处理电子废料的系统的制作方法

文档序号:23026阅读:282来源:国知局
专利名称:处理电子废料的系统的制作方法
【专利摘要】本实用新型公开了一种处理电子废料的系统,包括:破碎装置,具有电子废料入口和电子废料颗粒出口;冶炼装置,具有电子废料颗粒入口、烟气出口、炉渣出口和熔融产物出口;粒化装置,具有熔融产物入口和固态产物颗粒出口;酸化装置,具有固态产物颗粒入口、硫酸入口和酸浸液出口;过滤装置,具有酸浸液入口、滤液出口和滤渣出口;萃取-反萃取装置,具有滤液入口、硫酸铜溶液出口和萃取剂出口;以及电积装置,具有硫酸铜溶液入口和金属铜出口。该系统可以实现电子废料中金属铜的有效回收,达到铜与多种稀贵金属分离的目的,从而实现有价资源无污染再生利用最大化。
【专利说明】处理电子废料的系统

【技术领域】
[0001]本实用新型属于环保领域,具体而言,本实用新型涉及一种处理电子废料的系统。

【背景技术】
[0002]随着电子产品科技的发展和人们生活水平的提高,电子产品生产规模越来越大,并且电子产品的报废期大大缩短,所以各种废旧家电及办公电器产生的电子垃圾日趋增多。电子废料中除了含有汞、焊锡、聚氯乙烯、卤化物阻燃剂等有毒物质外,同时又富含相当数量的金、银、铜、铂等金属,如果处置不当会给环境造成了巨大的危害,但如能合理有效地综合利用,则不仅能够保护环境,而且在资源循环利用、经济等方面可以产生相当大的社会效益。
[0003]目前常用的处理电子废料的方法有:物理分选方法进行金属的简单分类和富集,然后冶炼提纯;湿法氰化冶金;火法冶金与湿法相结合。CN102181644A公开了一种从废旧电路板中回收稀贵金属的方法,它通过破碎、静电分选、煅烧、酸浸及碱浸等过程提取银、金、铂和钯,但是该方法没有充分利用电子废料本身的热能,作为电子废料中含量最大的铜不能有效地回收。CNlO127041IA公开了一种从废电路板中回收铜金属的方法,在室温200°C的条件下溶胀Imin?4h,将铜金属基体材料与其表面的高分子膜材料分离,再利用铜与膜材料的比重差异,将二者分类回收,但该方法局限于金属与材料的分开,没有彻底分离提炼金属。CN102676822A提供了一种免焚烧无氰化处理废旧印刷电路板的方法、CN101787547A公布了一种从废印刷电路板中回收有价金属的方法,其中都包含的步骤是向含铜的滤渣中加入0.5?3.5mol/L硫酸溶液和氧化剂,在20?70°C温度下浸出2?8h,将浸出后的溶液过滤,在pH值为1.0?5.0、温度为20?60°C、电流密度为200?550A/m2的条件下旋流选择性电积,但是该方法反应时间长,生产效率低下,并且溶液中含有其它杂质,对电积效果产生一定的影响。
[0004]因此,现有的处理电子废料技术有待进一步改进。
实用新型内容
[0005]本实用新型旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本实用新型的一个目的在于提出一种处理电子废料的系统,该系统可以实现电子废料中金属铜的有效回收,从而实现有价金属资源再生利用的最大化。
[0006]在本实用新型的一个方面,本实用新型提出了一种处理电子废料的系统,包括:
[0007]破碎装置,所述破碎装置具有电子废料入口和电子废料颗粒出口 ;
[0008]冶炼装置,所述冶炼装置具有电子废料颗粒入口、烟气出口、炉渣出口和熔融产物出口,所述电子废料颗粒入口与所述电子废料颗粒出口相连;
[0009]粒化装置,所述粒化装置具有熔融产物入口和固态产物颗粒出口,所述熔融产物入口与所述熔融产物出口相连;
[0010]酸化装置,所述酸化装置具有固态产物颗粒入口、硫酸入口和酸浸液出口,所述固态产物颗粒入口与所述固态产物颗粒出口相连;
[0011 ] 过滤装置,所述过滤装置具有酸浸液入口、滤液出口和滤渣出口,所述酸浸液入口与所述酸浸液出口相连;
[0012]萃取-反萃取装置,所述萃取-反萃取装置具有滤液入口、硫酸铜溶液出口和萃取剂出口,所述滤液入口与所述滤液出口相连;以及
[0013]电积装置,所述电积装置具有硫酸铜溶液入口和金属铜出口,所述硫酸铜溶液入口与所述硫酸铜溶液出口相连。
[0014]根据本实用新型实施例的处理电子废料的系统通过将电子废料进行冶炼处理,根据各产物比重的不同,可以将铜和稀贵金属与其他金属得以分离,同时通过将所得到的固态产物颗粒与硫酸接触,使得固态产物颗粒中的铜、氧化铜和氧化亚铜与硫酸反应生成含有硫酸铜的酸浸液,而稀贵金属仍以金属单质形式存在,进而通过过滤装置即可实现铜与稀贵金属的有效分离,并且采用萃取剂对所得滤液进行铜萃取处理,可以得到纯净的硫酸铜溶液,进而显著提高后续电积质量,从而提高金属铜的生产效率。
[0015]另外,根据本实用新型上述实施例的处理电子废料的系统还可以具有如下附加的技术特征:
