、韧性、耐磨性。

专利文献1:日本特开2011-189421号公报(A)

专利文献2:日本特开2011-207689号公报(A)

专利文献3:日本专利第5189504号公报(B)

专利文献1中公开有如下cBN烧结体,即,作为绝热相成分该cBN烧结体中包含1质量%以上且20质量%以下的第1化合物,所述第1化合物由选自Al、Si、Ti及Zr中的一种以上的元素和选自N、C、O及B中的一种以上的元素构成,且具有小于100nm的平均粒径,由此,cBN烧结体的导热率成为70W/m·K以下,但是在该烧结体中,存在cBN的含量小于60体积%时无法得到充分的切削性能,工具寿命较短的问题。

并且,专利文献2中公开有如下cBN烧结体,即,该cBN烧结体包含cBN和结合相,cBN烧结体中包含25体积%以上且80体积%以下的该cBN,所述结合相包含Ti类化合物组,该Ti类化合物组至少包含一种以上包含有Ti的化合物,且包含由粒径为0.1μm以下的粒子构成的第1微粒成分,该第1微粒成分在所述cBN烧结体的至少一截面中占所述结合相所占的面积的10~60%,由此,高度兼顾耐缺损性和耐磨性,但是,该烧结体中,仅控制TiN类化合物组的粒径,因此没能控制其他成分的结合相成分的粒径,例如生成粗大的Al2O3、AlN、AlB2,并以此为起点,龟裂容易发生并进行扩展,从而成为cBN烧结体的韧性降低的原因。

并且,专利文献3中,公开有如下cBN烧结体,即,作为结合材料含有规定量的W和/或Co、Si或Zr,并且,将TiN、TiB2的平均粒径、AlB2、AlN的平均粒径设定在规定范围内,从而改善了耐缺损性、耐磨性,但该烧结体中,在高硬度钢的高负荷发挥作用的切削条件下,还不能断言具备充分的耐缺损性。



技术实现要素:

因此,本发明所要解决的技术课题,即本发明的目的在于提供一种即使在进行要求高负荷切削条件的高硬度钢的切削加工时,也不易发生工具刀尖的破碎或缺损,且经长期维持优异的切削性能的cBN烧结体切削工具。

为了解决所述课题,本发明人等着眼于构成cBN工具的cBN烧结体的结合相成分,并进行深入研究的结果,得到了如下见解。

(1)除了作为结合相的主要成分的Ti类化合物之外,将与Ti类化合物存在热膨胀率差的Al2O3的粒径控制为直径10~100nm并均匀地分散在结合相中,由此,不降低结合相的耐磨性而抑制在使用工具时扩展的龟裂的扩散,从而提高强度和破坏韧性。

(2)具有如上所述的结合相的cBN烧结体在维持耐磨性的同时,耐缺损性得到大幅提高。

(3)其结果,将如上所述的cBN烧结体为切削工具的工具基体,因此不易缺损,并能够延长工具寿命。

根据前述见解,本发明人等通过重复多次实验,成功地制造了即使用于刀尖施加有高负荷及高温的高硬度钢的切削中也不易缺损且切削寿命较长的工具。在本发明所涉及的cBN烧结体切削工具(称作“本发明的cBN烧结体切削工具”或“本申请发明的cBN切削工具”)中具有特有的结构即结合相的cBN烧结体,例如能够通过以下方法形成。

(a)结合相形成用原料粉末的粉碎工序:

首先,在结合相形成用原料粉末中,为了促进微粒Al2O3的核生成和均匀分散化,添加超微粒(平均粒径5~15nm)Al2O3,接着,以烧结体中的Al的总计含有比例的下限值为2质量%,且将Y设为Al含有比例(质量%)、将X设为cBN粒子含有比例(体积%)时,上限值满足Y=-0.1X+10的关系的方式,将添加有10~100nm的Al2O3和/或Al、Al2O3的结合相形成用原料粉末微细地进行粉碎。

(b)成型工序:

以烧结体中的cBN粒子的含有比例成为40体积%以上且小于60体积%的方式,将cBN粒子和(a)中所得到的结合相粉末进行混合并搅拌之后,制作规定大小的成型体,并将其在压力1×10-4Pa以下的真空气氛中以900℃~1300℃进行烧结来制作预烧结体。

(c)烧结工序:

