利用锌镍渗层形成的钢铁表面改性结构及其制备方法与流程

文档序号:12251342阅读:332来源:国知局
利用锌镍渗层形成的钢铁表面改性结构及其制备方法与流程

本发明涉及一种钢铁改性结构,特别涉及一种利用锌镍渗层技术达成具有高防腐蚀性能的钢铁表面改性结构及其制备方法。



背景技术:

钢铁腐蚀给全球带来了巨大的损失,据相关资料报道。世界上每年因腐蚀而报废的钢铁材料相当于年生产量的20%以上,损失价值约7000亿美元。远远超过地震、水灾、台风等自然灾害造成的损失的总和。目前有多种的防腐技术,使得钢铁腐蚀问题得到了一些缓解,但是仍不能满足人们对防腐的需求。目前的防腐技术制备的防腐层的耐腐蚀性能尚不能满足人们对防腐的要求,同时硬度相对较低。其中锌镍渗层技术处理的工件具有较高的耐腐蚀性,同时还具有较高的耐磨、耐振动性。

因此提供一种利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构是非常必要的。



技术实现要素:

鉴于以上内容,有必要提供一种利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构。

一种利用锌镍渗层形成的钢铁表面改性结构,所述钢铁表面改性结构是形成于钢铁基体表面的耐腐蚀的合金结构,所述钢铁表面改性结构包括从表面到内部依次形成的合金沉积层、金属扩散层,其中所述钢铁基体为低碳钢或低碳合金钢,所述合金沉积层为锌铁化合物,所述扩散层包括铁素体、珠光体以及淬火-回火组织。

进一步的,所述钢铁基体为非淬火-回火钢铁基体,所述金属扩散层的硬度高于所述钢铁基体的硬度,其中所述钢铁基体的显微维氏硬度介于150-260之间,所述金属扩散层的显微维氏硬度介于200-400之间。

进一步的,所述钢铁基体为进行淬火-回火处理后形成的淬火-回火钢铁基体,所述金属扩散层的硬度不高于所述钢铁基体的硬度,所述金属扩散层和所述钢铁基体的显微维氏硬度均介于240-450之间。

进一步的,经1-5%体积分数的硝酸乙醇的溶液浸蚀数十秒后金属扩散层中的珠光体颜色比所述钢铁基体中珠光体颜色浅。

进一步的,所述低碳钢和低碳合金钢表面改性材料的金属扩散层为回火索氏体和/或回火托氏体,且经1-5%体积分数的硝酸乙醇的溶液浸蚀数十秒后仍呈白亮色。

进一步的,所述合金沉积层的厚度为60-110微米,所述扩散层的厚度为30-120微米。

进一步的,所述高防腐蚀性能的表面改性钢铁材料的钢铁基体为低碳钢或低碳合金钢。

一种利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构的制备方法,包括如下步骤:

S1、提供低碳钢或低碳合金钢的钢铁基体;

S2、钢铁基体表面的前处理,所述前处理包括脱脂及抛丸除锈;

S3、配置改性渗剂,其中渗剂的组分及质量配比如由下的粉末组分均匀混合而成:Zn粉15~20%、Ni粉3~4%、Al粉2~2.5%、稀土2-3%、氯化铵1~4%,余量为Al2O3粉末;

S4、对所述钢铁基体进行表面改性处理,将在步骤S2中得到的钢铁基体和步骤S3中配置的渗剂共同放置于密闭的钢铁容器中,然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,将渗剂和钢铁基体置于密封的钢铁容器中对容器边加热边旋转加热,转速为5-10转/分钟,加热温度为370℃-450℃;

S5、后续清洗处理。

附图说明

图1是本发明提供的高防腐蚀性能的钢铁材料的表面金相组织示意图;

图2是本发明提供的非淬火-回火Q235钢经过表面改性后的金相截面图;

图3是本发明提供的非淬火-回火20钢经过表面改性后的金相截面图;

图4是本发明提供的淬火-回火20MnTiB钢经过表面改性后的金相截面图;

图5是本发明提供的淬火-回火25CrMoV钢经过表面改性处理后的金相截面图。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。

本发明提供了一种利用锌镍渗层技术形成的具有防腐蚀性能的钢铁材料表面改性特殊工艺,具体包括如下步骤:

S1、提供低碳钢或低碳合金钢的钢铁基体;

在本步骤中,所述钢铁基体可以为Q235钢、20钢、20MnTiB钢和25CrMoV钢中的任一种。

S2,钢铁基体表面的前处理;

在本步骤中,钢铁基体表面的前处理包括碱洗(或超声波清洗、或低温加热)脱脂和抛丸除锈两个过程。

碱洗脱脂:是指使用碱性液体对钢铁基体进行清洗。碱性液体的主要成分包括氢氧化钠、碳酸钠、磷酸钠、硅酸钠、硼酸钠等碱性或显碱性的盐。通常碱性液体是含有上述两种或多种组分的混合物。此外,在碱性液体中还含有EDTA、柠檬酸钠、三乙醇胺等钢铁螯合剂以及乙二醇、乙二醇单乙醚等有机添加剂,它们有帮助碱洗剂提高清洗效果的作用。

