金合金焊线的制作方法

文档序号:3369283阅读:365来源:国知局
专利名称:金合金焊线的制作方法
技术领域
本发明涉及用于半导体元件引线焊接的金合金焊线,其用于实现电路板的外部引线与半导体集成电路元件上的电极之间的连接,更具体地涉及使得第一焊接和第二焊接的焊接性得到改善的金合金焊线以及使得熔融球球形度和压接球圆形度得到改善的金合金焊线。
背景技术
通常,作为用于实现外部引线与半导体装置中使用的半导体芯片电极之间的连接的直径约为25-35μm的线,含有纯度不低于99.99质量%的高纯金的金合金焊线得到了广泛应用。在金合金焊线的连接方法中,对于第一焊接,一般主要采用超声波-热压粘接联用法。采用该方法时,通过电弧加热线的一端使其熔化,并在表面张力作用下形成熔融球,紧接着将球体部分压贴到已经加热到150-300℃温度范围内的半导体元件电极上面。而对于随后的第二焊接,则通过超声波压接将焊线直接楔形连接到外部引线的侧面。
为了得到能够使用的半导体元件例如晶体管或IC,采用上述方法用焊线进行焊接后,还要在半导体芯片相附着的部分用环氧树脂进行密封来对半导体芯片、焊线和引线框等进行保护。
近来,不断要求将半导体元件制造得更加简洁和精密,并要求不断改善其性能和可靠性。其中,金焊线所需具备的性能已经变得更加多样化,并且已经形成这种情况,也就是,即使将金焊线制备得更加精细以应对半导体芯片管脚数量的不断增加和随之出现的脚距的减小,但关于必要强度、第一焊接的球的圆形度和第二焊接的焊接可靠性等性能仍要求焊接具有更好的长期可靠性。
特别是由于将半导体元件制备得更加简洁和精密的同时还要求其具有更高的性能,所以降低了半导体元件的尺度。伴随之,单位面积上的输入/输出终端数量增加,同时Al焊盘脚距(焊盘中心的间距)也从100μm降至80μm,并进一步降至60μm。因此焊线的直径也开始从25μm降至23μm或更低,在某些情况下,已经进行了10μm级的线直径的试验。
然而,由于焊线直径的降低,使线自身的绝对刚性也降低,因此已经开始产生一些对于直径为25μm的线而言则不会产生的问题。
例如,如果线直径降低造成刚性的降低,则会发生所谓的“倾斜”问题并最终发生接触,在所述“倾斜”问题中,第一焊接与第二焊接之间的架线倒向一边并由此降低了邻线间隙。
另外,由于密度的增加,焊接点处产生的热量会增加。如果在高温环境中长时间使用,Au线和第一焊接上的Al焊盘之间的界面上的金属间化合物的生长则会快速进行,其结果是,由于生成的金属间化合物所造成的球形焊接性降低的问题变得明显。
而且,在模塑树脂中包含的组分的影响下,腐蚀也会成为问题。
为了解决这些问题,已经进行了添加了不同比例的各种元素的试验。通过向Au中添加贵金属元素例如Pd来提高刚性,已经从纯金线引出金合金线,并且已经尝试通过添加一种或多种痕量元素来改善各种性能。在一个例子中,通过延迟焊线(球)和与焊线相连接的Al合金之间界面上的Au-Al相互扩散,已经抑制了金属间化合物的生长。
对于向金合金线中添加痕量元素的情况,痕量元素相对于金合金线的浓度越高,则金合金线的绝对刚性也会变得越高,同时各种性能也会变得越好,但另一方面,也出现了不良性能。一个例子是,当环成型性能提高时,由于加入到金合金基质中的元素恶化了金球的成形性。楔形接合性也会恶化。此外,也会出现由添加到金合金基质中的元素所造成的金合金球硬度增加这一缺陷。
因此会出现诸如熔融球或压接球变成畸形的问题,从而造成难以在窄脚距下进行球形焊接,或者造成芯片开裂增加;所以痕量元素的添加量不能大。例如,对于单独加入Ca元素来确保强度的情况,部分Ca会在细线的表面沉积,然后沉积的Ca被氧化而形成表面氧化膜,并造成第一焊接的球形和焊接性一直不稳定的问题,因此压接球的圆形度变差,同时第二焊接的楔形接合性也变差。
