回收化学和机械平整化所用水与浆料研磨剂的方法和设备的制作方法

文档序号:3399024阅读:278来源:国知局
专利名称:回收化学和机械平整化所用水与浆料研磨剂的方法和设备的制作方法
背景技术
相关申请本申请是1997年6月5日提出的申请的接续,其专利申请号为08/870,082的接续。
由于在这种半导体器件上的扫描线宽度和元件尺寸变窄,所以在所述半导体器件上的电学元件密度日益提高。例如,在所述器件上扫描线宽度通常的范围为1μm到4μm。然而,这些年来,只就用于集成电路的扫描线宽度已减小至1μm以下来说,工业已取得了巨大的进步。目前,0.5-0.35μm的扫描线宽度是普通的,并且正在研究如何达到0.25-0.18μm的扫描线宽度。此外,提高存储与计算能力的需要,使每一集成电路上的半导体器件数目达到了限度,甚至达到更高数目,结果导致了施加到半导体晶片上的层数增加,而集成电路的常用尺寸持续下降。更窄的扫描线宽度、更多的材料层数和每一集成电路更高密度的半导体器件的结合,由于半导体晶片表面的不一致性,所以日益使这类器件易于失效,结果使这类半导体晶片的表面和介质层具有均匀一致的平滑性变得日益重要起来。
为了抛光半导体晶片的表面,已开发出了许多化学机械平整化的方法(CMP),一般包括使晶片在抛光垫上旋转,经过旋转卡盘施加压力,再往抛光垫上施加含研磨抛光剂的含水化学浆料以进行表面活性化和研磨作用。能用于化学机械浆料中的研磨剂包含热解法二氧化硅、铯和氧化铝颗粒。化学机械浆料还含有稳定剂或氧化剂。热解法二氧化硅通常与稳定剂如氢氧化钾或氢氧化铵混合,一般是用于抛光半导体晶片的介质或氧化物层。铯和氧化铝通常与氧化剂如硝酸铁或过氧化氢混合,通常是用于抛光金属层,如钨、铜和铝。
从半导体晶片的各层除去的浆料和材料构成通常作为工业废物处置的废水。研磨成分大约占未处理废水的8%-15%,其余为其它的化学试剂,如稳定剂或氧化剂和水。未处理废水通常用漂洗水稀释,使产生的废水的最终固体含量大约为1%-1.5%。然而,工业废水中的可溶的或悬浮固体的处置,由于严格的地方、州和联邦政府的法规,一直是众所关心的争论问题,因此希望提供一种去除废水中研磨成分的方法与设备,以可能去除需单独处置的重金属成分。
就相当长的时间来说,由于废水仅含有去离子水,所以还希望回用废水的上清液,以便能把上清液用于化学机械平整化工艺中。理想的是,这种工艺将会用于抛光工具上,为的是能有效地回用去离子水和节省费用,。尽管常规的过滤技术存在使用点过滤,这项技术不适合用于在废水中含有高几率的悬浮物。就常规过滤而言,所有的废水流都应与膜元件成直角进入过滤器。包埋在膜介质和过滤器中的颗粒接着就成为堵塞物。这就引起了长时间的停工和相关操作费用的增加。
替代使用点过滤可以包括中央工厂处理,如pH中和,添加絮凝剂或沉降剂同时产生滤饼;超滤或反渗透过滤的系统。对于适当使用一些抛光工具和持续操作费用高的用户来说,这些系统是成本过高的系统。此外,这些系统是基于现代化学的原理,并且对处理未来浆料的必要性是不灵活的。由此,希望具有一种这样的方法,它能处理初次悬浮颗粒问题,其灵活性又足以满足浆料的特殊问题。还希望具有一种能实现从试产到大规模制造的方法。本发明能满足这些和另外的一些要求。
发明概述概括地说,本发明提供分离和回收用于平整化半导体材料的含水化学机械浆料中的研磨成分和流体,可使液体流出物回用于非工艺用途,以及用作灌溉、工艺冷却水的灰水(gray water)或反渗透系统的补充水,或者按要求在工业废水中安全处置。