[0016]在本实用新型的一些实施例中,所述粒化装置具有向熔融产物喷射高压空气的分散装置。由此,可以有效解决设备的放炮问题和腐蚀问题。
[0017]在本实用新型的一些实施例中,所述处理电子废料的系统进一步包括:冷却装置,所述冷却装置具有物料入口和物料出口,所述物料入口与所述固态产物颗粒出口相连,所述物料出口与所述固态产物颗粒入口相连。由此,可以显著提高系统运行稳定性。
[0018]在本实用新型的一些实施例中,所述处理电子废料的系统进一步包括:还原-缓冷装置,所述还原-缓冷装置具有炉渣入口和产物出口,所述炉渣入口与所述炉渣出口相连。由此,可以实现资源利用的最大化。
[0019]在本实用新型的一些实施例中,所述处理电子废料的系统进一步包括:净化装置,所述净化装置具有烟气入口和净化烟气出口,所述烟气入口与所述烟气出口相连。由此,可以实现无污染清洁冶金。
[0020]在本实用新型的一些实施例中,所述冶炼装置包括:炉体,所述炉体内限定有上端敞开的空腔,所述空腔具有小径区和位于所述小径区上方的大径区,所述大径区的内径大于所述小径区的内径,所述小径区上设有排放口 ;炉顶,所述炉顶设在所述炉体上且封盖所述空腔的上端,所述炉顶为穹形,所述炉顶的顶部设有加料口、喷枪口 ;排气烟道,所述排气烟道倾斜向上设在所述炉体的侧壁上,所述排气烟道与所述空腔连通;喷枪,所述喷枪设在所述喷枪口内且向下延伸至所述小径区内,冷却水套,所述冷却水套设在所述炉体外部且对所述炉体和所述排气烟道形成包裹结构,其中,所述排气烟道设在所述大径区对应的所述炉体的侧壁上,所述排气烟道与水平面的夹角范围Θ满足:0< Θ <90°,所述大径区和所述小径区之间具有内径从下向上逐渐增大的过渡区,所述炉体的侧壁上设有补风口,所述补风口设在所述大径区对应的所述炉体的侧壁上,所述加料口处设有阻止烟气通过所述加料口逸散的密封装置,所述炉顶的顶部还设有烧嘴口,所述熔炼炉还包括烧嘴,所述烧嘴设在所述烧嘴口处且向下延伸至所述大径区内,所述排放口包括:排铜口,所述排铜口设在所述炉体的底部;排渣口,所述排渣口位于所述排铜口的上方,所述炉顶还设置有用于伸入测量尺的测量口,所述炉体的侧壁上设有清洁口,所述清洁口在上下方向上邻近所述炉顶。由此,采用大径区的内径大于小径区的内径,提升了气体反应的反应条件,促使未完全燃烧的有机物进一步地充分燃烧,而且由于炉顶为穹形结构,穹形炉顶下方和空腔上方的空间也可以作为气体反应的场所,进一步加大了气体反应空间,进而可以改善可燃物的反应条件,节省了燃料消耗,提高反应速度,缩短了操作时间,进一步提高熔炼炉的工作效率。而且气体反应空间的增大使有害气体进一步进行更充分的反应,减少有害气体的排出。
[0021]本实用新型的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型的实践了解到。

【附图说明】

[0022]图1是根据本实用新型一个实施例的处理电子废料的系统结构示意图;
[0023]图2是根据本实用新型一个实施例的处理电子废料的系统中采用的熔炼炉的结构示意图;
[0024]图3是根据本实用新型又一个实施例的处理电子废料的系统结构示意图;
[0025]图4是采用本实用新型一个实施例的处理电子废料的系统处理电子废料的方法流程示意图;
[0026]图5是采用本实用新型又一个实施例的处理电子废料的系统处理电子废料的方法流程示意图。

【具体实施方式】
[0027]下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本实用新型,而不能理解为对本实用新型的限制。
[0028]在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
[0029]此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
[0030]在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
[0031]在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
[0032]在本实用新型的一个方面,本实用新型提出了一种处理电子废料的系统。下面参考图1-3对本实用新型实施例的处理电子废料的系统进行详细描述。根据本实用新型的实施例,该系统包括:
[0033]破碎装置100:根据本实用新型的实施例,破碎装置100具有电子废料入口 101和电子废料颗粒出口 102,且适于将电子废料进行破碎处理,从而可以得到电子废料颗粒。由此,可以显著提高后续电子废料的冶炼效率。
[0034]根据本实用新型的实施例,电子废料颗粒的粒径并不受特别限制,根据本实用新型的具体实施例,电子废料颗粒的平均粒径可以为15?45_。发明人发现,若废料颗粒粒度过大将导致反应不充分,减慢反应速度,产生“生料”,而粒度过小,将会导致物料来不及反应就随烟气进入烟尘系统,降低金属直收率。
