预测板带钢热变形中奥氏体动态再结晶组织演变的方法

文档序号:3426095阅读:752来源:国知局
专利名称:预测板带钢热变形中奥氏体动态再结晶组织演变的方法
技术领域
本发明属于轧钢技术领域,具体涉及板带钢热轧过程的组织变化分析方法。
背景技术
板带钢的热轧过程中存在着复杂的组织变化,包括在轧制变形中的奥氏体动态再结晶、 动态回复及在轧制道次间隔中发生的静态再结晶、静态回复、亚动态再结晶和晶粒长大等过 程。奥氏体的再结晶行为,在控制轧制中起重要作用,是影响流变应力的重要因素,同时也 对随后的冷却过程奥氏体相变行为产生重要影响。目前分析板带钢热轧过程中组织变化规律 主要依靠实验手段,耗费物力、财力,且效率低。计算机数值模拟技术在轧制过程中的广泛 应用,为改进钢材质量提供了一种新的方法,使对轧钢生产的研究达到一个全新水平。在计 算机上再现材料成形过程,进行辅助实验,能够节约实验成本,加快新产品开发的周期,并 且为模型的建立和实验提供了巨大的灵活性和方便性,在新材料的工艺设计中发挥着不可替 代的作用。采用物理冶金学原理和元胞自动机理论相结合的方式对热变形奥氏体的动态再结 晶过程进行预测,能够实现再结晶过程的晶粒形态、体积分数及晶粒尺寸的定量化、精确化 和可视化的描述,并可得到流变应力等重要参数,对进一步分析微观组织的演变规律有重要 意义。因此开发出用来预测板带钢热变形中奥氏体动态再结晶组织演变的方法具有重要的意 义。

发明内容
针对目前板带钢热轧过程的组织变化分析方法存在的不足之处,本发明提供」种预测板 带钢热变形中奥氏体动态再结晶组织演变的方法。 '
本发明方法通过建立动态再结晶物理冶金模型和动态再结晶元胞自动机模型,实现动态 再结晶的转变分数、晶粒尺寸、晶粒形态及流变应力预测,包括以下步骤。
1、 建立二维元胞空间;
元胞单元采用四方形网格,模型将模拟区域划分为500X500的二维元胞空间,每个 元胞边长a为1//m,整个模拟的区域代表0.5mmX0.5mm的实际试样尺寸。
2、 生成母相初始组织晶粒;
初始晶粒采用等轴晶的生长方式生成,用灰色标识。新生成的晶粒用彩色标识。采用 Alternant Moore型邻居,边界条件采用周期性边界条件。3、 给定元胞初始状态和初始位错密度;
模型赋予每个元胞4个状态变量(a)位错密度变量,元胞初始位错密度/)。取为1.0X
1012/m2,应变使位错密度增加,而回复和再结晶使位错密度降低;(b)晶粒取向变量,对新 生成的再结晶元胞随机取1 180之间的数作为取向值,指出其所属的晶粒,取向值相同的属 于同一个晶粒,不同的晶粒对应着不同的颜色;(c)再结晶标志变量,O表示未再结晶状态,1 表示再结晶状态;(d)晶界变量,用于标志晶界元胞位置。
4、 输入应变量e、应变增量Af及应变速率、变形温度;
5、 计算位错密度随变形的增加的变化;
在热变形过程中,位错密度是随着应变的增加而增加的。动态再结晶的形核与位错密度 的积累有关,模型假设只有在位错密度达到临界值时再结晶晶粒在晶界处才开始形核并消耗 了变形组织中的位错密度,随后新晶粒以一定的速度继续长大,新晶粒的位错密度也随应变 量的增加而不断增长,当晶粒长大驱动力减小到零或者再结晶晶粒与其它新生晶粒相碰时, 晶粒停止生长。
位错密度模型在金属热变形过程中,加工硬化和动态回复过程同时进行。随着应变的 增大,加工硬化使得位错密度不断升高,而动态回复则使位错密度有所降低。Burgstrom建立 了位错密度与加工硬化和动态回复变化关系模型-