另外,在向金合金中加入了多种类型元素的复杂情况下,这些元素在金合金中的作用方式会比较复杂,并可能会沉积在熔融球表面上,因此不能得到良好的初始焊接,同时还存在一种不断增加的趋势,即不再可能实现可靠的第一焊接和良好的第二焊接焊接性。
总之,目前的情况是,通过选择合金化元素的种类和用量能够使其达到一个平衡从而来实现细线所需的线性能;由于对细线的线性能要求变得更高,所以对元素组合的探索是无止境的。
下面是对几份现有技术文献公开的焊线合金中添加的元素的简述。
日本专利3064692号公开了“半导体元件焊线,其中向高纯金中添加了1重量%的高纯Pd,另外还添加了总量为0.0001-0.005重量%的选自Fe、Si、Be、Ca、Ge、Y、Sc和其他稀土元素中的至少一种”。其中,举出“直径为25μm的焊线”作为实施例。
日本专利特开平9-321075号公报公开了“焊线,其特征在于含有0.0003-0.003重量%的Ca、0.0005-0.01重量%的Mg和总量为0.01-2.0重量%的选自Pt、Pd和Cu中的至少一种,以及余量的Au和不可避免的杂质”。其中,举出“直径为0.025mm的合金线”作为实施例。
日本专利特开平11-222639号公报公开了“用于将半导体元件彼此相连接的含有金合金的细线,其特征在于金合金含有0.5-0.9重量%的铜、0.05-0.95重量%的铂和余量的金”,并进一步公开了其中添加有“0.0001-0.1重量%的选自碱土金属和稀土金属中的至少一种”的金合金。其中,“碱土金属是铍、镁和/或钙”,而“稀土金属是铈”。在该公报中,举出“30μm的直径”作为实施例。
日本专利特开平11-87396号公报公开了“用于将半导体结构元件彼此相连接的含有金合金的细线,该细线含有含铈混合稀土的金合金,其特征在于该金合金含有0.05-0.95重量%的铂、0.001-0.1重量%的铈混合稀土、0-0.1重量%的碱土金属和余量的金,其中至少50重量%的稀土金属是铈”,此外还述及“碱土金属含有铍与钙的混合物”及“钯部分地或全部地替代铂”。其中关于现有技术,述及“线的直径能够为约10到200μm,通常为约20到60μm。该直径是依据使用目的进行的选择”和“直径为30μm的线”,并举出“直径为25μm的线和直径为30μm的线”作为实施例。
日本专利特开平11-214425号公报公开了“用于半导体元件引线焊接的金合金线,其特征在于向高纯金中添加了0.1-3.0重量%的选自Zn、Co、Mo和Cr中的至少一种和1-100重量ppm的选自La、Eu、Be、Y和Ca中的至少一种”,并述及可以进一步“加入1-500ppm的选自Bi、Yb、Sb、Mg、In、Ru和Ir中的至少一种”,以及“进一步加入0.01-2.0重量%的选自Pd、Pt、Cu和Ag中的至少一种”。其中,举出“30μm的直径”作为实施例。
日本专利特开2003-133362号公报公开了“金合金焊线”,在下述情况下,“模塑树脂是含有浓度不超过0.1质量%的溴和总浓度(Rp)为0.01质量%或更高的选自P、Mg和Al中的至少一种”,所述金合金焊线包括具有“C1=0.005-1.5质量%”的“金合金焊线”,或具有“C1=0.005-1.5质量%”、“C2=0.001-0.06质量%”和“C3=0.001-0.05质量%”的“金合金焊线”,假定“C1为选自Cu、Pd、Pt、Zn和Ag中的至少一种元素的总浓度”、“C2为选自Ca、Ce、Eu、Dy和Y中的至少一种元素的总浓度”和“C3为选自La、Gd、Tb、Mg和Ni中的至少一种元素的总浓度”。其中述及“小于18μm的线直径”,但举出“20μm的最终线直径”作为实施例。

发明内容