[0035]冶炼装置200:根据本实用新型的实施例,冶炼装置200具有电子废料颗粒入口201、烟气出口 202、炉渣出口 203和熔融产物出口 204,根据本实用新型的具体实施例,电子废料颗粒入口 201与电子废料颗粒出口 102相连,且适于将电子废料颗粒在熔炼炉中进行冶炼处理,从而可以得到烟气、炉渣和熔融产物,根据本实用新型的具体实施例,炉渣可以含有氧化铁、氧化钙、氧化铝、二氧化硅中的至少一种,熔融产物可以含有铜和稀贵金属。由此,可以实现电子废料中铜、稀贵金属与其他金属得以分离。
[0036]根据本实用新型的实施例,冶炼处理的条件并不受特别限制,根据本实用新型的具体实施例,冶炼处理可以在1200?1400摄氏度下进行。由此,可以显著提高电子废料的冶炼效率。
[0037]根据本实用新型的实施例,冶炼装置可以为熔炼炉。下面参考图2对本实用新型实施例的熔炼炉进行详细描述。根据本实用新型的实施例,该熔炼炉包括:炉体1、炉顶2、排气烟道3和喷枪4。
[0038]炉体I内形成有空腔11,空腔11上端敞开。如图2所示,空腔11具有小径区111和大径区112,大径区112位于小径区111的上方,且大径区112的内径大于小径区111的内径。
[0039]电子废料与熔剂混合后可以放置在空腔11内进行熔炼,具体地,空腔11内为熔炼炉提供冶炼的反应区8,反应区8设置在小径区111底部,也就是说,上述的电子废料与熔剂会被放置在反应区8内进行冶炼反应,如图2所示的空腔11的底部区域。
[0040]进一步地,如图2所示,反应区8上方的小径区111和大径区112共同作为气相区9,反应产生的气体以及相关气体的反应过程则在炉体I内的气相区9内进行。由于大径区112的内径大于小径区111的内径,这样气相区9为反应后产生的气体和气体的反应过程提供更大的空间。
[0041]电子废料与熔剂混合后,在反应区8内进行氧化反应,反应过后所产生的含有氧化铁、氧化钙、氧化铝、二氧化硅的炉渣排出,排出后剩余的含氧化铜、氧化亚铜和稀贵金属的炉料层内再加入还原剂进行还原反应,以还原炉料层中的氧化铜和氧化亚铜,得到含有铜和稀贵金属的熔融产物。
[0042]具体地,小径区111上设有排放口 12,排放口 12可以用于排出冶炼反应后的炉渣和熔融产物。可以理解的是,排放口 12设置在对应反应区8的小径区111。
[0043]炉顶2设在炉体I上,而且封盖在空腔11的上端。具体地的炉顶2为穹形结构,如图2所示,炉顶2为向上隆起的半球体形状,这样,在炉体I空腔11上方和炉顶2下方之间形成了空间,可以进一步加大气相区9的空间,提高氧化反应和还原反应的效率。
[0044]炉顶2的顶部设有加料口 21和喷枪口 22,加料口 21设置在炉顶2的顶部可以方便地对炉体I内进行加料。进一步地,考虑到电子废料中的有机废物,以及燃烧后的有毒或有害气体,会在加料口 21逸散,为了尽量减少这种情况的发生,可选地,可以在加料口 21的外周设有密封装置。密封装置能够提高加料口 21的密封性,从而有效的防止了烟气的逸散。另外,为了保证还原的质量,还可以通过加料口 21向炉体I内加入颗粒状固体还原剂,例如焦炭等,从而在氧化后的炉料层表面形成红热的焦滤层以强化还原效果。
[0045]喷枪口 22设置在炉顶2的顶部,具体地,喷枪4通过喷枪口 22伸入到炉体I的空腔11内,喷枪4向空腔11内通入燃料(工艺风及天然气),可以为氧化反应和还原反应提供热源,从而极大地促进了反应的进行。此外,富氧或压缩空气也可以通过喷枪4喷入到炉体I内,这样可以对反应物料进行吹风恪炼作业,促进反应的进行,极大地改善了反应的热力学和动力学条件。
[0046]另外,还原过程中,喷枪4还可以同时作为还原剂喷入口。由此,可以通过喷枪4向炉体I内喷入还原剂以将炉料中的氧化铜和氧化亚铜还原,形成含有铜和稀贵金属的熔融产物沉于炉体I的底部。对于还原剂的选择没有特殊限制,其可以为气体、液体或者固体粉末还原剂。
[0047]排气烟道3与空腔11是连通的,排气烟道3倾斜向上地设置在炉体I的侧壁上。可选地,排气烟道3设在大径区112对应的炉体I的侧壁上。可以理解的是,排气烟道3与炉体I内的大径区112对应,可以理解的是,排气烟道3是向上倾斜设置的,这样排气烟道3与加料口 21间隔开设置,可以降低从加料口 21进入炉体I中未能完全燃烧的原料直接进入烟气通道而排出的可能,由此可以节约能源、减小污染。
[0048]根据本实用新型实施例的熔炼炉,由于大径区112的内径大于小径区111的内径,从而可以增大用于气体反应的气相区9,而且由于炉顶2为穹形结构,穹形炉顶2下方的空间也组成了气相区9的一部分,进一步加大了气相区9,这样可以改善可燃物的反应条件,节省了燃料消耗,提高反应速度,缩短了操作时间,进一步提高熔炼炉的工作效率。而且气体的反应过程会在气相区9进行,这样,较大的气相区9可以提升气体反应过程的反应条件,使有害气体在气相区9进一步进行更充分的反应,减少有害气体的排出。