d;o/ds = [/ —i3./ (1)
式中,C/和i3分别为描述加工硬化和动态回复的特征参数,s为真应变,p为位错密度。
6、 对每个元胞根据位错密度判断形核条件; '
临界应变模型发生动态再结晶需要一定的条件,.只有当应变达到临界应变^时,位错
密度增加到临界值^时,变形过程中才会发生动态再结晶。临界应变^可表示为
sc=0.83ep (2) ep=《Zm (3) Z = £&eXp [2 D /(及T )] (4) 其中,Sp为峰值ik变,Z为Zener-Hollomen参数,及为气体常数,r为绝对温度,d。为 奥氏体晶粒直径,X、 g和m是与钢种成分有关的参数,0D为动态再结晶激活能。' 形核率模型形核率AT&的大小既与应变速率有关,又与温度有关,可表示为A*=C£&/(")exp[-2D/(^T)] (5) 其中,C为常数,e&为应变速率,6为柏氏矢量,/为位错运动的距离即亚晶尺寸,2D为
动态再结晶激活能,及为气体常数,r为绝对温度。
采用一定速率型形核规则,即以一定的形核数随W抛洒形核后,在每一时间步长都继续 以这样的规则向未形核区抛洒新的晶核,直至再结晶完了,其中在每一时间步长向未再结晶 区所抛洒的晶核数是可以变化的。形核只发生在位错密度达到临界值且处在晶界处的元胞上。
7、 对每个元胞根据晶粒长大规则判断晶粒长大;
晶粒长大速度模型晶粒长大速率v与迁移率w及作用在单位面积晶界上的驱动力P之 间存在如下关系-
v = w 尸 (6)
其中W为晶界迁移率,P为晶界移动的驱动力可表示为
P = 0.5/3, (7) 其中,6为柏氏矢量,//为剪切模量,yfc为Boltzmaiin常数,及为气体常数,T为绝对温 度,p为位错密度。
一旦元胞开始形核,就会以速率v向其近邻长大,使其近邻的元胞从未结晶状态转化为 已结晶的状态。采用确定性长大演化规则,晶粒长大速率v由式(6)计算可得,dt时间步长中 形核的元胞向近邻未结晶元胞的生长距离/为
"j[vdt (8)
"为元胞尺寸即元胞边长,如果/^a则认为该近邻未再结晶元胞转变为再结晶元胞。
8、 计算位错密度随动态再结晶的变化和流变应力;
流变应力模型流变应力与位错密度的关系可以描述为 '
(7 = a〃67^ (9)
其中a为位错密度交互作用系数,通常取为0.5, 6为柏氏矢量,-为平均位错密度,//为
剪切模量。
9、 输出动态再结晶的晶粒形貌等组织的动态演化图形;输出再结晶过程的晶粒尺寸、体积分 数、流变应力。
采用本发明方法,可以实现板带钢热变形中动态再结晶组织演变过程的预测、动态再结 晶动力学曲线的预测、'动态再结晶流变应力的预测、动态再结晶晶粒尺寸的预测。实现了计算机对金属成形过程组织演变的再现,不仅能够节约实验成本,同时也加快新钢种开发的周 期。所开发出的用来预测板带钢热变形中奥氏体动态再结晶组织演变的方法,实现了再结晶 过程的晶粒形态、体积分数及晶粒尺寸的定量化、精确化和可视化的描述,并可得到流变应 力等重要参数,对进一步分析微观组织的演变规律有重要意义。


图1为本发明预测板带钢热变形中奥氏体动态再结晶组织演变的方法的计算分析流程框
图2为本发明的动态再结晶组织演变过程预测结果输出图;其中(a) (d)所示为变形温
度为105(TC、应变速率为0. 1/s变形时,在应变分别为0.2、 0.4、 0. 6和0. 8时的动态再结
晶的组织形貌演变过程的预测结果输出图3为本发明的动态再结晶动力学曲线图,其中(a)、 (b)分别为此钢在应变速率为0. 1/s