由此,本发明提供一种适于回收来自浆料废水流中的清彻液体和适于浓缩和回收来自同一水溶液中的研磨材料颗粒的方法和设备。在本发明的方法与设备中,在不规则的基础上,将含有研磨成分的浆料废水流引入颗粒检测装置中,所述装置使用若干技术中的一种技术检测研磨剂颗粒的存在。检测装置可以使用光学、超声或其它类似的检测技术,以测定研磨剂固体在废水流中的密度或在废水流的浊度。基于检测装置所作出的检测结果,当指示固体含量低于预定极限值时,废水流则被转移到一个或多个小型的收集槽中。收集的液体,经过能给抛光机提供作为漂洗水回用的非工艺用水的装置,而泵回至抛光机中。或者,当检测的固体含量超过预定极限值时,全部废水流都被转移到使用超滤装置而把固体与废水流中的液体成分分开的装置中。清彻的液体收集在一个或多个收集槽中而以各种方式利用,以返回抛光机作非工艺用的漂洗水、超滤装置用的反冲洗水或者转移至工厂工业废物处理系统处置。在附加处理(例如,离子交换或除铜的洗脱)的情况下,这股废水可用于灰水的用途中,如冷却水或灌溉用水或作装置反渗透系统的供料水以进一步减少用水量。
本发明的设备还提供使来自超滤装置的废固体流再循环的设备,以进一步浓缩固体和最大程度地从废水中分离清彻的液体。该设备能把固体从少至0.2%(重量)的固体,浓缩至高达50%(重量)的固体。当固体含量达到优选的浓度时,就把固体废物转移到收集固体于容器内的装置,然后工场外处置或回收以再次用于其它工业中。
对于本发明的这些和另外一些方面与优点,根据通过实施例说明本发明特征的下面详细的阐述和附图,将会更加明白。
附图概述图1是本发明回收用于化学机械平整化半导体晶片的液体和浆料研磨剂的第一实施方案的方法和设备示意图;图2是图1的分离塔的剖面图;图3是本发明回收用于化学和机械平整化半导体晶片的水和浆料研磨剂的第二实施方案的方法和设备示意图;图4是图3的缓冲槽的剖面图;
图5是图3的过滤装置的剖面图;图6是图5的过滤装置中的过滤器的剖面图;图7是图3的分离塔的剖面图;图8是按照本发明的原理回收用于化学机械平面化半导体晶片的液体和浆料研磨剂的第三实施方案的方法和设备;图9是按照本发明的原理用于检测废水流中的固体含量并转移清彻液体流至界面装置再返回到抛光机的装置示意图;图10是用于图9或图11的装置中的超滤装置的透视图;和图11是按照本发明的原理回收浆料研磨剂废水中的清彻液体和浓缩废水最大程度地回收清彻液体的装置的示意图。
最佳实施方案的详细说明当半导体装置中的电器元件和配线的密度提高时,由于半导体晶片上的表面不规则性,使所述装置更易于失效。用于化学机械平整化半导体晶片表面的工业的常规方法,涉及这一问题,通常会引起抛光半导体晶片各层的浆料中的研磨剂和水的废物处理。



的,本发明是以回收来自研磨材料颗粒的含水浆料中的研磨材料颗粒的方法和设备进行具体化的。参照附图1,在本发明第一优选实施方案中,用于从研磨材料颗粒的含水浆料中回收研磨材料颗粒的设备10,通常接受来自入口管线12的未处理废水,该废水包括在浆料废水收集槽14中的含水化学和机械浆料,它含有半导体材料平整化时除去的研磨剂颗粒和材料。浆料废水的流量由与未处理废水入口管线连接的流量计16加以测量。浆料废水收集槽中的浆料废水,优选保持在环境温度和压力条件下,并且优选保持其接近中性的pH下。浆料废水的酸性或碱性优选通过与浆料废水收集槽连接的pH计18监测。
收集槽中的浆料废水的pH所显示的电信号,能为控制器19所接受,用以控制pH中和剂在浆料废水收集槽中的引入,所述中和剂的选择取决于浆料流出物的pH。中和剂包括例如来自储酸器20的酸、或者来自储碱器22的碱、或者是pH缓冲剂,所述酸是经过由控制器控制的酸阀24分配的,而碱是经过由控制器控制的碱阀26分配的,所有这些中和剂都为本领域内的一般技术人员所知晓。收集槽中的浆料废水通常是通过收集槽内的搅拌器(未示出)搅拌,该搅拌器是通过马达27驱动。浆料流出物与任何中和剂的混合物,可保存在浆料收集槽内持续到要处理的时间,然后,经过收集槽出口28排放以进一步处理。或者,处理的浆料流出物可连续地经收集槽出口28排放。