超声波脱脂:超声波清洗是利用超声波在液体中的空化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的,清洗时需要配制合适的清洗剂。

低温加热脱脂:当温度达到油类物质燃点后,油类物质将发生燃烧、挥发、碳化,形成灰分。

未经过处理的钢铁基体表面通常附有轧制油、机油、粉末和灰尘等污染物,如果不将这些污染物清洗干净,在进行表面改性处理时,这些污染物容易在高温下发生碳化形成碳膜,不仅影响美观,也会严重影响表面改性效果。脱脂可以进一步去除表面的污染物,为后续的工艺处理打好基础。

抛丸除锈是指采用抛丸工艺对经过脱脂的钢铁基体进行进一步的表面清理。抛丸工艺采用抛丸器将钢铁小球抛射向经过脱脂的钢铁基体表面,通过抛丸工艺可以除掉经过脱脂的钢铁基体的表面锈蚀层和氧化皮等污染物,从而使所述钢铁基体表面达到所述的粗糙度和清洁度,为后续的工艺做好准备。

S3,配置改性渗剂;

根据合金的种类以及合金需要达到的防腐效果配置表面改性渗剂。所述多元渗剂整体呈粉末状,其组分及配比如下;Zn粉15~20%;Ni粉3~4%、Al粉2~2.5%、稀土2-3%、氯化铵1~4%,余量为Al2O3粉末。所述渗剂可以根据不同的钢铁基体或者不同用途调整其各部分的比例。

S4,对所述钢铁基体进行表面改性处理;

在步骤S2中得到的钢铁基体和步骤S3中配置的渗剂共同放置于密闭的钢铁容器中,然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,通过所述渗剂的热传导,可以实现所述渗剂和所述钢铁基体处于相同的温度,并在该温度下实现渗剂钢铁渗入钢铁基体表面达到钢铁材料表面改性的目的。在本发明中,所述密闭的钢铁容器的转速为5-10转/分,以使得渗剂和钢铁基体受热均匀,从而实现对所述钢铁基体进行均匀的表面改性处理,并制备得到具有防腐蚀性能的钢铁表面改性材料。

所述钢铁基体可以为低碳钢或低碳合金钢等。

在本步骤中,对所述密闭的钢铁容器进行加热的温度介于370℃-450℃之间。温度的高低对钢铁表面改性处理过程有着重要的影响,随着温度的升高,渗剂中的原子向钢铁基体的扩散速率会急剧增大。根据不同的钢铁基体种类或者不同的用途,对所述密闭的钢铁容器的加热温度和在该温度下表面改性处理的时间也不相同。表面改性处理的时间介于1-10h之间。

在本步骤中,所述钢铁基体直接在常温状态下与所述渗剂混合。所述钢铁基体与所述渗剂在对所述密闭的钢铁容器进行加热的过程中实现。

S5,后续清洗处理;

经过S4处理的钢铁基体在自然状态下冷却,除去钢铁件表面浮灰后用清水对其进行清洗,进一步去除其表面附着的渗剂粉末或者其他杂质。

所述钢铁基体经过上述的步骤后就可以得到经过改性处理的钢铁表面改性材料。请参阅图1,这是本发明提供的经过表面改性的钢铁材料金相组织示意图。所述表面改性钢铁材料由外向内依次包括沉积层、扩散层和钢铁基体。其中所述扩散层为所述钢铁基体与所述沉积层交界处靠近所述钢铁基体一侧的过渡区间。在未进行淬火-回火工艺条件下,经过表面改性的所述钢铁基体的显微维氏硬度硬度介于150-260之间,所述金属扩散层的显微维氏硬度介于200-400之间。在进行了淬火-回火工艺后,所述钢铁基体形成淬火-回火组织。所述金属扩散层和所述钢铁基体的显微维氏硬度均介于260-450之间。

实施例一

请同时参阅图2和图3,其中图2是本发明提供的非淬火-回火Q235钢经过表面改性处理后的金相截面图;图3是本发明提供的非淬火-回火20钢经过表面改性处理后的金相截面图。

在本实施例中,所述钢铁基体为低碳钢,具体地,所述低碳钢为Q235钢或20钢,二者的表面改性处理过程如下:

首先对钢铁基体表面进行前处理,具体包括对所述钢铁基体进行碱洗脱脂和抛丸除锈。其中碱洗脱脂和抛丸除锈的具体步骤已在上面进行了说明,这里不再赘述。

然后配置改性渗剂,在本实施例中,所述改性渗剂整体呈粉末状,其组分及配比如下:Zn粉15%、Ni粉4%、Al粉2%、稀土3%、氯化铵1%,余量为Al2O3粉末。

再者,对所述钢铁基体进行表面改性处理。具体的,将所述钢铁基体和所述渗剂共同放置于密闭的钢铁容器中,然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,通过所述渗剂的热传导,可以实现所述渗剂和所述钢铁基体处于相同的温度,并在该温度下实现表面改性处理。在本发明中,所述密闭的钢铁容器的转速为5转/分,以使得渗剂和钢铁基体受热均匀,从而实现对所述钢铁进行表面改性处理。表面改性处理的时间为1h,处理温度为420℃,并制备得到具有防腐蚀性能的钢铁表面改性材料。