本发明的目的是提供一种焊线,根据该焊线尽管该焊线是直径不超过23μm的细线,但是Au-Pd等金合金基质中的痕量元素能够均匀分散开而不偏析,Au-Al相互扩散能被延缓,不发生倾斜,熔融球的球形度得以保持,而且压接球具有良好的圆形度。另外,本发明的另一目的是提供一种焊线,根据该焊线,由于痕量元素的含量适当,即使在空气中进行球形焊接,细线或熔融球的表面也不会形成氧化膜且焊接性良好,金属间化合物随时间的生成趋势也很小。本发明进一步的目的是提供一种焊线,根据该焊线,通过超声波进行压接的第二焊接的楔形焊接性得到改善,其中至今尚未过多考虑采用球形焊接。甚至在所添加的痕量元素的总量不大于100ppm的情况下,所述目的也是有效的。
为了实现上述目的,发明人进行了大量的研究并实现了本发明。
即本发明提供了如下金合金焊线。
(1)含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%,其中,痕量元素包含10-100质量ppm的Mg、5-100质量ppm的Ce和5-100质量ppm的选自Be、Y、Gd、La、Eu和Si中的至少一种,Be、Y、Gd、La、Eu和Si的总量为5-100质量ppm。
(2)含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%,其中,痕量元素包含10-100质量ppm的Mg、5-100质量ppm的Be和选自Y、La、Eu和Si中的至少一种,Y、La、Eu和Si中每种元素的含量为5-100质量ppm,Y、La、Eu和Si的总含量量不超过100质量ppm。
(3)含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%,其中,痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和5-30质量ppm的Ca和Sn的任一个。
(4)含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%,其中,痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和每种元素含量为5-30质量ppm且总含量为10-60质量ppm的选自Ca、Ce和Sn中的两种。
(5)含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%,其中,痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和每种元素含量为5-30质量ppm且总含量为15-90质量ppm的Ca、Ce和Sn的三种。
(6)根据(1)至(5)中任一项的金合金焊线,其中痕量元素的总含量不超过100质量ppm。
(7)根据(1)到(5)中任一项的金合金焊线,其具有不超过23μm的直径。
依据本发明的金合金,即使对于直径不超过23μm的细焊线,但和直径大于23μm的金合金线一样,也能达到延缓Au-Al的相互扩散的效果、改善楔形焊接性的效果、抑制倾斜的效果、改善熔融球球形度的效果和提高压接球圆形度的效果。本发明中,不需要像通常那样加入超过300质量ppm的微量元素,因此可以得到本发明的焊线,即使在空气中进行球形焊接,熔融球上细线的表面也从不会形成氧化膜。
具体实施例方式
本发明的金合金焊线含有作为基质合金的(i)Au和(ii)Pd和/或Pt;通过选择并调节包含在该基质合金中的痕量元素来实现所需的性能。根据想要实现的性质,金合金焊线大致分为两组。
对于第一组,第一焊接和第二焊接的焊接性和持久稳定性(长期可靠性)是主要目标,规定为第一和第二发明。
对于第二组,改善压接球圆形度和改善对压接球圆形度有很大影响的熔融球球形度是主要目标,规定为第三到第五发明。
在属于第一组的第一发明(权利要求1)中,作为包含在基质合金中添加的痕量元素,(iii)Mg和Ce作为必要添加的痕量元素,这些元素和(iv)选自Be、Y、Gd、La、Eu和Si中的至少一种结合添加。在属于第一组的第二发明(权利要求2)中,作为包含在基质合金中添加的痕量元素,(v)Mg和Be作为必要添加的痕量元素,这些元素与不包含铈的(vi)选自Y、La、Eu和Si中的至少一种结合添加。
