深冲压双相钢及其生产方法

文档序号:3281417阅读:225来源:国知局
专利名称:深冲压双相钢及其生产方法
技术领域
本发明涉及深冲压成形钢技术领域,特别涉及一种深冲压双相钢及其生产方法。
背景技术
现今降低燃料费和提高车身安全性是汽车工业发展的趋势。减轻汽车自重是降低燃料费的有效途径,这就要求使用厚度更薄的钢板。然而钢减薄必然导致汽车车身安全性能的降低,为缓解这类矛盾,越来越多的汽车厂青睐使用高强度及超高强度钢。由于大部分汽车用高强钢板都需通过冲压形成汽车零部件,所以这要求汽车用高强钢板具有较好的深冲性。双相钢(Dual Phase Steel,简称DP)作为汽车用高强钢之一,其显微组织由软质铁素体相与硬质马氏体相组成,因其组织特征,双相钢具有高的初始加工硬化率、低屈强比、最佳的强塑性配合以及非时效性等。这使得双相钢在汽车用钢中被广泛使用。然而,双相钢的深冲性能较差,其塑性应变比(r值)一般小于1.0,难以满足乘用轿车外板以及冲压性能要求较高的覆盖件的生产。根据日本专利在临界区退火前增加罩式预退火工艺可以改善双相钢的深冲性能,然而投资成本较高。近来,日本和韩国研发出利用连续退火工艺生产超深冲双相钢,其强度达到450MPa以上,r值保持在1.5左右。相对于国外,国内在这方面的研究很少。基于以上现状,寻找一种强度同等于传统的双相钢而冲压性优异的双相钢最佳生产方法,即设计合理的合金成分体系,随之确定与之相匹配的合理工艺方法,获得高的塑性应变比r的深冲压双相钢。

发明内容
本发明所要解决的技术问题是提供一种能获得高塑性应变比r的深冲压双相钢及其生产方法。为解决上述技术问·题,根据本发明一个方面,提供了一种深冲压双相钢及其生产方法,包括:C:0.018% 0.025%, Si:0.2% 0.5%, Mn: 1.6% 1.9%, Nb:0.07% 0.1%,P:
0.05% 0.08%, S 彡 0.004%, Alt:0.02% 0.07%, N 彡 0.004%,余量为 Fe 和微量元素,其中,所述Nb元素及C元素满足(Nb/93)/(C/12)=0.2 0.7。根据本发明的另一个方面,提供了一种生产上述深冲压双相钢的方法,包括:将钢水通过冶炼后连铸获得板坯;在冶炼过程中,转炉炉后加入中碳锰铁或者低碳锰铁调整锰含量,加入磷铁调整磷含量,转炉终点目标温度为1700 1740°C,在出钢过程中,加入渣料,出钢下渣量彡80mm,出钢时间> 4分钟;在精炼过程中,依次调整Al、S1、Mn、P、Nb含量,连铸过程保证保护浇注,预防钢水二次氧化;将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;将所述热轧卷通过冷轧获得冷硬卷;将所述冷硬卷经过连续退火处理获得带钢;
将所述带钢经平整后卷取成成品。进一步地,所述在出钢过程中,加入渣料白灰200_800kg,预熔渣O-lOOOkg,萤石0-400kg,出钢前期就开始随钢流加入渣料,出钢量达到1/5前加入所有渣料。进一步地,所述在出钢过程中,加入磷铁调整磷含量至0.05%,加入中碳锰铁或者低碳锰铁调整锰含量< 0.05%。进一步地,所述在精炼过程中,采用铝粒脱氧后,依次采用硅铁、微碳锰铁或金属锰、磷铁、铌铁调整S1、Mn、P、Nb含量。进一步地,所述板坯的加热温度为1220 1280°C ;所述精轧的终轧温度为870 9200C ;所述热轧板卷取温度为680 720V。进一步地,所述热轧卷通过冷轧时,冷轧压下率为70%_80%。进一步地,将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度8V /s 12 °C / s ;将所述经过预热的带钢进一步加热到840°C 880°C,其加热速度为1.5°C /s 40C /s ;将所述经过进一步加热后的带钢在840°C 880°C温度范围内保温60s IOOs ;将所述经过保温后的带钢冷却至730°C 780°C,冷却速度约为8 V /s 12°C /s ;将所述经 过冷却后的带钢经吹气快冷却至250°C 310°C ;将所述经吹气快冷却至250°C 310°C的带钢在250°C 310°C温度范围内保温300s-400s后进行过时效处理;将所述经过过时效处理后的带钢进行终冷到室温。本发明提供的一种深冲压双相钢及其生产方法,利用添加Nb在低温下固定C有利发展深冲织构,再经高温处释放固溶C使得形成马氏体相,有利于发展(111)织构,获得高的塑性应变比r的深冲压双相钢,使得深冲压双相钢在高的抗拉强度下具有良好的深冲性。