[0049]而且,排气烟道3倾斜设置在炉体I的侧壁上,一方面有效降低了反应原料的流失,不仅节约了能源,而且还提高了熔炼炉的经济性和资源的高效性,另一方面还可以防止未充分燃烧而直接进入烟气的有机物直接从排气烟道3排出,从而避免了环境污染。
[0050]在本实用新型熔炼炉的一些示例中,炉体I可以为单炉膛炉型,即炉体I内只形成有一个空腔11,冶炼过程的氧化反应和还原反应都在炉体I内进行。另外,通过间断周期性作业,控制炉体I内不同的反应气氛,还可将冶炼反应和还原反应分开,在保证炉体I结构更紧凑的同时,还能保证氧化过程和还原过程能够分别顺利进行,具有高效节能的特点。
[0051]具体地,对于炉体I的结构可不做特殊限制,只要满足使氧化和还原反应能够正常进行的要求即可。可选地,炉体I为垂直的圆柱体空腔结构。该结构的炉体I具有简单紧凑,稳定性高和操作可靠的特点。
[0052]在本实用新型熔炼炉的一些示例中,在气相区9反应后的气体会通过排气烟道3排出。而且排气烟道3与水平面的夹角范围Θ满足:0< Θ <90°。可以理解的是,炉体I与排气烟道3的夹角也在0-90°,保证了排气烟道3倾斜设置在炉体I的侧壁上。具体地,倾斜烟道3可以为柱状结构,柱状结构的倾斜烟道3设计简单,而且有利于熔炼炉的整体结构稳定性。需要说明的是,倾斜烟道3并不仅限于柱状结构,对于倾斜烟道3的结构和类型可不做特殊限制。可选地,倾斜烟道3为吊挂式烟道,具体地,倾斜烟道3可以通过支架结构、吊臂结构等进行固定,以提升倾斜烟道3的安装稳定性。
[0053]在本实用新型熔炼炉的一些示例中,大径区112和小径区111之间具有内径从下向上逐渐增大的过渡区113。可以理解的是,小径区111的内径小于大径区112的内径,如图2所示,过渡区113由下向上内径逐渐增大,直到与大径区112的内径等同。这样过渡区113的设置可以使大径区112和小径区111过渡平缓,而且熔炼炉的结构更加合理,有利于熔炼炉的整体结构稳定性。
[0054]在本实用新型熔炼炉的一些示例中,炉体I的侧壁上设有补风口 13。如图2所示,补风口 13设置在大径区112对应的炉体I的侧壁上,可以通过补风口 13向气相区9供入适量的空气,能够将烟气中的残余有机物充分燃烧,还可以促使反应产生的一氧化碳进行氧化反应生成二氧化碳。补风口 13的设置可以使燃烧更加彻底,而且节省了用于维持炉温的燃料消耗,也就是说有利于熔炼炉的高效性,而且减少了有害气体等排出炉体1,从而避免了环境污染。可以理解的是,反应后的气体则可以通过排气烟道3排出炉体I。
[0055]在本实用新型熔炼炉的一些示例中,排放口 12包括:排铜口 121和排渣口 122。排铜口 121设在炉体I的底部,排渣口 122位于排铜口 121的上方。由于冶炼产物密度不同,反应后所产生的氧化铁、氧化钙、二氧化硅、氧化铜、氧化亚铜、稀贵金属会分层,其中氧化铜、氧化亚铜和稀贵金属位于熔融产物的下方,因此通过将排渣口 122设置在排铜口 121的上方,可以更好地排出氧化铁、氧化钙、二氧化硅,实现了冶炼后物料的有效分类,使冶炼效率得以提尚。
[0056]而且,排铜口 121和排渣口 122上分别设有环保烟罩。由此,环保烟罩的存在进一步降低了炉体I中排出的物料对环境的污染,提升了熔炼炉的环保性能。
[0057]在本实用新型熔炼炉的一些示例中,炉顶2的顶部还设有烧嘴口 23,熔炼炉还包括烧嘴5,烧嘴5设在烧嘴口 23处且向下延伸至大径区112内。烧嘴5具有补充热量的作用,当将烧嘴5通过烧嘴口 23伸入到炉体I内时能够促进炉体I内的物料的氧化和还原反应的进行,提高氧化和还原反应的效率,进而减少有害气体等排出炉体I。
[0058]另外,物料在炉体I内经过冶炼会形成高温的熔体,高温的熔体排出炉体I外时会对操作人员或周围的环境形成一定的安全隐患,而且高温熔体长期对炉体I内壁冲刷、腐蚀,使熔炼炉的安全性有所降低。因此,从熔炼炉的使用安全性方面考虑,可选地,可以在炉体I的外部设置冷却水套6,冷却水套6对炉体I和排气烟道3形成包裹结构。由此,冶炼反应产生的高温熔体可以通过冷却水套6冷却后再排出,从而避免了高温高热的熔融产物对操作人员造成的危险,使用安全性有所提高,而且可以延长炉体I侧壁的使用寿命。
[0059]此外,由于冷却水套6包裹在排气烟道3的外部,从而使已经随烟气进入烟道的固体颗粒团聚返回反应区8,降低烟尘率,从而节省了用于维持炉温的燃料消耗,并且避免了环境污染,使操作更稳定可靠。