并且,将该预烧结体以与WC基硬质合金制支撑片重叠的状态,装入超高压烧结装置,例如以压力:5GPa、温度:1200℃~1400℃、保持时间:30分钟的条件进行超高压高温烧结,并制作cBN烧结体。

(d)结合相组织的形成过程:

在(a)的粉碎工序中,添加促进微粒Al2O3的核生成和均匀分散化的超微粒Al2O3,并且微细地进行粉碎,由此,超高压高温烧结而得到的cBN烧结体的结合相中形成有结合相组织,所述结合相组织为在结合相的截面1μm×1μm的范围内分散生成有30个以上以超微粒Al2O3作为核的直径10~100nm的微粒Al2O3粒子的结合相组织。即,结合相中,直径10~100nm的微粒Al2O3粒子均匀地分散而存在。

另外,本申请发明中,将粒径100nm以下的Al2O3称作微粒Al2O3,其中,将平均粒径5~15nm的Al2O3称作超微粒Al2O3

由如此制作的cBN烧结体制作了cBN烧结体切削工具的结果,该cBN工具即使在切削刀尖中施加有高负荷及高温的高硬度钢时,也不易产生龟裂,并维持耐磨性的同时,耐崩刃性及耐缺损性也优异,其结果,在长期使用中发挥优异的切削性能。

即,在所述cBN烧结体切削工具中,cBN烧结体的结合相中的Al2O3粒子被控制成规定的粒度,由此不降低耐磨性而能够提高强度和破坏韧性,因此,能够将其用作切削工具来延长工具寿命。

本申请发明是根据所述见解而完成的,

(1)一种立方晶氮化硼烧结体切削工具,其以包含立方晶氮化硼粒子和结合相的烧结体为工具基体,该立方晶氮化硼烧结体切削工具的特征在于,

所述烧结体含有40体积%以上且小于60体积%的立方晶氮化硼粒子以及Al,所述Al的范围为如下:下限值为2质量%,且将Y设为Al含有比例(质量%)、将X设为立方晶氮化硼粒子含有比例(体积%)时,上限值满足Y=-0.1X+10的关系,

所述结合相至少含有Ti类化合物、Al2O3及不可避免的杂质,

所述Al2O3中,直径10nm~100nm的微粒Al2O3分散生成于结合相中,

在所述结合相的截面1μm×1μm的区域,生成有30个以上的所述微粒Al2O3

(2)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述工具基体的表面蒸镀形成有硬质包覆层。

(3)根据所述(2)所记载的立方晶氮化硼烧结体切削工具,其特征在于,所述硬质包覆层至少具有氮化钛层。

(4)根据所述(3)所记载的立方晶氮化硼烧结体切削工具,其特征在于,所述硬质包覆层由一层氮化钛层构成。

(5)根据所述(3)所记载的立方晶氮化硼烧结体切削工具,其特征在于,所述硬质包覆层由一层氮化钛层和一层氮化钛铝层构成。

(6)根据所述(2)至(5)中任一个所记载的立方晶氮化硼烧结体切削工具,其特征在于,所述硬质包覆层的层厚在1.0μm至2.5μm的范围内。

(7)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相的截面1μm×1μm的区域,生成有60个以上的所述微粒Al2O3

(8)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相的截面1μm×1μm的区域,生成有90个以上的所述微粒Al2O3

(9)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相中分散生成的所述微粒Al2O3的直径在10nm~85nm的范围内。

(10)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相中分散生成的所述微粒Al2O3的直径在10nm~60nm的范围内。

(11)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相中存在的Al2O3的中值粒径的直径在60nm~85nm的范围内。

(12)根据所述(1)所记载的立方晶氮化硼烧结体切削工具,其特征在于,在所述结合相中存在的Al2O3的中值粒径的直径在60nm~70nm的范围内。

本申请发明所涉及的切削工具(称作“本申请发明的切削工具”)为以包含cBN粒子和结合相的烧结体为工具基体的cBN烧结体切削工具。本申请发明的切削工具中,烧结体含有40体积%以上且小于60体积%的cBN粒子以及Al,所述Al的范围为如下:下限值为2质量%,且将Y设为Al含有比例(质量%)、将X设为cBN粒子含有比例(体积%)时,上限值满足Y=-0.1X+10的关系。并且,结合相至少含有Ti类化合物、Al2O3及不可避免的杂质,Al2O3中,直径10nm~100nm的微粒Al2O3分散生成(均匀分散并存在)于结合相中,在结合相的截面1μm×1μm的区域生成有30个以上的微粒Al2O3。在这些本申请发明的切削工具中具有特有的结构,由此,本申请发明的切削工具中,抑制缺损或崩刃,实现延长工具寿命。