图1为本发明实施例提供的深冲压双相钢的扫描显微组织照片;图2为本发明实施例提供的深冲压双相钢的EBSD织构照片。
具体实施例方式本发明实施例提供的一种深冲压双相钢,C:0.018% 0.025%, S1:0.2% 0.5%,Mn:1.6% 1.9%, Nb:0.07% 0.1%,P:0.05% 0.08%, S 彡 0.004%, Alt:0.02% 0.07%, NS 0.004%,余量为Fe和微量元素,其中,所述Nb元素及C元素满足(Nb/93)/(C/12)=0.2-0.7。过量的N,C,S等元素会影响(111)织构发展,导致塑性应变比r值减小。因此,对于需要高塑性应变比r值的深冲压钢,有效控制这些元素含量是非常重要的。但是,对于双相钢需要添加一定含量C才可以形成马氏体相。所以,添加Nb来有效控制碳,SP在低温下固定C有利发展深冲织构,再经高温处释放固溶C使得形成马氏体相。Nb和C含量比控制在(Nb/93) / (C/12) =0.2 0.7范围内,有利于发展(111)织构,提高塑性应变比r值。N,S含量可以通过冶炼工艺的精炼方法有效控制。本发明实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤S1:将钢水通过冶炼后连铸获得板坯;所述冶炼过程中,转炉炉后加入中碳锰铁或者低碳锰铁调整锰含量,加入磷铁调整磷含量,转炉终点目标温度为1700 17400C。在出钢过程中,加入渣料,具体是加入渣料白灰200-800kg,预熔渣O-lOOOkg,萤石0-400kg,出钢前期就开始随钢流加入渣料,出钢量达到1/5前加入所有渣料,出钢下渣量(80mm,出钢时间彡4分钟。在出钢过程中,加入磷铁调整磷含量至0.05%,加入中碳锰铁或者低碳锰铁调整锰含量< 0.05%。在精炼过程中,依次调整Al、S1、Mn、P、Nb含量,连铸过程保证保护浇注,预防钢水二次氧化,具体是采用铝粒脱氧后,依次采用硅铁、微碳锰铁或金属锰、磷铁、铌铁调整S1、Mn、P、Nb含量。步骤S2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;所述板坯的加热温度为1220 1280°C ;所述精轧的终轧温度为870 920°C ;所述热轧板卷取温度为680 720°C。其中,卷取温度的高低对深冲压双相钢热轧中间组织和力学性能具有较大影响。高温卷取温度不会产生其他相变组织,会提高延伸率。 步骤S3:将所述热轧卷通过冷轧获得冷硬卷;所述热轧卷通过冷轧时,冷轧压下率为70%-80%,以利于发展有利的再结晶(111)织构,提高塑性应变比r值。步骤S4:将所述冷硬卷经过连续退火处理获得带钢。步骤S5:将所述带钢经平整后卷取成成品。其中,步骤S4将所述冷硬卷经过连续退火处理获得带钢包括:步骤S41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度8V /s 12°C /s ;该过程中,冷变形的铁素体发生回复。步骤S42:将所述经过预热的带钢进一步加热到840°C 880°C,其加热速度为