在属于第二组的第三发明(权利要求3)中,基质合金与属于第一组的发明的基质合金相同,作为包含在基质合金中的添加的痕量元素,(vii)Mg、Si和Be作为必要添加的痕量元素,这些元素与(viii)Ca和Sn的任一个结合。在属于第二组的第四发明(权利要求4)中,作为包含在基质合金中添加的痕量元素,(vii)Mg、Si和Be是必要添加的痕量元素,这些元素与(viii)选自Ca、Ce和Sn中的两种结合。在属于第二组的第五发明(权利要求5)中,作为包含在基质合金中添加的痕量元素,(vii)Mg、Si和Be作为必要添加的痕量元素,这些元素与(ix)中的Ca、Ce和Sn三种元素结合。
本发明所采用的基质合金中,金是高纯金,其纯度至少为99.99质量%,优选为99.999质量%。另外,Pd和/或Pt也是高纯的,其纯度至少为99.9质量%,优选为99.99质量%。
如果合金中含有大量的Pd和/或Pt,则球会变硬,且芯片倾向于发生开裂。因此基质合金中Pd和Pt的总含量不超过基质合金的2质量%,优选不超过基质合金的1.5质量%。另外,为了达到稳定效果,该含量的下限为0.08质量%,优选为0.2质量%。
此外,Pd和Pt也影响第一焊接的长期可靠性。175℃下的高温存放所示持续时间为在0.2质量%或更大的含量下至少2000小时;在0.08质量%或更大的含量下至少1500小时;和在0.05质量%或更大的含量下至少1000小时。
对于向基质合金中同时加入Pd和Pt的情况,加入的Pd和加入的Pt的量之比没有特别的限定。这是由于Pd和Pt对Au表现出基本相同的基质作用。
分散在基质合金(金合金)中的痕量元素中的Mg的纯度应至少为99.9质量%,优选至少为99.99质量%。对于属于第一组的发明和属于第二组的发明,基质合金中Mg的含量均为10-100质量ppm,优选为40-80质量ppm。
现已发现金合金基质中的元素Mg能够改善第一焊接的圆形度和通过超声波压接形成的第二焊接的楔形焊接性。如果包含10-100质量ppm的Mg,则可表现出上述改善圆形度和楔形焊接性的效果。当Mg的量低于10质量ppm时,则不能改善圆形度和楔形焊接性,并且当Mg的量高于100质量ppm时,Mg则会在球表面析出并被氧化,从而第一焊接的焊接性恶化。40质量ppm或更高的Mg还改善了第二焊接的焊接性,当Mg的量为80质量ppm或更低时,则熔融球的球形度更稳定。
本发明的熔融球球形度定义为“横向直径与竖向直径”之比,从熔融球没有线的一端的看分别测量所述相应直径。球形度的值在0.99-1.01范围内,优选在0.995-1.005范围内。此外,压接球环形度定义为“垂直方向上的压接直径与平行方向上的压接直径”之比,在与超声波施加方向平行和垂直方向分别测量所述压接直径。圆形度的值在0.98-1.02范围内,优选在0.99-1.01范围内。
包含在基质合金(金合金)中的痕量元素中的Ce的纯度应至少为99.9质量%,优选至少为99.99质量%。
对于第一组,基质合金中Ce的含量为5-100质量ppm,对于第二组,Ce的含量则为5-30质量ppm。
包含在金合金基质中的痕量元素中的Be的纯度应至少为98.5质量%,优选至少为99.9质量%。
对于第一组,基质合金中Be的含量为5-100质量ppm,对于第二组,Be的含量则为5-30质量ppm。
金合金基质中的Be改善了第一焊接的圆形度。如果Be的含量低于5质量ppm,则不能够实现上述对圆形度的改善效果,然而,如果Be的含量大于30质量ppm,则会造成熔融球表面形成的氧化物的量增加,从而恶化了第一焊接的焊接性。
包含在金合金基质中的痕量元素中的Si的纯度应至少为99.99质量%,优选至少为99.999质量%。
对于第一组,基质合金中Si的含量为5-100质量ppm,对于第二组Si的含量则为5-30质量ppm。