[0060]在本实用新型熔炼炉的一些示例中,炉顶2还设置有用于伸入测量尺的测量口24。测量口 24设置在炉顶2上,测量尺可以通过测量口 24伸入到炉体I内,进而可以通过测量尺确定反应区8内的物料的层高,从而可以方便地使操作人员了解炉体I内的反应情况。
[0061]在本实用新型熔炼炉的一些示例中,炉体I的侧壁上设有清洁口 7,清洁口 7在上下方向上邻近炉顶2。如图2所示,清洁口 7设置在临近炉顶2的炉体I侧壁上,考虑到大径区112上方和穹形炉顶2下方的空间在反应时的温度较下方的温度低,这样气体内的烟尘可能遇冷形成固体颗粒粘贴在炉体I内空腔11侧壁上,清洁口 7的设置可以使工作人员定期清理形成在空腔11侧壁上的固体颗粒,进而有利于熔炼炉的清洁和工作的高效性,而且对于在气相区9的气体反应提高良好的反应条件。
[0062]根据本实用新型实施例的熔炼炉的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
[0063]进一步地,为了使本实用新型实施例的熔炼炉更为详细具体,下面对利用本实用新型实施例的熔炼炉进行冶炼的方法进行描述。
[0064]冶炼方法包括以下步骤:
[0065]a)将破碎的电子废料以及熔剂混合后进行冶炼,形成炉渣层和炉料层;
[0066]b)将炉渣层排出,并在炉料层内加入还原剂进行还原反应,以还原炉料层中的氧化铜和氧化亚铜,得到含铜和稀贵金属的熔融产物。
[0067]具体而言,在步骤a)中,将经过一定程度破碎的电子废与熔剂一起通过炉体I顶部的加料口 21加入炉内,掉落在炉体I沉淀池表面的渣层上。富氧气体通过喷枪4进入沉淀池渣层中,搅动渣层熔体并与电子废料以及熔剂发生冶金反应。冶炼产物由于密度不同,在沉淀池形成炉渣层和炉料层。炉渣层通过排渣口 122排出炉体1,炉料层留则在炉体I中,炉体I上部气相区9设置补风口 13,使原料中没有经过充分燃烧而直接进入烟气的有机物被燃烧掉,从而避免了环境污染。
[0068]在步骤b)中,通过喷枪4向炉内通入还原剂以将炉料层中氧化铜和氧化亚铜还原,形成的铜和稀贵金属熔融产物沉于炉体I的底部。为了保证还原的质量,还可以通过加料口 21向炉内加入颗粒状固体还原剂,例如焦炭等,从而在炉料层表面形成红热的焦滤层以强化还原效果。为了补充还原反应需要的热,还可以通过烧嘴5向炉体I气相区9补充燃料或空气。熔融产物通过排铜口 121排出,贫化的还原渣通过设在沉淀池端墙上的排渣口 122排放到炉体I外,反应产生的烟气则通过排气烟道3排出炉外。
[0069]使用本实用新型实施例的熔炼炉,将氧化和还原反应分开进行,可以高效利用熔体的潜热,具有高效节能的特点,并且该系统操作时间短,热量外泄少,节省了燃料消耗,并且操作安全。
[0070]粒化装置300:根据本实用新型的实施例,粒化装置300具有熔融产物入口 301和固态产物颗粒出口 302,根据本实用新型的具体实施例,熔融产物入口 301与熔融产物出口204相连,且适于将熔融产物进行粒化处理,从而可以得到固态产物颗粒,根据本实用新型的具体实施例,固态产物颗粒可以含有铜、氧化铜、氧化亚铜和稀贵金属中的至少一种。由此,可以显著提高后续过程中金属铜的分离效率。
[0071]根据本实用新型的实施例,固态产物颗粒的粒径并不受特别限制,根据本实用新型的具体实施例,固态产物颗粒的平均粒径为75?150微米。发明人发现,如果粒度过大将会降低后续浸出过程中的浸出率,而粒度过小则会增加粒化的综合能耗,并对设备要求也随之提高,由此选择此粒度范围可以保证最佳粒化效果和最佳经济效益。
[0072]根据本实用新型的实施例,粒化装置可以为粒化塔,根据本实用新型的具体实施例,可以采用分散装置向熔融产物喷射高压空气,以便使得熔融产物在下降过程中冷却为固态颗粒并被氧化。发明人发现,采用该工艺对熔融产物进行粒化处理,可以有效解决设备的放炮问题。
[0073]具体的,熔融产物由溜槽排至粒化塔内,采用粒化塔中的分散装置向熔融产物喷射高压空气,使得熔融产物在下降过程中分散成众多细小的液滴,同时喷出的气体将分散后的液滴冷却为固态并同时对其进行氧化,从而可以得到含有铜、氧化铜和氧化亚铜的固态产物颗粒,另外,该过程中产生的废气经集气装置收集送至烟尘处理工段进行处理,从而显著降低环境污染。
[0074]酸化装置400:根据本实用新型的实施例,酸化装置400具有固态产物颗粒入口401、硫酸入口 402和酸浸液出口 403,根据本实用新型的具体实施例,固态产物颗粒入口401与固态产物颗粒出口 302相连,且适于将固态产物颗粒与硫酸溶液进行接触,以便使得固态产物颗粒中的铜、氧化铜和氧化亚铜与硫酸进行反应,从而可以得到含有硫酸铜的酸浸液。由此,可以实现铜与稀贵金属的有效分离。
[0075]根据本实用新型的实施例,含有硫酸铜的酸浸液中硫酸浓度为小于20g/L。发明人发现,硫酸浓度过高会影响铜萃取综合效果。