1.5°C /s 4°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤S43:将所述经过进一步加热后的带钢在840°C 880°C温度范围内保温60s 100s,使溶解碳析出物在高温阶段释放C原子。步骤S44:将所述经过保温后的带钢冷却至730°C 780°C,冷却速度约为8V /s 12°C /s ;该过程使得固溶C元素向奥氏体中聚集。步骤S45:将所述经过冷却后的带钢经吹气快冷却至250°C 310°C,使固溶C参与马氏体相形成,有利于发展(111)织构,获得高的塑性应变比r的深冲压双相钢,使得深冲压双相钢在高的抗拉强度下具有良好的深冲性。步骤S46:将所述经吹气快冷却至250°C 310°C的带钢在250°C 310°C温度范围内保温300s-400s后进行过时效处理。步骤S47:将所述经过过时效处理后的带钢进行终冷到室温,该过程钢中无组织转变。本发明提供的一种深冲压双相钢及其生产方法,利用添加Nb在低温下固定C有利发展深冲织构,再经高温处释放固溶C使得形成马氏体相,有利于发展(111)织构,获得高的塑性应变比r的深冲压双相钢,使得深冲压双相钢在高的抗拉强度下具有良好的深冲性。
下面通过具体实施方式
对本发明进行详细说明。实施例一:本实施例提供的一种深冲压双相钢,其化学成分重量百分比分别为:C:0.024%,Si:0.3%, Mn:1.8%, P:0.046%, S:0.004%, Alt:0.04%, N:0.004%, Nb:0.072%,余量为 Fe 和
微量元素。本实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤Al:将钢水通过冶炼后连铸获得板坯;冶炼过程中转炉终点温度为1730°C,出钢过程加入合金400kg磷铁,120kg中碳锰铁,加入渣料白灰600kg,萤石200kg ;之后在RH精炼过程中加入250Kg铝粒、1300kg硅铁、4000kg金属锰、120kg磷铁、295kg铌铁。冶炼完成时,得到化学成分重量百分比分别为:C:0.024%, S1:0.4%,Mn:1.75%,P:0.066%, S:0.003%, Alt:0.04%, N:0.0035%, Nb:0.086%,余量为 Fe 和杂质。步骤A2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;板坯的加热温度为1250°C;精轧的终轧温度为910°C;热轧板卷取温度为710°C。热轧结束时,获得的热轧板厚度为2.8_。步骤A3:将所述热轧卷通过冷轧获得冷硬卷;冷轧过程中,冷轧的压下率为75%。冷轧结束时,获得厚度为1.2mm的冷硬态带钢。

步骤A4:将所述冷硬卷经过连续退火处理获得带钢。步骤A5:将所述带钢经平整后卷取成成品。其中,步骤A4将所述冷硬卷经过连续退火处理获得带钢,包括:步骤A41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度8°C /s 12°C /s ;该过程中,冷变形的铁素体发生回复。步骤A42:将所述经过预热的带钢进一步加热到840°C,其加热速度为1.5°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤A43:将所述经过进一步加热后的带钢在840°C温度范围内保温60s,使溶解碳析出物在高温阶段释放C原子。步骤A44:将所述经过保温后的带钢冷却至730°C,冷却速度约为8 V /s ;该过程使得固溶C元素向奥氏体中聚集。步骤A45:将所述经过冷却后的带钢经吹气快冷却至250°C,使固溶C参与马氏体相形成。步骤A46:将所述经吹气快冷却至250°C的带钢在250°C温度范围内保温300s后进行过时效处理。步骤A47:将所述经过过时效处理后的带钢进行终冷到室温,该过程钢中无组织转变。经过以上步骤,本实施例获得的深冲压双相钢的化学成分质量百分比分别为:C:0.024%, Si:0.4%, Mn:1.75%, P:0.066%, S:0.003%, Alt:0.04%, N:0.0035%, Nb:0.086%,余量为Fe和杂质。本实施例获得的深冲压双相钢的扫描显微组织照片如图1所示,本实施例获得的深冲压双相钢的EBSD织构照片如图2所示。本发明提供的深冲压双相钢力学性能与250P1,CR260/450DP标准对比如表I所示:
表一
p0'2j Rm5 N/mm2N/mmA50, %rn
^250P1 230-360 44032L5 "08^