金合金基质中的Si是保持环成形性以及压接球的圆形度的元素。如果Si的含量低于5质量ppm,则不能够保持环成形性,然而,如果Si的含量大于30质量ppm,则难以得到良好的圆形度。
包含在金合金基质中的痕量元素中的Gd的纯度应至少为99质量%,优选至少为99.5质量%。
对于第一组,基质合金中Gd的含量为5-100质量ppm。
金合金基质中的元素Gd是保持环成形性和压接球的圆形度的元素。如果Gd的含量低于5质量ppm,则不能够保持环成形性,然而,如果Gd的含量大于30质量ppm,则难以得到优良的圆形度。
包含在金合金基质中的痕量元素中的Ca的纯度应至少为99质量%,优选至少为99.5质量%。基质合金中Ca的含量为5-30质量ppm。
金合金基质中的元素Ca改善了线的强度。现已发现,即使对于直径不超过23μm的细线,由于Ca增加了细线自身的刚性,因而保持了环成形性,进而保持了第一焊接中压接球的圆形度。如果Ca的含量低于5质量ppm,则不能实现上述改善圆形度的效果。如果Ca的含量大于30质量ppm,则在熔融球的底部倾向于形成凹陷,因此,对于通过形成熔融球并随后连接到半导体元件的电极上的球形焊接所使用的焊线,基质合金中Ca的含量优选在5-30质量ppm范围内。
另外,如果加入预定量的Ca,则能够得到同时实现良好的环成形性和圆形度的线。
此外,如果金合金基质中的痕量元素的总含量大于100质量ppm,则熔融球的表面易于生成氧化物,从而恶化了第一焊接的焊接性。
包含在基质合金(金合金)中的痕量元素中的Ce、Y、Eu、La和Sn中每种元素的纯度应至少为99.9质量%,优选为99.99质量%。
基质合金中每种痕量元素的含量为5-100质量ppm,对于La优选为5-80质量ppm,对于其他元素则优选为5-30质量ppm。
如上所述,现已发现,即使对于直径不超过23μm的细线,由于金合金基质中的Ce、Y、Gd、Be、La、Si和Eu是增加细线自身的刚性的元素,因而保持了环成形性,进而保持了第一焊接中的压接球的圆形度。
如果Ce、Y、Gd、Be、La、Si和Eu中每种元素的量小于5质量ppm,则不可能保持Au-Pd等的合金线的环成形性,进而难以保持第一焊接中的压接球的圆形度。另外,如果上述元素中每种的量大于100质量ppm,或者上述元素的总量大于100质量ppm,则熔融球会变成畸形或者细线自身的刚性会变得太高,从而使半导体芯片变得易于开裂。如果上述元素中每种的量不超过30质量ppm,压接球的圆形度仍会更稳定。
另外,痕量元素会在Au-Pd等的金合金基质的熔融球的表面析出并被氧化,从而恶化了第一焊接的焊接性或者恶化了压接球的圆形度。已经发现改善圆形度的能力顺序,从最好到最差的顺序是Si、Be、La、Ce、Ca、Eu、Y和Gd。另外,与Ce相组合后,顺序是Ce-Si、Ce-Be、Ce-La、Ce-Y、Ce-Gd。进一步,与Be相组合后,该能力顺序为Be-Si、Be-Ca、Be-Eu和Be-Y。
添加到高纯Au-Pd等的合金中的本发明所用的痕量元素Mg、Ce、Y、Gd、Be、Ca、Eu、La和Si的量是痕量的,并且是以适当的结合方式添加的,从而能够在金合金中均匀地含有而不发生偏析;因此在单独添加了Zn或大量Ca的金合金的表面不会出现无意图的析出而形成的氧化膜。所以,通过结合在上述适当含量范围的Mg、Ce、Y、Gd、Be、Ca、Eu、La和Si,除了能够达到抑制金合金焊线中的相互扩散外的效果外,还能够达到改善楔形焊接性的效果、改善熔融球球形度的效果、改善细线的环成形性的效果和改善压接球圆形度的效果。