变形时的动态再结晶的动力学S曲线和Avrami曲线图
图4为应力-应变预测值与实测值的比较图,其中(a)所示为此钢在应变速率0.1/s,不 同变形温度的流变应力曲线的预测结果输出图,而(b)为采用相同的单道次压縮变形工艺(如 表2所示)条件下流变应力的热模拟实验结果图5为动态再结晶平均晶粒尺寸输出图。
具体实施例方式
如图l所示,本发明的预测板带钢热变形中奥氏体动态再结晶组织演变的方法具体计算 分析步骤如下
1、 开始;
2、 建立二维元胞空间
3、 生成母相初始组织晶粒;
4、 给定元胞初始状态和初始位错密度;
5、 输入应变量s、应变增量Af及应变速率、变形温度,计算总步S二e/As,初设1=1;
6、 在第I计算步内计算位错密度随变形的增加的变化;
7、 对每个元胞根据位错密度判断形核条件;
8、 对每个元胞根据晶粒长大规则判断晶粒长大;
9、 计算位错密度随动态再结晶的变化和流变应力;
10、 输出动态再结晶的晶粒形貌等组织的动态演化图形;
11、 输出再结晶过程的晶粒尺寸、体积分数、流变应力;
712、判断是否I〈S,是则1=1+1,程序返回第6步;否则结束程序。
本发明预测板带钢热变形中奥氏体动态再结晶组织演变方法的计算分析可以通过计算机 程序完成实施,程序采用上述的1~12步骤。
采用本发明方法上述的1 12步骤,采用Matlab程序语言来实现动态再结晶的预测过程, 能够得到不同时刻动急再结晶的晶粒形貌等组织的动态演化特征。其中动态再结晶的转变分 数可以表示如下. .
4=^/y. (10)
式中,;为已经发生动态再结晶的元胞数目,y为空间元胞总数。
对每个新生成的再结晶元胞进行标志(晶粒取向值),指出其所属的晶粒,取向值相同 的属于同一个晶粒。在程序中平均晶粒尺寸是根据同一个晶粒所包含的多个元胞的面积来统 计和计算的。
每个时刻每个元胞的位错密度能够通过预测得到,再根据式(9)可得到流变应力随应变的 变化情况。 .
预测对象钢种的化学成分如表1所示,表2所示为分析过程中采用的单道次压縮变形工 艺参数。
表l实验用钢的化学成分(质量,%)
成分cSiMn SPAlNbVFe
含量。.170. 331,43 0.0050.0150. 02390. 0310. 081余量
表2单道次压缩变形工艺参数 应变速率,s—1真应变应变增量 变形温度,'C
850、 900、 950、 1000、 1050 1 0.8 0.04 850、 900、 950、 1000、 1050
5 850、.900、 950、 1000、 1050
预测结果如下。
1、动态再结晶组织演变过程的预测结果。
如图2所示,图l (a) (d)所示为变形温度为105(TC、应变速率为0.1/s变形时,在应变分别
为0.2、 0.4、 0.6和0.8时的动态再结晶的组织形貌演变过程的预测结果。2、 动态再结晶动力学曲线的预测结果。
如图3所示,图3(a)、 (b)分别为此钢在应变速率为'0.1/s变形时的动态再结晶的动力学S
曲线和Avrami曲线的预测结果。
3、 动态再结晶流变应力的预测结果。
如图4所示,图4(a)所示为此钢在应变速率0.1/s,不同变形温度的流变应力曲线的预测 结果,而图4(b)为采用相同的单道次压縮变形工艺(如表2所示)条件下流变应力的热模拟 实验结果。预测流变应力计算结果与实验实测数据相比误差较小,基本体现了流变应力应变 曲线的基本特征。
4、 动态再结晶晶粒尺寸的预测结果。
如图5所示,为此钢在应变为0.8,不同应变速率和不同变形温度下的平均晶粒尺寸的预