CR260/450DP 260-340 45032LO "θ 9^
本发明30549032IA foil^从表I可以看出,本发明提供的深冲压双相试制钢的抗拉强度和η值高于其他两个钢种。试制钢的r值同等于250Ρ1,高于CR260/450DP。本发明实施例提供的深冲压双相钢,添加Nb在整个工艺过程中有效控制C,有利于发展(111)织构,使得深冲压双相钢在高的抗拉强度下具有良好的深冲性。实施例二:本实施例与实施例一不同之处在于,本实施例提供的一种深冲压双相钢,其化学成分重量百分比分别为:C:0.018%, Si:0.2%, Mn:1.6%, P:0.056%, S:0.004%, Alt:0.025%,N:0.004%, Nb:0.082%,余量为Fe和微量元素。本实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤Al:将钢水通过冶炼后连铸`获得板坯;冶炼过程中转炉终点温度为1715°C,出钢过程加入合金400kg磷铁,140kg微碳锰铁,加入渣料白灰300kg,预熔渣400kg ;之后在RH精炼过程中加入250Kg铝粒、625kg硅铁、3750kg金属锰、50kg磷铁、285kg铌铁。冶炼完成时,得到化学成分重量百分比分别为:C:0.018%, S1:0.2%,Mn:1.6%,P:0.056%, S:0.004%, Alt:0.025%, N:0.004%, Nb:0.082%,余量为 Fe 和微量元素。步骤A2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;板坯的加热温度为1280°C;精轧的终轧温度为920°C;热轧板卷取温度为720°C。热轧结束时,获得的热轧板厚度为2.8_。步骤A3:将所述热轧卷通过冷轧获得冷硬卷;冷轧过程中,冷轧的压下率为80%。冷轧结束时,获得厚度为1.2mm的冷硬态带钢。步骤A4:将所述冷硬卷经过连续退火处理获得带钢。步骤A5:将所述带钢经平整后卷取成成品。其中,步骤A4将所述冷硬卷经过连续退火处理获得带钢,包括:步骤A41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度12°C /s ;该过程中,冷变形的铁素体发生回复。步骤A42:将所述经过预热的带钢进一步加热到880°C,其加热速度为4°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤A43:将所述经过进一步加热后的带钢在880°C温度范围内保温100s,使溶解碳析出物在高温阶段释放C原子。
步骤A44:将所述经过保温后的带钢冷却至780°C,冷却速度约为12°C /s ;该过程使得固溶C元素向奥氏体中聚集。步骤A45:将所述经过冷却后的带钢经吹气快冷却至310°C,使固溶C参与马氏体相形成。步骤A46:将所述经吹气快冷却至310°C的带钢在310°C温度范围内保温400s后进行过时效处理。经过以上步骤,本实施例获得的深冲压双相钢的化学成分质量百分比分别为:C:0.018%, Si:0.2%, Mn:1.6%, P:0.056%, S:0.004%, Alt:0.025%,N:0.004%, Nb:0.082%,余量
为Fe和微量兀素。其他地方与实施例一完全一致。实施例三:本实施例与实施例一不同之处在于,本实施例提供的一种深冲压双相钢,其化学成分重量百分比分别为:C:0.025%, Si:0.5%, Mn:1.9%, P:0.08%, S:0.008%, Alt:0.07%, N:
0.0014%, Nb:0.1%,余量为Fe和微量元素。本实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤Al:将钢水通过冶炼后连铸获得板坯;冶炼过程中转炉终点温度为1740°C,出钢过程加入合金450kg磷铁,150kg微碳锰铁,加入渣料白灰800kg,萤石200kg ;之后在RH精炼过程中加入350Kg铝粒、1560kg硅铁、4450kg金属锰、180kg磷铁、345kg铌铁。冶炼完成时,得到化学成分重量百分比分别为:C:0.025%, S1:0.5%,Mn:1.9%,P:0.08%, S:
0.008%, Alt:0.07%, N:0.0014%, Nb:0.1%,余量为 Fe 和微量元素。步骤A2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;板坯的加热温度为1220°C;精轧的终轧温度为870°C;热轧板卷取温度为 680°C。热轧结束时,获得的热轧板厚度为2.8_。步骤A3:将所述热轧卷通过冷轧获得冷硬卷;冷轧过程中,冷轧的压下率为70%。冷轧结束时,获得厚度为1.2mm的冷硬态带钢。步骤A4:将所述冷硬卷经过连续退火处理获得带钢。步骤A5:将所述带钢经平整后卷取成成品。其中,步骤A4将所述冷硬卷经过连续退火处理获得带钢,包括:步骤A41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度10°C /s ;该过程中,冷变形的铁素体发生回复。步骤A42:将所述经过预热的带钢进一步加热到860°C,其加热速度为3°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤A43:将所述经过进一步加热后的带钢在860°C温度范围内保温80s,使溶解碳析出物在高温阶段释放C原子。步骤A44:将所述经过保温后的带钢冷却至760V,冷却速度约为10°C /s ;该过程使得固溶C元素向奥氏体中聚集。步骤A45:将所述经过冷却后的带钢经吹气快冷却至280°C,使固溶C参与马氏体相形成。步骤A46:将所述经吹气快冷却至280°C的带钢在280°C温度范围内保温350s后进行过时效处理。步骤A47:将所述经过过时效处理后的带钢进行终冷到室温,该过程钢中无组织转变。经过以上步骤,本实施例获得的深冲压双相钢的化学成分质量百分比分别为:C:0.025%, Si:0.5%, Mn:1.9%, P:0.08%, S:0.008%, Alt:0.07%, N:0.0014%, Nb:0.1%,余量为
Fe和微量兀素。其他地方与实施例一完全一致。实施例四:本实施例与实施例一不同之处在于,本实施例提供的一种深冲压双相钢,其化学成分重量百分比分别为:c:0.022%, Si:0.35%, Mn:1.72%, P:0.064%, S:0.0034%, Alt:0.058%, N:0.0034%, Nb:0.086%,余量为 Fe 和微量元素。本实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤Al:将钢水通过冶炼后连铸获得板坯;冶炼过程中转炉终点温度为1710°C,出钢过程加入合金400kg磷铁,150kg微碳锰铁,加入渣料白灰800kg,萤石200kg ;之后在RH精炼过程中加入300Kg铝粒、IlOOkg硅铁、3900kg金属锰、130kg磷铁、300kg铌铁。冶炼完成时,得到化学成分重量百分比分别为:C:0.022%, S1:0.35%,Mn:1.72%,P:0.064%, S:0.0034%, Alt:0.058%, N:0.0034%, Nb:0.086%,余量为 Fe 和微量元素。步骤A2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;板坯的加热温度为1235°C;精轧的终轧温度为885°C;热轧板卷取温度为695°C。热轧结束时,获得的热轧板厚度为2.8mm。步骤A3:将所述热轧卷通过冷轧获得冷硬卷;冷轧过程中,冷轧的压下率为72%。冷轧结束时,获得厚度为1.2mm的冷硬态带钢。步骤A4:将所述冷硬卷经过连续退火处理获得带钢。步骤A5:将所述带钢经平整后卷取成成品。其中,步骤A4将所述冷硬卷经过连续退火处理获得带钢,包括:步骤A41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度11°C /s ;该过程中,冷变形的铁素体发生回复。