来自收集槽的要处理浆料流出物液流,易于通过收集槽出口和处理浆料流出物管线30之间连接的泵29,以导致进一步处理浆料流出物。压力计32和总溶解固体检测计34都与处理浆料流出物管线相连接,以监测处理浆料流出物的条件。
由流出物管线输送的处理浆料流出物,优选通过真空提取后送入一个或多个处理室或分离塔36,以把处理浆料流出物分离成为含高比例研磨剂颗粒的部分,和含低比例研磨剂颗粒的上清液部分。或者,浆料流出物可通过正压泵送通过分离塔。每个分离塔都具有接受处理浆料流出物的进口38,用于浆料流出物较轻的上清液部分的上清液出口管线40,以及用于大部分含高比例研磨剂颗粒的分离浆料流出物更重的部分的底部固体出口42。正如图1所述,在本优选实施方案中,许多分离塔可串联连接,致使大多数上流分离塔接受来自浆料流出物收集槽的处理浆料流出物,而随后下流分离塔接受来自上流分离塔的浆料流出物较轻的上清液部分。大多数下流分离塔上清液出口输送处理的上清液以进一步处理。
参照图2,各分离塔优选具有一个用于引导处理浆料流出物进入分离塔冷却部分45的喷嘴44,塔周围为携带冷却剂流的冷却蛇管46所环绕。喷嘴优选以与分离塔纵轴相切的方向把浆料流出物引入分离塔的冷却部分,以在分离塔的冷却部分产生螺旋状的或环状的浆料流出物液流。冷却蛇管优选能把浆料流出物冷却至温度约0℃~约15℃的范围内,这易于颗粒的集聚。
在浆料流出物冷却后,流经介于两个充电电极板之间的精密机械加工的开口。冷却的浆料流出物在充电的阴极48和充电的阳极50之间的流过,导致颗粒的电性能的改变,从而引起它们附聚,使所得的颗粒絮凝物的由浆料流出物的上清液部分分离。浆料流出物再流经第二个喷嘴52,该喷嘴以与分离塔纵轴相切的方向引入浆料流出物,以便产生螺旋状的或环状的浆料流出物的液流,导致部分含颗粒附聚物或絮凝物的含水浆料移至分离塔的固体沉降室54,而剩余的含水浆料内的上清液经上清液出口40排出。
固体出口阀56能控制来自底部固体出口42的液流,致使固体沉降室内的含颗粒附聚物的含水浆料部分,按需要自固体沉降室经固体出口管线58排放到固体收集糟60,既可间歇地也可连续性地进行。在本优选实施方案中,许多分离塔可串联连接,致使来自一个分离塔上清液出口的上清液能流到按顺序的下一个分离塔的入口,而按顺序为最后一个分离塔的上清液出口,输送上清液以进一步处理和收集。
在一优选实施方案中,来自分离塔的上清液流经上清液管线61进入一个或多个与真空源64连接的真空室62。上清液管线内的上清液温度和压力,如有必要,可通过温度和压力传感器监测。在一优选实施方案中,含水浆料在环境温度和压力下被引入处理室。在一优选实施方案中,来自分离塔的上清液管线与入口66连接而到达许多真空室,各室均具有到上清液出口管线70的上清液出口68,导至入口72而通向上清液收集槽74。当真空室内的上清液减压处理时,截留在上清液中的气体鼓泡至上清液的表面。到达上清液表面上的气体鼓泡被认为能使上清液内的颗粒紧靠一起,而由于颗粒之间存在着范德瓦引力致使颗粒进一步附聚。附聚后的颗粒具有高于上清液中的水的比重,从而使它们分离并沉淀至真空室的底部。或者,用气体,如清洁的干燥空气、氧气或氮气,以少量注入真空室内的上清液中,以进一步提高经过上清液的气体鼓泡量。