测结果。
权利要求
1、一种预测板带钢热变形中奥氏体动态再结晶组织演变的方法,其特征在于包括以下步骤①建立二维元胞空间;②生成母相初始组织晶粒;③给定元胞初始状态和初始位错密度;④输入应变量ε、应变增量Δε及应变速率、变形温度;⑤计算位错密度随变形的增加的变化;⑥对每个元胞根据位错密度判断形核条件;⑦对每个元胞根据晶粒长大规则判断晶粒长大;⑧计算位错密度随动态再结晶的变化和流变应力;⑨输出动态再结晶的晶粒形貌等组织的动态演化图形;输出再结晶过程的晶粒尺寸、体积分数、流变应力。
2、 按照权利要求1所述的方法,其特征在于步骤①中,元胞单元采用四方形网格,模 型将模拟区域划分为500X500的二维元胞空间,每个元胞边长"为1//m,整个模拟的区域代表0.5mmX0.5mm的实际试样尺寸。
3、 按照权利要求l所述的方法,其特征在于步骤②中,初始晶粒采用等轴晶的生长方式 生成,用灰色标识,新生成的晶粒用彩色标识,采用AltemantMoore型邻居,边界条件采用 周期性边界条件。
4、 按照权利要求l所述的方法,其特征在于步骤③中,模型赋予每个元胞4个状态变量(a) 位错密度变量,元胞初始位错密度p。取为1.0X10力m2,应变使位错密度增加,而回复和再结晶使位错密虔降低;(b) 晶粒取向变i,对新生成的再结晶元胞随机取1 180之间的数作为取向值,指出其所 属的晶粒,取向值相同的属于同一个晶粒,不同的晶粒.对应着不同的颜色;(c) 再结晶标志变量,O表示未再结晶状态,l表示再结晶状态;(d) 晶界变量,用于标志晶界元胞位置。
5、 按照权利要求1所述的方法,其特征在于步骤⑤中,模型假设只有在位错密度达到临 界值时再结晶晶粒在晶界处才开始形核并消耗了变形组织中的位错密度,随后新晶粒以一定 的速度继续长大,新晶粒的位错密度也随应变量的增加而不断增长,当晶粒长大驱动力减小 到零或者再结晶晶粒与其它新生晶粒相碰时,晶粒停止生长。
6、 按照权利要求1所述的方法,其特征在于步骤⑥中,采用一定速率型形核规则,即以一定的形核数随机抛洒形核后,在每一时间步长都继续以这样的规则向未形核区抛洒新的晶 核,直至再结晶完了。
7、 按照权利要求i所述的方法,其特征在于步骤⑦中,采用确定性长大演化规则,即dt 时间步长中形核的元胞向近邻未结晶元胞的生长距离/为如果/2a则认为该近邻未再结晶元胞转变为再结晶元胞,a为元胞尺寸即元胞边长,其 中v-w.尸,v为晶粒长大速率,/w为迁移率,户为作用在单位面积晶界上的驱动力。
全文摘要
一种预测板带钢热变形中奥氏体动态再结晶组织演变的方法,属于轧钢技术领域,该方法通过建立动态再结晶物理冶金模型、建立动态再结晶元胞自动机模型,实现动态再结晶的转变分数、晶粒尺寸、晶粒形态及流变应力预测。本发明实现了计算机对金属成形过程组织演变的再现,不仅能够节约实验成本,同时也加快新钢种开发的周期。所开发出的用来预测板带钢热变形中奥氏体动态再结晶组织演变的方法,实现了再结晶过程的晶粒形态、体积分数及晶粒尺寸的定量化、精确化和可视化的描述,并可得到流变应力等重要参数,对进一步分析微观组织的演变规律有重要意义。
文档编号C21D8/02GK101591729SQ20091001212
公开日2009年12月2日 申请日期2009年6月19日 优先权日2009年6月19日
发明者刘相华, 喻海良, 颖 支 申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1