[0076]过滤装置500:根据本实用新型的实施例,过滤装置500酸浸液入口 501、滤液出口502和滤渣出口 503,根据本实用新型的具体实施例,酸浸液入口 501与酸浸液出口 403相连,且适于将含有硫酸铜的酸浸液进行过滤处理,从而可以得到滤液和滤渣,根据本实用新型的具体实施例,滤液中含有硫酸铜,滤渣中含有稀贵金属。由此,可以实现铜与稀贵金属的有效分离,从而显著提高后续铜的电积质量。
[0077]根据本实用新型的实施例,由于过滤时可能发生跑滤现象,或者空气中的浮尘进入溶液,会出现溶液中存在某些悬浮粒子的现象,所以可以继续对所得滤液进行过滤,以免悬浮粒子对后续电积铜的质量造成危害。
[0078]萃取-反萃取装置600:根据本实用新型的实施例,萃取-反萃取装置600具有滤液入口 601、硫酸铜溶液出口 602和萃取剂出口 603,根据本实用新型的具体实施例,滤液入口 601与滤液出口 502相连,且适于对滤液进行铜萃取处理后再进行反萃取处理,以便得到硫酸铜溶液和萃取剂。
[0079]具体的,首先采用萃取剂对滤液进行铜萃取处理,从而可以得到负载铜离子的有机相,然后采用反萃取剂对所得到的负载铜离子的有机相进行反萃取处理,从而可以得到硫酸铜溶液和萃取剂。
[0080]根据本实用新型的实施例,萃取剂的具体类型并不受特别限制,根据本实用新型的具体实施例,可以采用LIX984N萃取剂对滤液进行铜萃取处理。发明人发现,LIX984N萃取剂在溶液硫酸浓度小于20g/L时可获得较高的铜萃取率,并且采用该萃取剂可以明显降低萃取和反萃取过程的分相时间,因此采用LIX984N萃取剂不仅可以提高铜的萃取率,而且可以提高金属铜的分离效率。
[0081]根据本实用新型的实施例,对负载铜离子的有机相进行反萃取处理的反萃取剂并不受特别限制,根据本实用新型的具体实施例,反萃取剂为电积过程所产生的贫电积液。发明人发现,采用本实用新型的反萃取剂可以显著提高含有硫酸铜的萃取剂的分离效率,同时降低处理成本。
[0082]电积装置700:根据本实用新型的实施例,电积装置700具有硫酸铜溶液入口 701和金属铜出口 702,根据本实用新型的具体实施例,硫酸铜溶液入口 701与硫酸铜溶液出口602相连,且适于将硫酸铜溶液进行电积处理,从而可以得到金属铜。由此,可以实现电子废料中金属铜的回收利用。
[0083]具体的,对硫酸铜溶液进行电积处理可以在设置有电解液循环系统电极系统中进行,并且可以根据电积生产情况随时调整电积液成分及添加剂加入量,电积液按一定的循环速度由循环槽经电积液循环泵泵至板式换热器加热到35?50°C后进入高位槽,混合均匀的电积液由高位槽自流至各个电积槽,生产循环系统将贫电积液送至反萃系统循环利用。
[0084]下面参考图3,本实用新型实施例的处理电子废料的系统进一步包括:
[0085]冷却装置800:根据本实用新型的实施例,冷却装置800具有物料入口 801和物料出口 802,根据本实用新型的具体实施例,物料入口 801与固态产物颗粒出口 302相连,物料出口 802与固态产物颗粒入口 401相连,且适于在将固态产物颗粒与硫酸溶液进行接触之前,预先将固态产物颗粒进行冷却处理。由此,可以显著提高系统运行稳定性。
[0086]具体的,熔融产物的温度较高,虽然经过空气雾化温度有所降低,但在氧化过程中又会产生一定的热量,所以将固态产物颗粒下降落入粒化塔下方的冷却装置内进行冷却,并及时清理冷却的固态产物颗粒,水池中的水保持流动并且过滤后循环使用。
[0087]还原-缓冷装置900:根据本实用新型的实施例,还原-缓冷装置900具有炉渣入口 901和产物出口 902,根据本实用新型的具体实施例,炉渣入口 901与炉渣出口 203相连,且适于将冶炼装置得到的炉渣进行还原和缓冷处理。由此,可以进一步实现资源利用的最大化。
[0088]净化装置1000:根据本实用新型的实施例,净化装置1000具有烟气入口 1001和净化烟气出口 1002,根据本实用新型的具体实施例,烟气入口 1001与烟气出口 202相连,且适于将冶炼装置得到的烟气进行净化处理。由此,可以有效保护环境。
[0089]以上对本实用新型实施例的处理电子废料的系统进行详细的描述。为了方便理解,下面参考图4-5采用本实用新型实施例的处理电子废料的系统进行处理电子废料的方法进行详细描述。根据本实用新型的实施例,该方法包括:
[0090]SlOO:将电子废料进行破碎处理
[0091]根据本实用新型的实施例,将电子废料进行破碎处理,从而可以得到电子废料颗粒。由此,可以显著提高后续电子废料的冶炼效率。
[0092]根据本实用新型的实施例,电子废料颗粒的粒径并不受特别限制,根据本实用新型的具体实施例,电子废料颗粒的平均粒径可以为15?45_。发明人发现,若废料颗粒粒度过大将导致反应不充分,减慢反应速度,产生“生料”,而粒度过小,将会导致物料来不及反应就随烟气进入烟尘系统,降低金属直收率。
