一种镁-镍-钇储氢合金薄带及其制备方法

文档序号:3261765阅读:365来源:国知局
专利名称:一种镁-镍-钇储氢合金薄带及其制备方法
技术领域
本发明属于储氢合金材料技术领域,具体涉及一种镁-镍-钇储氢合金及其制备方法。
背景技术
在所有的金属和合金中,单质镁的储氢量最高,高达7.6wt.%,并且镁基合金具有资源丰富、重量轻、价格低、无污染等特点,被认为是最有希望的燃料电池、燃氢汽车等用的储氢材料。然而,Mg与Mg基储氢合金动力学性能较差,离实用化还有一定的距离。为了提高合金的Mg基储氢合金的储氢性能,人们主要从两方面来进行改善:一是细化晶粒和结构,如机械球磨和熔体快淬;二是添加合金化元素或催化剂。机械球磨法制备储氢合金效率低、易引入杂质、产率低和能耗大等,而且制备出的合金为粉末态,在合金放氢过程中气体会造成粉末流动,氢气纯度下降,堵塞管路和阀门,对设备产生有害影响。合金粉化还会严重恶化材料的导热和传质性能,多次循环后会造成合金储氢容量和动力学性能的衰退,循环性能下降,因此粉末的使用范围受到很大限制。熔体快淬法可以显著地细化晶粒和结构,非常适合于制备高纯非晶或纳米晶金属,且效率高,成本低。金属Ni被证实能够有效地提高Mg基合金的吸放氢动力学性能,Mg2Ni储氢合金受到了广泛研究,但其储氢量为3.6wt.%,与纯镁相比,储氢量下降。添加稀土元素可以提高Mg基合金的非晶形成能力,提高其吸放氢速度。稀土元素本身也为吸氢材料,在稀土元素中,除钪(含量稀少)外,乾的储氢量最高。在Mg2Ni中,Ni为不吸氢元素,采用乾替代镍,有望同时提高Mg2Ni储氢合金的吸氢量和吸放氢动力学。在Mg基储氢材料母合金制备方面,目前最常用的是在真空条件下惰性气体环境中感应熔炼(CNlO 1857947A2010.10.13),该方法解决了 Mg的氧化问题,但不能解决Mg的大量蒸发问题,在低温下,镁与高熔点金属镍很难熔到一起,温度升高,镁的蒸发将更加严重,会造成合金成份改变,镁资源浪费,镁蒸汽对设备有损害。另外,该方法对设备要求高,设备抽真空导致效率低,成本高。

发明内容
为克服现有技术中存在的镁的蒸发严重,造成合金成份改变和镁资源浪费,以及制备成本高的不足,本发明提出了一种镁-镍-钇储氢合金薄带及其制备方法。本发明所述的所述镁-镍储氢合金薄带的原材料包括高纯度块状镁和高纯度粉状镍,将所述高纯度块状镁和高纯度粉状镍按化学式Mg67Ni33的化学计量比称重,并且镁过量5wt.%作为烧损量。本发明还提出了一种制备镁-镍-钇储氢合金薄带的方法,其具体步骤是:步骤1, 镍粉预压成块;将称量好的镍粉放入模具内,并将该模具置于压片机内;压片机加压至2.5MPa并保压30s ;步骤2,熔化镁块;将称量好的镁块放入烘干的石墨坩埚中并将石墨坩埚置于电阻加热炉中;在该镁块的表面覆盖一层镁2号覆盖剂,以隔绝空气;将石墨坩埚加热使覆盖在镁块表面的镁2号覆盖剂熔化;继续将石墨坩埚加热至700°C,使镁全部熔化;步骤3,制备镁-镍储氢合金铸锭;将压制的镍块投入到熔化的镁中,在热冲击作用下,所述镍块迅速分散,并搅拌均匀;对石墨坩埚加热至750°C,保温lOmin,并搅拌使镍块颗粒充分溶解;对电阻加热炉降温至500°C取出石墨坩埚,在空气中冷却至室温,得到镁-镍储氢合金铸锭;步骤4,制备镁-镍储氢合金薄带;从得到的铸锭上切取5g样品置于底部具有狭缝的石英管内;对所述石英管加热,使置于石英管内的样品加热到熔融状态;向石英管内充入氩气,利用所述氩气的压力使熔融后的样品从石英管狭缝连续喷出,喷射在旋转的铜辊上,形成厚度为30-150 μ m,宽度为2-10mm的镁-镍储氢合金薄带;该铜辊表面的线速度为 40m/sο在制备过程中须随时添加覆盖剂,使熔化的镁表面被覆盖剂覆盖。由于采取了上述技术方案,使得本发明具有以下特点:1、在母合金制备方面,与气体保护法相比,覆盖剂保护法有效解决了镁的蒸发和氧化问题,将镍粉压制成块加入到镁中,增大了金属镍与镁反应的面积,使镁镍钇三种金属能在远低于镍和钇熔点的温度下迅速熔炼成为合金。2、该方法制备镁-镍-钇金属储氢材料工艺简单易行,效率高,对设备要求低,成本低。 3、稀土 Y的添加增强了对氢气的催化分解,增加了氢原子的扩散通道,稀土元素Y本身可以吸氢,因此在提高Mg2Ni合金吸放氢动力学性能的同时提高了 Mg2Ni合金的吸放氢量,其性能如图3和图4,Mg67Ni32Y1吸放氢量和吸放氢动力学性能明显高于Mg2Ni合金。本发明Mg67Ni32Y1中具有最高的吸放氢量,吸氢量达到了 3.96wt.%,放氢量达到了 3.71wt.%。与Mg2Ni合金相比,本发明镁-镍-钇储氢合金吸放氢量和吸放氢动力学性能均有显著提高,且合金在抗粉化能力提高,经数次循环吸放氢后合金没有发生任何粉化。