引自各真空室底部的固体出口管线76,连接到通向固体收集槽的固体管线78。在本优选的实施方案中,来自固体收集槽的出口管线80与离心分离器82连接以输送收集的固体和液体。来自离心分离器的液体流入上清液收集槽74中。来自固体收集槽60的液体流经流体管线84进入压滤器86,压滤器还接受经离心分离器的固体出口管线87而从离心分离器来的浓缩固体。最后,固体是经固体废物管线88从压滤器86收集的。来自离心分离器的上清液流经上清液出口管线90进入上清液收集槽74。上清液的pH可通过与上清液收集槽连接的pH计92加以监测。上清液可经过出口94收集,并且能通过泵96经管线98泵送进入一个或多个具有上清液出口102的接受槽100,在那里上清液的数量和质量可由例如pH计104、总溶解固体计106、浊度计108和流量计110进行监测。
参照附图3~7,在本文第二最佳实施方案中,用于回收来自研磨材料颗粒的含水浆料中的研磨材料颗粒的装置210,通常是接受来自入口管线212的未处理废水,该废水包括含水化学与机械浆料,而该浆料含有研磨剂颗粒和平整化半导体材料时去除的材料而送到浆料废水pH缓冲槽214中。浆料废水的流量可以通过与未处理废水入口管线连接的流量计216测量。浆料废水pH缓冲槽内的浆料废水,优选保存在环境温度和压力的条件下,并优选保存在大约2~4的pH值下。浆料废水的pH优选用与浆料废水pH缓冲槽连接的pH计218监测。
参照图3和4,指示pH缓冲槽内浆料废水pH的电信号,可为控制器219所接受,用以控制酸,例如HCl和其它的pH调节剂引入浆料废水pH缓冲槽,其量取决于浆料流出物的pH。由储酸器220经由控制器控制的酸阀224分配酸,或者由储碱器222经由控制器控制的碱阀226分配碱,或者是pH缓冲剂。pH缓冲槽内的浆料废水通常是通过pH缓冲槽内的搅拌器221搅拌,该搅拌器由马达227驱动。浆料流出物与任何中和剂的混合物都可以保存在浆料pH缓冲槽内,持续到需要进行处理时,一般在缓冲槽内保持的时间可高达约1小时。酸化的含水浆料再经过pH缓冲槽出口228排放至pH平衡槽214′内以进一步处理。
如图4所述,浆料废水pH缓冲槽214在搅拌轴223的末端装有搅拌器221的螺旋桨,它还用作阴极,用于经酸化含水浆料施加电位,以改变颗粒的电性能,以易于颗粒的附聚和絮凝。金属丝网阳极栅格225安置在缓冲槽内,围绕在搅拌器轴阴极周围,并且在电学上与缓冲槽的底部连接,从而起到阳极的作用。向缓冲槽内的含水浆料施加电压,一般约12~5500伏,尽管更高的电压效果会更好些。缓冲槽还具有上清液溢流出口229,用来释放缓冲槽内的过量含水浆料。一个通常与用于冷却处理室相似的蛇管冷却夹套(未画出),优选安排在pH缓冲槽的周围,以便能把含水浆料的温度冷却至温度在约0℃~15℃的范围。在pH缓冲槽中径向地实施电泳,从而驱动颗粒通过分开的阳极格栅。在金属丝网格栅内的搅拌区的外部,颗粒附聚而落入槽的底部,再通过槽底部上的阳极板引导至槽的底部。通过骤冷含水浆料至温度约0℃和15℃,可以提高附聚的过程,降低焦耳热效应并由电泳过程引起对流混合。还能把上清液从有待于中和的pH缓冲槽的顶部引出而与来自工艺过程其他部分的上清液一起循环。
参考图3,酸化的固体/流体溶液在真空下从pH缓冲槽的底部引出,进入pH平衡槽214′,并与经入口管线212′所接受的未处理废水浆料混合,并将中和剂加到pH平衡槽中。指示pH平衡槽内浆料废水pH的电信号,能为控制器219′接受,用以控制pH中和剂引入浆料废水pH平衡槽,所用中和剂依据浆料流出物的pH进行选择。中和剂可以包括例如酸,如HCl,来自储酸器220′并经过受控制器控制的酸阀224′分配,或者碱,如碳酸氢钠(Na2CO3),来自储碱器222′并经由控制器控制的碱阀226′分配,或者是pH缓冲剂,所有的这些都为本领域内的一般技术人员所知晓。pH平衡槽内的浆料废水通常由pH平衡槽内的搅拌器221′搅拌,搅拌器由马达227′驱动。浆料流出物和任意中和剂的混合物,都可以保存在浆料pH平衡槽内,持续到需要处理时,然后经pH平衡槽出口228′排放以进一步处理。或者,处理浆料流出物可经pH平衡槽出口228′连续排放。与用于冷却处理室的和pH缓冲槽的类似的蛇管冷却夹套(未示出),优选是围绕在pH平衡槽的周围,以保持pH中和过的含水浆料的温度在约0℃~约15℃的范围内,以提高附聚的速度。在搅拌器搅拌区的外部,附聚的颗粒降到pH平衡槽的底部。