[0093]S200:将电子废料颗粒在熔炼炉中进行冶炼处理
[0094]根据本实用新型的实施例,将电子废料颗粒在熔炼炉中进行冶炼处理,从而可以得到烟气、炉渣和熔融产物,根据本实用新型的具体实施例,炉渣可以含有氧化铁、氧化钙、氧化铝、二氧化硅中的至少一种,熔融产物可以含有铜和稀贵金属。由此,可以实现电子废料中铜、稀贵金属与其他金属得以分离。
[0095]根据本实用新型的实施例,冶炼处理的条件并不受特别限制,根据本实用新型的具体实施例,冶炼处理可以在1200?1400摄氏度下进行。由此,可以显著提高电子废料的冶炼效率。
[0096]根据本实用新型的实施例,熔炼炉结构为图2所示,其详细描述详见前文。
[0097]S300:将熔融产物进行粒化处理
[0098]根据本实用新型的实施例,将熔融产物进行粒化处理,从而可以得到固态产物颗粒,根据本实用新型的具体实施例,固态产物颗粒可以含有铜、氧化铜、氧化亚铜和稀贵金属中的至少一种。由此,可以显著提高后续过程中金属铜的分离效率。
[0099]根据本实用新型的实施例,固态产物颗粒的粒径并不受特别限制,根据本实用新型的具体实施例,固态产物颗粒的平均粒径为75?150微米。发明人发现,如果粒度过大将会降低后续浸出过程中的浸出率,而粒度过小则会增加粒化的综合能耗,并对设备要求也随之提高,由此选择此粒度范围可以保证最佳粒化效果和最佳经济效益。
[0100]根据本实用新型的实施例,粒化处理可以在粒化塔内进行,根据本实用新型的具体实施例,可以采用分散装置向熔融产物喷射高压空气,以便使得熔融产物在下降过程中冷却为固态颗粒并被氧化。发明人发现,采用该工艺对熔融产物进行粒化处理,避免了在粒化过程中水与高温熔体接触反应生成氢气等,从而可以有效解决设备的放炮问题。
[0101]具体的,熔融产物由溜槽排至粒化塔内,采用粒化塔中的分散装置向熔融产物喷射高压空气,使得熔融产物在下降过程中分散成众多细小的液滴,同时喷出的气体将分散后的液滴冷却为固态并同时对其进行氧化,从而可以得到含有铜、氧化铜和氧化亚铜的固态产物颗粒,另外,该过程中产生的废气经集气装置收集送至烟尘处理工段进行处理,从而显著降低环境污染。
[0102]S400:将固态产物颗粒与硫酸溶液进行接触
[0103]根据本实用新型的实施例,将固态产物颗粒与硫酸溶液进行接触,以便使得固态产物颗粒中的铜、氧化铜和氧化亚铜与硫酸进行反应,从而可以得到含有硫酸铜的酸浸液。由此,可以实现铜与稀贵金属的有效分离。
[0104]根据本实用新型的实施例,含有硫酸铜的酸浸液中硫酸浓度为小于20g/L。发明人发现,硫酸浓度过高会影响铜萃取综合效果。
[0105]S500:将有硫酸铜的酸浸液进行过滤处理
[0106]根据本实用新型的实施例,将含有硫酸铜的酸浸液进行过滤处理,从而可以得到滤液和滤渣,根据本实用新型的具体实施例,滤液中含有硫酸铜,滤渣中含有稀贵金属。由此,可以实现铜与稀贵金属的有效分离,从而显著提高后续铜的电积质量。
[0107]根据本实用新型的实施例,由于过滤时可能发生跑滤现象,或者空气中的浮尘进入溶液,会出现溶液中存在某些悬浮粒子的现象,所以可以继续对所得滤液进行过滤,以免悬浮粒子对后续电积铜的质量造成危害。
[0108]S600:采用萃取剂对滤液进行铜萃取处理
[0109]根据本实用新型的实施例,采用萃取剂对滤液进行铜萃取处理,从而可以得到负载铜离子的有机相。由此,可以进一步提高金属铜的分离效率。
[0110]根据本实用新型的实施例,萃取剂的具体类型并不受特别限制,根据本实用新型的具体实施例,可以采用LIX984N萃取剂对滤液进行铜萃取处理。发明人发现,LIX984N萃取剂在溶液硫酸浓度小于20g/L时可获得较高的铜萃取率,并且采用该萃取剂可以明显降低萃取和反萃取过程的分相时间,因此采用LIX984N萃取剂不仅可以提高铜的萃取率,而且可以提高金属铜的分离效率。
[0111]S700:对含有硫酸铜的萃取剂进行反萃取处理
[0112]根据本实用新型的实施例,对含有硫酸铜的萃取剂进行反萃取处理,从而可以得到硫酸铜溶液和萃取剂,并将萃取剂返回步骤S600继续进行铜萃取处理。由此,可以得到纯净的硫酸铜溶液。
[0113]根据本实用新型的实施例,对含有硫酸铜的萃取剂进行反萃取处理的反萃取剂并不受特别限制,根据本实用新型的具体实施例,反萃取剂可以为电积过程所产生的贫电积液。发明人发现,采用本实用新型的反萃取剂可以显著提高含有硫酸铜的萃取剂的分离效率,从而可以分离得到纯度较高的硫酸铜溶液。
[0114]S800:将硫酸铜溶液进行电积处理
[0115]根据本实用新型的实施例,将硫酸铜溶液进行电积处理,从而可以得到金属铜。由此,可以实现电子废料中金属铜的回收利用。