附图说明

图1表示通过cBN烧结体截面的基于SEM的二次电子图像的图像分析来抽出的cBN。

图2A表示cBN烧结体截面的基于AES的二次电子图像。

图2B表示cBN烧结体截面的Al的元素映射图像。

图2C表示cBN烧结体截面的O(氧)元素映射图像。

图2D表示cBN烧结体截面的抽出Al2O3的图像。

图3A表示本申请发明切削工具的硬质包覆层的形成中所使用的电弧离子蒸镀装置1的概略俯视图。

图3B表示本申请发明切削工具的硬质包覆层的形成中所使用的电弧离子蒸镀装置1的概略侧视图。

具体实施方式

以下对用于实施本申请发明的方式进行说明。

cBN烧结体中cBN粒子所占的含有比例:

通常,cBN烧结体由作为硬质相成分的cBN粒子和结合相成分构成,但构成本申请发明的cBN烧结体切削工具的工具基体的cBN烧结体作为结合相成分含有Ti的氮化物、碳化物、碳氮化物、硼化物、氧化物及它们的固溶体的至少一种以上的Ti类化合物和Al2O3

cBN烧结体中cBN粒子所占的含有比例小于40体积%时,烧结体中硬质物质较少,因此,作为cBN烧结体工具的硬度不充分,且用作工具时,耐缺损性降低。另一方面,若成为60体积%以上,则烧结体中的结合相的比例相对较少,无法充分得到结合相所发挥的韧性提高效果。因此,为了进一步发挥本申请发明所发挥的效果,cBN烧结体中cBN粒子所占的含有比例优选设在40体积%以上且小于60体积%的范围。

关于cBN烧结体中cBN粒子所占的含有比例(体积%),能够通过扫描电子显微镜(Scanning Electron Microscopy:SEM)观察cBN烧结体的截面组织,并根据所得到的二次电子图像算出。所得到的二次电子图像内的cBN粒子的一部分能够通过图像处理来抽出。对cBN粒子的一部分进行确定之后,获取通过图像分析来算出cBN粒子所占的面积的值,并由图像总面积除以该值,从而能够算出cBN粒子的面积比率。并且,将该面积比率视为体积%,从而能够测定cBN粒子的含有比例(体积%)。该测定中,将对通过扫描电子显微镜得到的倍率5,000的二次电子图像的至少3个图像进行处理并求出的值的平均值作为cBN粒子的含有比例(体积%)。作为在图像处理中使用的观察区域,当cBN粒子的平均粒径为3μm时,优选20μm×20μm左右的视场区域。

cBN粒子的平均粒径:

本申请发明的切削工具的制作中使用的cBN粒子的平均粒径并没有特别限定,但优选平均粒径为0.5~8.0μm的范围。

通过在烧结体内包含硬质cBN粒子,提高耐缺损性的效果,并且,通过将平均粒径为0.5~8.0μm的cBN粒子分散于烧结体内,不仅抑制在使用工具时工具表面的cBN粒子脱落而产生的以刀尖的凹凸形状为起点的缺损、崩刃,而且,通过分散于烧结体中的规定粒径的cBN粒子来抑制在使用工具时因施加于刀尖的应力而产生的从cBN粒子和结合相的界面扩展的龟裂、或cBN粒子破裂而扩展的龟裂的扩散,由此,能够具有优异的耐缺损性。

因此,本申请发明的切削工具的制作中使用的cBN粒子的平均粒径优选设为0.5~8.0μm的范围。

在此,cBN粒子的平均粒径能够根据通过SEM观察所制作的cBN烧结体的截面组织而得到的二次电子图像来求出。首先,将所得到的图像内的cBN粒子的一部分,如图1所示那样通过图像处理进行二值化并抽出。对cBN粒子的一部分进行确定之后,通过图像分析求出各cBN粒子的最大长度,将其作为各cBN粒子的直径。并且,根据通过该直径计算并求出的各粒子的容积,将纵轴为累计容积比例(容积%)、将横轴为直径(μm)来绘制图表,并将累计容积比例成为50容积%的值的直径作为cBN粒子的粒径。该测定中,将对通过SEM得到的倍率5,000的二次电子图像的至少3个图像进行处理并求出的值的平均值作为cBN粒子的平均粒径(μm)。作为在图像处理中使用的观察区域,当cBN粒子的平均粒径为3μm时,优选20μm×20μm左右的视场区域。

cBN烧结体中Al所占的含有比例:

若cBN烧结体中Al所占的含有比例小于2质量%,则生成于结合相中的Al2O3的量变少,无法充分抑制龟裂的扩展,无法充分得到提高cBN烧结体的韧性的效果。另一方面,将Y设为Al含有比例(质量%)、将X设为cBN粒子含有比例(体积%)时,若cBN烧结体中Al所占的含有比例大于Y=-0.1X+10的值,则生成于结合相中的AlN、Al2O3的量变多,并且,这些粒子生长并成为粗粒,从而cBN烧结体的韧性降低。

因此,优选cBN烧结体中Al所占的含有比例的下限值为2质量%,且将Y设为Al含有比例(质量%)、将X设为cBN粒子含有比例(体积%)时,上限值满足Y=-0.1X+10的关系范围。

另外,上述中所提到的Al的含有比例是指结合相形成用原料粉末的粉碎工序中使用的所有Al、Al2O3、TiAl中含有的Al的总计含有比例。

cBN烧结体中Al所占的含有比例的测定方法:

使用电子射线显微分析仪(Electron Probe Micro Analyser:EPMA)对cBN烧结体进行定性定量分析,针对由定性分析检测出的元素,根据ZAF定量分析法得出cBN烧结体中Al所占的含有比例(质量%)。

结合相中的Al2O3粒子的粒径和每个单位面积的个数:

若结合相中的Al2O3粒子的粒径的直径小于10nm,则氧、水分等杂质的混入变得较多,因此有可能降低cBN烧结体的韧性。另一方面,若结合相中的Al2O3粒子的粒径的直径大于100nm,则Al2O3粒子的个数相对减少,因此无法充分发挥抑制龟裂扩展的作用。并且,若结合相的截面1μm×1μm的区域中Al2O3粒子的个数少于30个,则无法充分发挥抑制龟裂扩展的作用。

因此,对于结合相中的Al2O3,设为直径10nm~100nm,在结合相的截面1μm×1μm的区域中为30个以上。

在结合相中分散生成的微粒Al2O3的优选直径范围为10nm~85nm。

在结合相中分散生成的微粒Al2O3的更优选直径为10nm~60nm。

在结合相中存在的Al2O3的优选中值粒径范围为直径60nm~85nm。

在结合相中存在的Al2O3的更优选中值粒径范围为直径60nm~70nm。

在结合相的截面1μm×1μm的区域中的优选微粒Al2O3的个数为60个以上。

在结合相的截面1μm×1μm的区域中的更优选微粒Al2O3的个数为90个以上。

对于结合相的截面1μm×1μm的区域中的优选微粒Al2O3的个数的上限值,若考虑性价比,则为200个。更优选微粒Al2O3的个数的上限值为150个。进一步更优选微粒Al2O3的个数的上限值为130个。

结合相中的Al2O3粒子的粒径、中值粒径、及每单位面积的个数的测定方法:

对于结合相中的Al2O3粒子的粒径和每单位面积的个数,利用俄歇电子能谱法(Auger Electron Spectroscopy:AES)观察cBN烧结体的结合相组织,并获取Al、O元素的元素映射图像(参考图2A、图2B、图2C、及图2D)。通过图像分析对所得到的Al映射图像和O(氧)映射图像重叠的部分进行分析,并通过图像处理抽出Al2O3粒子(参考图2D)。抽出Al2O3粒子的一部分之后,通过图像分析求出各Al2O3粒子的最大长度。提及每个Al2O3粒子的粒径(Al2O3粒子的粒径)时,将其作为各Al2O3粒子的直径。提及多个Al2O3粒子的平均粒径(Al2O3粒子的中值粒径)时,将其作为各Al2O3粒子的直径,并根据通过该直径计算并求出的各粒子的容积,将纵轴为累计容积比例(容积%)、将横轴为直径(nm)而绘制图表,且将累计容积比例成为50容积%的值的直径作为成为对象的多个Al2O3粒子的中值粒径。该测定中,将对通过SEM得到的倍率5,000的二次电子图像的至少3个图像进行处理并求出的值、及其平均值分别作为Al2O3粒子的粒径(nm)、及Al2O3的中值粒径(nm)。而且,通过经图像分析的元素映射图像,算出结合相中的截面1μm×1μm区域中的粒径10nm~100nm的Al2O3粒子的个数。