步骤A42:将所述经过预热的带钢进一步加热到855°C,其加热速度为2.6°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤A43:将所述经过进一步加热后的带钢在855°C温度范围内保温82s,使溶解碳析出物在高温阶段释放C原子。步骤A44:将所述经过保温后的带钢冷却至745°C,冷却速度约为11°C /s ;该过程使得固溶C元素向奥氏体中聚集。步骤A45:将所述经过冷却后的带钢经吹气快冷却至275°C,使固溶C参与马氏体相形成。步骤A46:将所述经吹气快冷却至275°C的带钢在275°C温度范围内保温328s后进行过时效处理。步骤A47:将所述经过过时效处理后的带钢进行终冷到室温,该过程钢中无组织 转变。
经过以上步骤,本实施例获得的深冲压双相钢的化学成分质量百分比分别为:C:0.022%, Si:0.35%, Mn:1.72%, P:0.064%, S:0.0034%, Alt:0.058%, N:0.0034%, Nb:0.086%,余量为Fe和微量元素。其他地方与实施例一完全一致。实施例五:本实施例与实施例一不同之处在于,本实施例提供的一种深冲压双相钢,其化学成分重量百分比分别为:c:0.023%, Si:0.46%, Mn:1.68%, P:0.07%, S:0.0024%, Alt:0.06%, N:0.0024%, Nb:0.082%,余量为 Fe 和微量元素。本实施例提供的一种生产上述深冲压双相钢的方法,包括以下几个步骤:步骤Al:将钢水通过冶炼后连铸获得板坯;冶炼过程中转炉终点温度为1710°C,出钢过程加入合金400kg磷铁,150kg微碳锰铁,加入渣料白灰800kg,萤石200kg ;之后在RH精炼过程中加入350Kg铝粒、1450kg硅铁、3800kg金属锰、160kg磷铁、280kg铌铁。冶炼完成时,得到化学成分重量百分比分别为:C:0.023%, S1:0.46%,Mn:1.68%,P:0.07%, S:0.0024%, Alt:0.06%, N:0.0024%, Nb:0.082%,余量为 Fe 和微量元素。步骤A2:将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷;板坯的加热温度为1275°C;精轧的终轧温度为914°C;热轧板卷取温度为695°C。热轧结束时,获得的热轧板厚度为2.8mm。步骤A3:将所述热轧卷通过冷轧获得冷硬卷;冷轧过程中,冷轧的压下率为76%。冷轧结束时,获得厚度为1.2mm的冷硬态带钢。
·
步骤A4:将所述冷硬卷经过连续退火处理获得带钢。步骤A5:将所述带钢经平整后卷取成成品。其中,步骤A4将所述冷硬卷经过连续退火处理获得带钢,包括:步骤A41:将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度9°C/s ;该过程中,冷变形的铁素体发生回复。步骤A42:将所述经过预热的带钢进一步加热到850°C,其加热速度为2.5°C /s ;该过程实现冷轧铁素体组织的再结晶和生长,并且碳化物开始溶解。步骤A43:将所述经过进一步加热后的带钢在850°C温度范围内保温78s,使溶解碳析出物在高温阶段释放C原子。步骤A44:将所述经过保温后的带钢冷却至740°C,冷却速度约为9°C /s ;该过程使得固溶C元素向奥氏体中聚集。步骤A45:将所述经过冷却后的带钢经吹气快冷却至270°C,使固溶C参与马氏体相形成。步骤A46:将所述经吹气快冷却至270°C的带钢在270°C温度范围内保温360s后进行过时效处理。步骤A47:将所述经过过时效处理后的带钢进行终冷到室温,该过程钢中无组织转变。经过以上步骤,本实施例获得的深冲压双相钢的化学成分质量百分比分别为:C:0.023%, Si:0.46%, Mn:1.68%, P:0.07%, S:0.0024%, Alt:0.06%, N:0.0024%, Nb:0.082%,余
量为Fe和微量元素。