[0116]具体的,对硫酸铜溶液进行电积处理可以在设置有电解液循环系统电极系统中进行,并且可以根据电积生产情况随时调整电积液成分及添加剂加入量,电积液按一定的循环速度由循环槽经电积液循环泵泵至板式换热器加热到35?50°C后进入高位槽,混合均匀的电积液由高位槽自流至各个电积槽,生产循环系统将贫电积液送至反萃系统循环利用。
[0117]下面参考图5,本实用新型实施例的处理电子废料的方法进一步包括:
[0118]S900:将固态产物颗粒进行冷却处理
[0119]根据本实用新型的实施例,在将固态产物颗粒与硫酸溶液进行接触之前,预先将固态产物颗粒进行冷却处理。由此,可以显著提高系统运行稳定性。
[0120]具体的,熔融产物的温度较高,虽然经过空气雾化温度有所降低,但在氧化过程中又会产生一定的热量,所以将固态产物颗粒下降落入粒化塔下方的水冷池内进行冷却,并及时清理冷却的固态产物颗粒,水池中的水保持流动并且过滤后循环使用。
[0121]S1000:将炉渣进行还原和缓冷处理
[0122]根据本实用新型的实施例,将S200得到的炉渣进行还原和缓冷处理。由此,可以进一步实现资源利用的最大化。
[0123]SllOO:将烟气进行无害化处理
[0124]根据本实用新型的实施例,将S200得到的烟气进行无害化处理。由此,可以实现无污染清洁冶金。
[0125]在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0126]尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。
【权利要求】
1.一种处理电子废料的系统,其特征在于,包括: 破碎装置,所述破碎装置具有电子废料入口和电子废料颗粒出口; 冶炼装置,所述冶炼装置具有电子废料颗粒入口、烟气出口、炉渣出口和熔融产物出口,所述电子废料颗粒入口与所述电子废料颗粒出口相连; 粒化装置,所述粒化装置具有熔融产物入口和固态产物颗粒出口,所述熔融产物入口与所述熔融产物出口相连; 酸化装置,所述酸化装置具有固态产物颗粒入口、硫酸入口和酸浸液出口,所述固态产物颗粒入口与所述固态产物颗粒出口相连; 过滤装置,所述过滤装置具有酸浸液入口、滤液出口和滤渣出口,所述酸浸液入口与所述酸浸液出口相连; 萃取-反萃取装置,所述萃取-反萃取装置具有滤液入口、硫酸铜溶液出口和萃取剂出口,所述滤液入口与所述滤液出口相连;以及 电积装置,所述电积装置具有硫酸铜溶液入口和金属铜出口,所述硫酸铜溶液入口与所述硫酸铜溶液出口相连。2.根据权利要求1所述处理电子废料的系统,其特征在于,所述粒化装置具有向熔融产物喷射高压空气的分散装置。3.根据权利要求1所述处理电子废料的系统,其特征在于,进一步包括:冷却装置,所述冷却装置具有物料入口和物料出口,所述物料入口与所述固态产物颗粒出口相连,所述物料出口与所述固态产物颗粒入口相连。4.根据权利要求1所述处理电子废料的系统,其特征在于,进一步包括:还原-缓冷装置,所述还原-缓冷装置具有炉渣入口和产物出口,所述炉渣入口与所述炉渣出口相连。5.根据权利要求1所述处理电子废料的系统,其特征在于,进一步包括:净化装置,所述净化装置具有烟气入口和净化烟气出口,所述烟气入口与所述烟气出口相连。6.根据权利要求1所述处理电子废料的系统,其特征在于,所述冶炼装置包括: 炉体,所述炉体内限定有上端敞开的空腔,所述空腔具有小径区和位于所述小径区上方的大径区,所述大径区的内径大于所述小径区的内径,所述小径区上设有排放口 ; 炉顶,所述炉顶设在所述炉体上且封盖所述空腔的上端,所述炉顶为穹形,所述炉顶的顶部设有加料口、喷枪口 ; 排气烟道,所述排气烟道倾斜向上设在所述炉体的侧壁上,所述排气烟道与所述空腔连通; 喷枪,所述喷枪设在所述喷枪口内且向下延伸至所述小径区内, 冷却水套,所述冷却水套设在所述炉体外部且对所述炉体和所述排气烟道形成包裹结构, 其中,所述排气烟道设在所述大径区对应的所述炉体的侧壁上, 所述排气烟道与水平面的夹角范围Θ满足:0 < Θ <90°, 所述大径区和所述小径区之间具有内径从下向上逐渐增大的过渡区, 所述炉体的侧壁上设有补风口, 所述补风口设在所述大径区对应的所述炉体的侧壁上, 所述加料口处设有阻止烟气通过所述加料口逸散的密封装置, 所述炉顶的顶部还设有烧嘴口,所述冶炼装置还包括烧嘴,所述烧嘴设在所述烧嘴口处且向下延伸至所述大径区内, 所述排放口包括:排铜口,所述排铜口设在所述炉体的底部;排渣口,所述排渣口位于所述排铜口的上方, 所述炉顶还设置有用于伸入测量尺的测量口, 所述炉体的侧壁上设有清洁口,所述清洁口在上下方向上邻近所述炉顶。
【文档编号】C22B7-00GK204265819SQ201420684255
【发明者】王红军, 刘志东, 唐尊球, 卢金龙, 王玮, 李明 [申请人]江西瑞林稀贵金属科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1