在本实施例中,所述Q235钢和20钢与所述渗剂的混合过程中未进行加热处理。即两者直接以环境温度进行混合,然后在所述钢铁容器中共同加热完成表面改性过程。

在本实施例中,所述低碳钢为Q235钢或20钢:钢铁基体为Q235钢的所述改性后的钢铁包括形成于钢铁基体表面的具有高防腐蚀性能的钢铁表面改性结构。所述钢铁表面改性结构包括两层金相组织,从表面到内部依次为合金沉积层和金属扩散层。可以理解,最内层为钢铁基体。

钢铁基体为20钢的改性钢铁材料表面同样形成两层的钢铁表面改性结构,从表面到内部依次为合金沉积层和金属扩散层,可以理解,最内层同样为钢铁基体。

在本实施例中所述钢铁基体是非淬火-回火状态进行表面改性处理。具体地,将所述钢铁基体和所述渗剂混合时,所述钢铁基体和所述渗剂在常温下进行混合。

此时所述钢材的金属扩散层从图2和图3中均可以看出,二者的金属扩散层中珠光体的颜色比钢铁基体中珠光体的颜色浅。二者的金属扩散层的维氏硬度均高于二者各自的钢铁基体的硬度。所述金属扩散层的厚度为30-80微米。

实施例二

请同时参阅图4和图5,其中图4是本发明提供的淬火-回火20MnTiB钢经过表面改性处理后的金相截面图。图5是本发明提供的淬火-回火25CrMoV钢经过表面改性处理后的金相截面图。

在本实施例中,所述钢铁基体为低碳合金钢,所述低碳合金钢为20MnTiB钢或25CrMoV钢,所述低碳合金钢的表面改性处理过程如下:

首先对钢铁基体进行淬火-回火处理,形成淬火-回火组织。

首先对钢铁基体表面进行前处理,具体包括对所述钢铁基体进行碱洗脱脂和抛丸除锈。其中碱洗脱脂和抛丸除锈的具体步骤已在上面进行了说明,这里不再赘述。

然后配置多元渗剂,在本实施例中,所述多元渗剂整体呈粉末状,其组分及配比如下:Zn粉20%、Ni粉3%、Al粉2.5%、稀土2%、氯化铵4%,余量为Al2O3粉末。

再者,对所述钢铁基体进行表面改性处理。具体的,将所述钢铁基体和所述渗剂共同放置于密闭的钢铁容器中。

然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,通过所述渗剂的热传导,可以实现所述渗剂和所述钢铁基体处于相同的温度,并在该温度下实现表面改性处理。在本发明中,所述密闭的钢铁容器的转速为8转/分,以使得渗剂和钢铁基体受热均匀,从而实现对所述钢铁基体进行表面改性处理。表面改性处理的时间为10h,处理温度为370℃。

在本实施例中,所述20MnTiB钢和25CrMoV钢与渗剂的混合过程中均未进行加热处理,即直接在环境温度下进行混合,然后在所述钢铁容器中共同加热完成表面改性过程。

在本实施例中,所述低碳合金钢为20MnTiB钢和25CrMoV钢。

20MnTiB钢和25CrMoV钢表面的表面结构同样包括两层结构,该两层改性结构形成于20MnTiB钢和25CrMoV钢表面,从表面到内部依次包括合金沉积层和金属扩散层,可以理解,最内层为钢铁基体。

所述钢铁基体进行淬火-回火处理后形成了淬火-回火组织。具体地,在本实施例中所述金属扩散层为淬火-回火组织,具体地,并且所述金属扩散层为回火索氏体。在本实施例中所述20MnTiB钢和25CrMoV钢分别与所述多元渗剂混合时,是在常温下进行混合。

请再参阅图4和图5,此时钢铁基体为20MnTiB钢和25CrMoV钢改性后的扩散层在1-5%硝酸乙醇溶液的浸蚀试验后,可以观察到二者的金属扩散层仍呈白亮色,说明二者均不容易被腐蚀。并且所述金属扩散层的维氏硬度不高于所述钢铁基体的硬度。所述金属扩散层的厚度为80-120微米,经过表面改性处理的所述20MnTiB钢和25CrMoV钢的金属扩散层的硬度均不高于所述钢铁基体的显微维氏硬度。

相较于现有技术,通过本发明提供的利用锌镍渗层技术表面改性结构具有很好的防腐效果,可以大大减少因为钢铁腐蚀带来的损失。此外,经过利用锌镍渗层表面改性的材料表面防护层耐磨性好,具有很好的耐冲击性能,不改变产品原有的机械性能。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1