图1是镁-镍-钇储氢合金铸态样品SEM照片,其中:图1a是Mg67Ni33,图1b是Mg67Ni32Y1,图1c 是 Mg67Ni30Y3,图1d 是 Mg67Ni27Y6,图1e 是 Mg67Ni23Y100图2是镁-镍-钇储氢合金快淬态样品X射线衍射图。图3是镁-镍-钇储氢合金薄带吸氢动力学曲线。图4是镁-镍-钇储氢合金薄带放氢动力学曲线。图5是制备镁-镍储氢合金薄带的流程图。
具体实施例方式实施例1:本实施例是一种镁-镍储氢合金薄带,所述镁-镍储氢合金薄带的原材料包括纯度为99.8%的块状镁和纯度为99.8%的粉状镍,按化学式Mg67Ni33的化学计量比称重,并且镁过量5wt.%作为烧损量。化学计量比重量如表I所示。本实施例中,称取镁88.243g,镍粉 99.959g。
表I合金熔炼配料表
权利要求
1.一种镁-镍-钇储氢合金薄带,其特征在于,所述镁-镍储氢合金薄带的原材料包括高纯度块状镁和高纯度粉状镍,将所述高纯度块状镁和高纯度粉状镍按化学式Mg67Ni33的化学计量比称重,并且镁过量5wt.%作为烧损量。
2.一种制备权利要求1所述镁-镍-钇储氢合金薄带的方法,其特征在于,具体步骤是: 步骤1,镍粉预压成块;将称量好的镍粉放入模具内,并将该模具置于压片机内;压片机加压至2.5MPa并保压30s ; 步骤2,熔化镁块;将称量好的镁块放入烘干的石墨坩埚中并将石墨坩埚置于电阻加热炉中;在该镁块的表面覆盖一层镁2号覆盖剂,以隔绝空气;将石墨坩埚加热使覆盖在镁块表面的镁2号覆盖剂熔化;继续将石墨坩埚加热至700°C,使镁全部熔化; 步骤3,制备镁-镍储氢合金铸锭;将压制的镍块投入到熔化的镁中,在热冲击作用下,所述镍块迅速分散,并搅拌均匀;对石墨坩埚加热至750°C,保温lOmin,并搅拌使镍块颗粒充分溶解;对电阻加热炉降温至500°C取出石墨坩埚,在空气中冷却至室温,得到镁-镍储氢合金铸锭; 步骤4,制备镁-镍储氢合金薄带;从得到的铸锭上切取5g样品置于底部具有狭缝的石英管内;对所述石英管加热,使置于石英管内的样品加热到熔融状态;向石英管内充入氩气,利用所述氩气的压力使熔融后的样品从石英管狭缝连续喷出,喷射在旋转的铜辊上,形成厚度为30-150 μ m,宽度为2-10mm的镁-镍储氢合金薄带;该铜辊表面的线速度为40m/sο
3.如权利要求2所述制备镁-镍-钇储氢合金薄带的方法,其特征在于,在制备过程中须随时添加覆盖剂,使熔化 的镁表面被覆盖剂覆盖。
全文摘要
一种镁-镍-钇储氢合金薄带及其制备方法。所述的储氢材料中Mg含量为67at.%,镍含量和钇含量总和为33at.%,其中钇的含量为0-10at.%,其余为镍。钇采用镁钇中间合金的形式加入,镍采用镍粉压块后加入,采用两步法进行熔炼制备母合金,然后将制备好的合金于单辊熔体快淬炉中重熔并快淬,得到的薄带即为最终储氢材料。本发明所提供的材料同时提高了Mg2Ni型储氢合金的储氢量和吸放氢动力学性能,克服了Mg基合金储氢量和动力学性能不能同时提高这一矛盾。本发明具有制备方法简单、成本低、对设备和环境要求低的特点。
文档编号C22C19/03GK103074529SQ20121039378
公开日2013年5月1日 申请日期2012年10月16日 优先权日2012年10月16日
发明者张铁邦, 李金山, 宋文杰, 寇宏超, 王军, 胡锐, 钟宏 申请人:西北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1