在本申请发明的cBN切削工具的基体表面,可以蒸镀形成硬质包覆层。

硬质包覆层可以至少具有氮化钛层。

硬质包覆层可以由一层氮化钛层构成。

硬质包覆层可以由一层氮化钛层和一层氮化钛铝层构成。

硬质包覆层的层厚可以在1.0μm至2.5μm的范围内。

以下,基于实施例,对本申请发明的cBN烧结体切削工具具体地进行说明。

实施例

作为结合相形成用原料粉末,准备Ti化合物粉末(例如,TiN粉末、TiC粉末、TiCN粉末、TiAl粉末等)、及粒径100nm以下的微粒Al2O3(另外,微粒Al2O3中也包含平均粒径5~15nm超微粒Al2O3)、或Al粉末、粒径大于100nm的Al2O3粉末。接着,将这些原料粉末配合成表1所示的配合组成,例如,对用硬质合金内衬的瓶内一同填充碳化钨制的硬质合金球和丙酮。而且,为了促进微粒Al2O3及超微粒Al2O3的分散,根据需要添加了胺类或羧酸类的分散剂。并且,盖上盖子之后,通过旋转球磨机进行如表2所示的旋转球磨机处理时间的粉碎、混合,从而粉碎了原料粉。

接着,将具有0.5~8.0μm的平均粒径的cBN粉末添加表2所示的质量%,由此将烧结后的cBN含量调整为40体积%以上且小于60体积%,并通过旋转球磨机混合24小时。

通过旋转球磨机进行湿式混合,并进行干燥之后,以120MPa的压力冲压成型为具有直径:50mm×厚度:1.5mm的尺寸的压粉体。接着将该压坯在压力:1×10-4Pa以下的真空气氛中,以900~1300℃的范围内的条件进行烧结并作为预烧结体。另外,从粉碎至成型的工序优选在惰性气体气氛下进行。在该预烧结体与另外准备的具有Co:8质量%、WC:剩余组分、及直径:50mm×厚度:2mm尺寸的WC基硬质合金制支撑片重叠的状态下,装入超高压烧结装置中,并在压力:5GPa、温度:1200~1400℃、保持时间30min的条件下进行超高压烧结,从而制作了本申请发明的cBN烧结体1~8(称作本发明品1~8)。

本申请发明中,粉碎所述结合相形成用原料粉末时,添加0.1~2质量%的平均粒径5~15nm的超微粒Al2O3,由此促进微粒Al2O3的核生成及均匀分散化,并如图2B~图2D所示,直径10nm~100nm的微粒Al2O3分散分布于结合相中。

为了进行比较,以与本发明品同样的方法,或不添加超微粒Al2O3或微粒Al2O3的方法,配合成表1所示的配合组成,以表2所示的旋转球磨机处理时间进行粉碎并混合之后,添加表2所示的cBN粉末,并以规定的条件进行超高压烧结,从而制造了比较用cBN烧结体1~7(称作比较品1~7)。

[表1]

[表2]

对于所述本发明品1~8及比较品1~7,测定了cBN烧结体中Al所占的含有比例、结合相中的Al2O3粒子的中值粒径、直径10~100nm的微粒Al2O3的每单位面积的个数、cBN烧结体中cBN所占的含有比例。将其结果示于表3。

另外,利用X射线衍射装置对本发明品1~8及比较品1~7的结合相组织进行分析的结果,确认到TiN、TiB2、AlN的衍射峰,因此,看到了它们的存在,但未能确认到AlB2的衍射峰,因此AlB2不存在于结合相中。

[表3]