到目前为止,已有文献公开了向Au-Pd合金焊线中共同添力Mg和稀土元素(日本专利特开平11-222639号公告,日本专利特开平11-87396号公告,日本专利特开平11-214425号公告和日本专利特开2003-133362号),并且的确已经存在采取同时添加的情况(日本专利特开2003-133362号)。然而,对于日本专利特开11-222639号公开的含有Zn的金合金,细线的表面则容易形成氧化膜,因此细线越细,则越难使压接球为圆形。另外,对于含有超过30质量ppm的Ca的金合金,无论是否存在其他加入元素,Ca都会在表面无规律地析出并发生氧化,因此该金合金基质存在不能够实现优良的第一焊接可靠性和优良的压接球圆形度的问题。
至今未知Mg等是在高纯Au-Pd等的金合金基质中具有良好的分散性且不会在线的表面形成氧化物膜的元素,并且是即使在空气中进行球形焊接也不会在细线或熔融球的表面形成氧化膜的痕量元素。在过去,没有预知到组合添加本发明的在适当含量范围内的适当种类的选自Mg、Ce、Y、Gd、Be、La、Si、Ca和Eu的元素,这些痕量元素在金合金基质中均具有良好的分散度,且不会发生在表面上析出,因此能够实现作为焊线的稳定性的品质。
下面通过实施例和对比例对本发明进行更为详细的描述。
对应于第一组实施例(实施例1-57)的表1和对应于第二组实施例(实施例58-81)的表2示出了每种样品的组成。按照表1或表2中的量(质量ppm)向纯度为99.999质量%或更高的高纯金和纯度为99.99质量%或更高的高纯Pd和/或Pt的合金中添加痕量元素,并在真空熔化炉中进行熔铸。然后进行拉成线,接着在25μm、20μm或15μm的线直径下进行最终热处理并将延伸率调为4%。将每根焊线剪成10cm长,取10根线进行拉伸测试,然后计算平均值,从而评估出每根线的最终延伸率和拉伸强度。
在空气中采用超声波-热压联用焊接法进行球形焊接,由此,将细线连接到Si芯片上50μm方形大小的Al焊盘(Al膜厚度约为1μm)上,在该连接中,每种类型的细线都进行了第一焊接,然后采用超声波-热压联用焊接法进行楔形焊接,通过采用该楔形焊接的第二焊接将所述细线焊接到镀Ag42的合金引线上。此时,将环形跨距设为5mm,将环形高度设为200μm,并采用具有200个Al焊盘的“200针QFP(封装)”。在第一焊接中,所有的球均形成在50μm方形的Al焊盘内。另外,在第二焊接中,所有的线都牢固地连接在引线上。从所述按照上述方法进行了连接的线中,任选40根线来进行各项评估。对应于第一组实施例的表4和对应于第二组实施例的表5示出了评估结果。
这些对比例中样品的组成,具有与表3所示的实施例中样品不同的痕量元素配比。注意的是,对比例1-17是对应于第一组的对比例,对比例18-23是对应于第二组的对比例。
对金合金细线采用与实施例相同的方式在25μm、20μm或15μm的线直径下进行最终热处理,以将延伸率调为4%,并采用与实施例1相同的方式来进行评估。表6示出了评估结果。
实施例和对比例的各个焊接线的特性评价如下。
对于第一焊接与第二焊接“焊接质量”的评估,形成5000个环线,对于没有诸如开裂的缺陷的情况,认为是良好并表示为“◎”,对于只有一根线出现缺陷的情况,表示为“○”,对于两根或两根以上的线出现缺陷的情况,表示为“△”。
为了得到“形成的Au-Al的量”,将Al焊盘溶于10%NaOH水溶液中,用扫描电子显微镜观测焊接表面,从而测定出焊接表面上形成了Au-Al合金的区域所占的比例。对于焊接表面上至少70%的部分形成了Au-Al的情况,认为是非常良好并表示为“◎”,对于焊接表面上至少50%但低于70%的部分形成了Au-Al的情况,认为是良好并表示为“○”,对于焊接表面上低于50%的部分形成了Au-Al的情况,认为是一般并表示为“△”。
为了评估“熔融球的球形度”,对熔融球底面(线在上面)的横向直径与竖向直径进行了测量,对于横向直径与纵向直径之比在0.995到1.005范围内的情况,表示为“◎”,对于横向直径与纵向直径之比在0.99到1.01范围内但不在上述范围内的情况,表示为“○”。对于横向直径与纵向直径之比不在上述这些范围内的情况,表示为“△”。每次选取10个样品进行测量;平均值已经示出。然而,对于实施例58、62和72,抽样数量增加到了50个,因此对第二组偏差幅度的测量会更加精确。