其他地方与实施例一完全一致。最后所应说明的是,以上具体实施方式
仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利 要求范围当中。
权利要求
1.一种深冲压双相钢,其特征在于,其化学成分质量百分比为:C:0.018% 0.025%, S1:0.2% 0.5%, Mn:1.6% 1.9%, Nb:0.07% 0.1%, P:0.05% 0.08%,S 彡 0.004%, Alt:0.02% 0.07%, N ^ 0.004%,余量为 Fe 和微量元素,其中,所述 Nb元素及C元素满足(Nb/93)/(C/12)=0.2 0.7。
2.一种生产如权利要求1所述深冲压双相钢的方法,其特征在于,包括: 将钢水通过冶炼后连铸获得板坯;在冶炼过程中,转炉炉后加入中碳锰铁或者低碳锰铁调整锰含量,加入磷铁调整磷含量,转炉终点目标温度为1700 1740°C,在出钢过程中,加入渣料,出钢下渣量彡80mm,出钢时间> 4分钟;在精炼过程中,依次调整Al、S1、Mn、P、Nb含量,连铸过程保证保护浇注,预防钢水二次氧化; 将所述板坯进行加热,再经过粗轧、精轧获得热轧板,然后将所述热轧板进行层流冷却,冷却后卷取成热轧卷; 将所述热轧卷通过冷轧获得冷硬卷; 将所述冷硬卷经过连续退火处理获得带钢; 将所述带钢经平整后卷取成成品。
3.如权利要求2所述的方法,其特征在于: 所述在出钢过程中,加入渣料白灰200-800kg,预熔渣O-lOOOkg,萤石0-400kg,出钢前期就开始随钢流加入渣料,出 钢量达到1/5前加入所有渣料。
4.如权利要求2所述的方法,其特征在于: 所述在出钢过程中,加入磷铁调整磷含量至0.05%,加入中碳锰铁或者低碳锰铁调整锰含量< 0.05%。
5.如权利要求2所述的方法,其特征在于: 所述在精炼过程中,采用铝粒脱氧后,依次采用硅铁、微碳锰铁或金属锰、磷铁、铌铁调整 S1、Mn、P、Nb 含量。
6.如权利要求2所述的方法,其特征在于: 所述板坯的加热温度为1220 1280°C ;所述精轧的终轧温度为870 920°C ;所述热轧板卷取温度为680 720°C。
7.如权利要求2所述的方法,其特征在于: 所述热轧卷通过冷轧时,冷轧压下率为70%-80%。
8.如权利要求2-7任一项所述的方法,其特征在于: 将所述冷硬卷首先加热至220°C实现预热获得带钢,其加热速度8°C /s 12°C /s ; 将所述经过预热的带钢进一步加热到840°C 880°C,其加热速度为1.50C /s 4°C /s ; 将所述经过进一步加热后的带钢在840°C 880°C温度范围内保温60s IOOs ; 将所述经过保温后的带钢冷却至730°C 780°C,冷却速度约为8°C /s 12°C /s ; 将所述经过冷却后的带钢经吹气快冷却至250°C 310°C ; 将所述经吹气快冷却至250°C 310°C的带钢在250°C 310°C温度范围内保温300s-400s后进行过时效处理; 将所述经过过时效处理后的带钢进行终冷到室温。
全文摘要
本发明公开了一种深冲压双相钢,其化学成分质量百分比为C0.018%~0.025%,Si0.2%~0.5%,Mn1.6%~1.9%,Nb0.07%~0.1%,P0.05%~0.08%,S≤0.004%,Alt0.02%~0.07%,N≤0.004%,余量为Fe和微量元素,其中,所述Nb元素及C元素满足(Nb/93)/(C/12)=0.2~0.7。本发明还公开了一种生产上述深冲压双相钢的方法,本发明提供的一种深冲压双相钢及其生产方法,能获得高的塑性应变比r的深冲压双相钢,使得深冲压双相钢在高的抗拉强度下具有良好的深冲性。
文档编号C22C38/04GK103243260SQ20131015684
公开日2013年8月14日 申请日期2013年4月28日 优先权日2013年4月28日
发明者姜英花, 尉冬, 王海全, 熊爱明, 刘光明 申请人:首钢总公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1