接着,利用金刚石砂轮对所述本发明品1~8及比较品1~7的烧结体上下表面进行研磨,并通过电火花加工装置分割成一个边为3mm的正三角形状,而且,在具有Co:5质量%、TaC:5质量%、WC:剩余组成及ISO标准CNGA120408的形状(厚度:4.76mm×一个边长:12.7mm的菱形)的WC基硬质合金制刀片主体的钎焊部(刀尖部),使用具有以质量%计Cu:25%、Ti:5%、Ni:2.5%、Ag:由剩余部分构成的组成的Ag合金的钎料进行钎焊,进一步通过实施精磨,分别制作了具有ISO标准CNGA120408的刀片形状的本发明切削工具1~8及比较切削工具1~7。

对于本发明切削工具2、4、6、8,进一步通过图3A及图3B所示的物理蒸镀装置,同样地以表4中所示的层厚来进行包覆形成表4中所示的硬质包覆层,从而制造了本发明的表面包覆cBN基超高压烧结体切削工具(称作本发明包覆切削工具)2、4、6、8。

所述物理蒸镀装置(电弧离子蒸镀装置1)具备在腔室内的中央进行旋转的旋转台2。旋转台2上设有多根沿垂直方向延伸的旋转轴(图示的例中为4根),每一根旋转轴上以成串的方式保持有多个硬质基体3。旋转台2旋转,进一步设置在旋转台2上的多个旋转轴也同时旋转。旋转台2的下方设有偏置电源4。

在腔室内以从左右夹住旋转台2的方式设有一对金属Ti或Ti-Al合金靶9(阴极电极)。在各金属Ti或Ti-Al合金靶9的从旋转台2观察的背面侧,设有多个磁力产生源8(永磁体)。各金属Ti或Ti-Al合金靶9连接于电弧电源6。未连接于电弧电源6的金属Ti或Ti-Al合金靶9的一侧,与阳极电极5连接。一对阳极电极5以从左右夹住旋转台2的方式,设置于腔室内。

在腔室内且未设有金属Ti或Ti-Al合金靶9的一面,以与旋转台侧面对置的方式设有加热器7。

腔室上部设有反应气体导入口10。腔室下部设有排气口11。

[表4]

接着,在通过固定夹具将所述各种切削工具均紧固在工具钢制车刀的前端部的状态下,对本发明切削工具1~8、本发明包覆切削工具2、4、6、8及比较切削工具1~7,通过以下所示的切削条件1、2进行了连续切削试验。

[切削条件1]

工件材料:JIS·SCr420的渗碳淬火材料(硬度:HRC61)的圆棒

切削速度:220m/min.

切削深度:0.2mm

进给速度:0.15mm/rev.

将切削工具的刀尖缺损为止的切削时间作为工具寿命。

[切削条件2]

工件材料:JIS·SCr420的渗碳淬火材料(硬度:HRC61)的长边方向上有1个10mm宽的槽

切削速度:150m/min.

切削深度:0.2mm

进给速度:0.2mm/rev.

将切削工具的刀尖缺损为止的切削时间作为工具寿命。

在表5中示出切削条件1及切削条件2的切削试验结果。

[表5]

根据表5所示的结果,关于本发明切削工具1~8及本发明包覆切削工具2、4、6、8,在结合相中分散生成(均匀分散并存在)有以中值粒径计直径10nm~100nm的微粒Al2O3,在结合相的截面1μm×1μm的区域,生成有30个以上的微粒Al2O3,由此,即使在对高硬度钢进行切削时,也不易产生缺损、崩刃,因此,在长期使用中发挥优异的切削性能。并且,本发明包覆工具通过在工具基体的表面蒸镀形成硬质包覆层,由此,不损害前述的特性而进一步改善了切削工具性能。

相对于此,关于比较切削工具1~7,结合相中的Al2O3不满足本申请发明的切削工具所具有的特征,因此,明显在高硬度钢的切削加工中,均在较短时间内到达寿命。

产业上的可利用性

如上所述,本申请发明的cBN切削工具的耐崩刃性、耐缺损性优异,因此不仅可适用于高硬度钢的切削,而且还可适用于各种切削条件的切削,能够充分满足的方式应对切削加工装置的高性能化及切削加工的省力化及节能化、低成本化。

符号说明

1-电弧离子蒸镀装置,2-旋转台,3-硬质基体,4-偏置电源,5-阳极电极,6-电弧电源,7-加热器,8-磁力产生源(永磁体),9-金属Ti或Ti-Al合金靶(阴极电极),10-反应气体导入口,11-排气口。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1