为了评估“压接球的圆形度”,在与超声波施加方向平行和垂直方向分别测量所述压接直径,对于二者之比在0.99到1.01范围内的情况,表示为“◎”,对于二者之比在0.98到1.02范围内但不在上述范围内的情况,表示为“○”。对于二者之比不在上述所有范围内的情况,表示为“△”。对于第一组,选取200个样品进行测量,对于第二组,选取5000个样品进行测量;平均值已经示出。
为了评估“拉力试验”,在环形跨距的近似中点向上方钩起,测量破断负荷。当线直径为25μm时,负荷是6×10mN或更大,此种情况表示为“◎”,对于负荷在4×10mN到6×10mN的范围内的情况,表示为“○”,对于负荷小于4×10mN的情况,表示为“△”。
此外,当线直径为20μm时,负荷是6×10mN或更大,此种情况表示为“◎”,对于负荷在2.5×10mN到4×10mN的范围内的情况,表示为“○”,对于负荷小于2.5×10mN的情况,表示为“△”。进一步,当线直径为15μm时,负荷是2×10mN或更大,此种情况表示为“◎”,对于负荷在1×10mN到2×10mN的范围内的情况,表示为“○”,对于负荷小于1×10mN的情况,表示为“△”。
对于上述六项评估之外的“整体评估”,有三个或更多“◎”标记而没有“△”标记的情况被认为是非常良好,表示为“◎”,有两个或更少“◎”标记而没有“△”标记的情况被认为是良好,表示为“○”,有一个或多个“△”标记的情况被认为是一般,表示为“△”。
表1
表2 表3
表4

表5

表6

根据上述结果清楚可知,对于本发明的金合金焊线,当添加的痕量元素的量在特定范围内时,即使在线直径为23μm或更小的情况下也能得到令人满意的结果。
与此相对比的是,对比实施例由于下述原因没有实现预期的性质。
对于相对应于第一组的对比例对于对比例1,是因为金合金焊线中包含了本发明中所不包含的痕量元素Ca;对于对比例2,是因为金合金焊线中包含了本发明中所不包含的痕量元素Zn;对于对比例3,是因为痕量元素Ce的含量超过了规定量;对于对比例4,是因为金合金焊线中包含了本发明中所不包含的痕量元素Zn,以及不包含本发明中所包含的痕量元素Mg;对于对比例5,是因为金合金焊线中包含了本发明中所不包含的痕量元素Ca;对于对比例6,是因为金合金焊线中包含了本发明中所不包含的痕量元素Zn;对于对比例7,是因为金合金焊线中没包含本发明中所包含的除了痕量元素Mg和Ce外的其他痕量元素;对于对比例8,是因为金合金焊线中不包含本发明中所包含的Mg;对于对比例9,是因为金合金焊线中不包含本发明中所包含的Ce与Be的组合;对于对比例10,是因为金合金焊线中不包含本发明中所包含的除了Mg和Be外的痕量元素;对于对比例11,是因为痕量元素Be的含量超过了规定量;对于对比例12,是因为痕量元素Si的含量超过了规定量;对于对比例13,是因为痕量元素Ce的含量超过了规定量;对于对比例14,是因为痕量元素Mg的含量超过了规定量;对于对比例15,是因为痕量元素的总含量超过了规定量;对于对比例16,是因为痕量元素的总含量超过了规定量;
对于对比例17,是因为合金元素Pt不足规定量;对于相对应于第二组的对比例对于对比例18,是因为痕量元素Ce不足规定量;对于对比例19,是因为痕量元素Ca的含量超过了规定量;对于对比例20,是因为痕量元素Mg的含量超过了规定量;对于对比例21,是因为痕量元素的总含量超过了规定量,痕量元素ca的含量超过了上限值,以及没有组合含有作为本发明目的Be和Si;对于对比例22,是因为合金元素Pd的含量不足规定量;对于对比例23,是因为合金元素Pd和Pt的总含量不足规定量;本发明的合金适用于汽车半导体元件中所用的焊线,更具体地适用于在于经常变热的环境中工作的半导体中所用的焊线。
权利要求
1.一种含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该金合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%;其中所述痕量元素包含10-100质量ppm的Mg、5-100质量ppm的Ce和每种元素含量为5-100质量ppm的选自Be、Y、Gd、La、Eu和Si中的至少一种,Be、Y、Gd、La、Eu和Si的总含量为5-100质量ppm。
2.一种含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该金合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%;其中所述痕量元素包含10-100质量ppm的Mg、5-100质量ppm的Be和选自Y、La、Eu和Si中的至少一种,痕量元素Y、La、Eu和Si中每种元素的含量为5-100质量ppm,Y、La、Eu和Si的总含量为100质量ppm或更低。
3.一种含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该金合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%;其中所述痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和5-30质量ppm的Ca或Sn。
4.一种含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该金合金基质包含在高纯金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%;其中所述痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和每种元素含量为5-30质量ppm且总含量为10-60质量ppm的选自Ca、Ce和Sn中的两种。
5.一种含有金合金的金合金焊线,在所述金合金中,痕量元素包含在金合金基质中,该金合金基质包含在高纯度金中总量为0.05-2质量%的至少为99.9质量%的高纯度的选自Pd和Pt中的至少一种,所述高纯金的纯度至少为99.99质量%;其中所述痕量元素包含10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和每种元素含量为5-30质量ppm且总含量为15-90质量ppm的Ca、Ce和Sn所有这三种。
6.根据权利要求1至5中任一项的金合金焊线,其中所述痕量元素的总含量为100质量ppm或更低。
全文摘要
提供一种金合金焊接细线,其具有所需的强度、良好的焊接性、长期稳定性以及改善了的压接球圆形度和熔融球球形度。该金合金焊线含有在金合金基质中作为痕量元素的10-100质量ppm的Mg、5-100质量ppm的Ce和每种元素含量为5-100质量ppm的选自Be、Y、Gd、La、Eu和Si中的至少一种,其中Be、Y、Gd、La、Eu和Si的总含量为5-100质量ppm,或者作为痕量元素的Mg、Be和选自Y、La、Eu和Si中的至少一种,或者作为痕量元素的10-100质量ppm的Mg、5-30质量ppm的Si、5-30质量ppm的Be和5-30质量ppm的选自Ca、Ce和Sn中的至少一种,所述金合金基质含有在高纯金中总量为0.05-2质量%的选自Pd和Pt中的至少一种的高纯元素。
文档编号C22C5/02GK101040372SQ200580035318
公开日2007年9月19日 申请日期2005年9月28日 优先权日2004年9月30日
发明者村井博, 千叶淳, 手岛聪 申请人:田中电子工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1