来自pH平衡槽的流出物优选在真空下引至第一自净化可逆粗颗粒过滤装置230,再引至第二自净化可逆过滤器装置230′,它与过滤装置230基本相同,正如图3和5所说明的。过滤装置230和230′参照图5所示的过滤装置230予以详细描述。自净化粗粒过滤器是通过强迫流体流过含有能捕获粗颗粒的多层过滤材料的过滤器进行操作的。在定时间的间隔后,流体反向流经过滤器,使前被捕获在过滤介质内的粗颗粒流出,并落入收集室内。在重复这一工艺过程的情况下,过滤器收集粗颗粒,减少了频繁置换过滤器的要求。
来自pH平衡槽出口228′的流出物与过滤装置的过滤装置入口256连通,所述装置包括一系列与入口256连接的流量控制阀231a~231f,这些阀能开启和关闭,以导向控制pH中和过的浆料流经连在两个过滤器总管233a,b之间的过滤器232。正如图6所示,在本优选实施方案中,过滤器装有一系列对称排列的过滤器介质层234a-g,从外层到内层具有从最粗到最细的梯度。这样,过滤器分别具有与中等过滤介质234b、f相邻近的两个外部粗过滤介质234a,g,接着在内部最细过滤介质234d的两侧,分别是相邻的中等/细过滤介质231c,e。过滤介质其它的类似排列也是合适的。这样,在操作时,过滤装置可以以两种结构形式中的任何一种运行,既可使流经过滤器的方向周期性地逆转,以冲洗来自过滤器的粗颗粒,又可使待排放的粗颗粒流经过滤器装置出口258。在典型的第一结构形式中,阀231a,b,d,f是关闭的,而阀231c和e是开启的,这样可使从右向左流经过滤器。过滤过的上清液向上流过上清液的出口235。经一段时间在过滤器的右边收集粗颗粒后,阀的结构形式可以改变成反向冲洗的形式,其中阀231a,c和e是关闭的,阀231d瞬时开启,而阀231f是瞬时关闭,以使有待冲洗的粗颗粒向右流入固体出口258。之后,关闭阀231d,开启阀231f,使流体处于正常的第二结构形式,即从左向右流经过滤器,再向上流过上清液出口235。经过一段时间以在过滤器左侧收集粗颗粒后,再次变更阀的结构形式为冲洗过滤器的原来流动结构形式,其中阀231b,d,f是关闭的,阀231c是开启的,使流体从右向左流经过滤器,阀231a瞬时开启而阀231e瞬时关闭,以使有待冲洗的粗颗粒向左流经到固体出口258。之后,阀a,b,d,f关闭而阀231c和e开启,处于正常的第一种流动结构形式,则可使从右向左流经过滤器,过滤过的上清液再经过上清液出口235流出。
由流出物管线输送的处理浆料流出物,优选通过真空经入口238引至一个或多个处理室或分离塔236,以分离处理浆料流出物成为含较大比例研磨剂颗粒的部分,和含较小比例研磨剂颗粒的上清液部分。正如图3所说明的,在本实施方案中,许多的分离塔可串联相接,致使大多数上流分离塔接受来自浆料流出物收集槽内的处理浆料流出物,而随后下流分离塔接受来自上流分离塔的较轻浆料流出物的上清液。大多数下流分离塔上清液出口输送处理上清液以进一步处理和收集。各分离塔都具有用于接受处理浆料流出物的入口238,用于浆料流出物较轻的上清液部分的上清液出口管线240,和用于含高比例研磨剂颗粒的较重部分的分离浆料流出物的底部固体出口242。
参照图7,各分离塔通常具有固体出口端盖255和上清液出口端盖257。为了把处理浆料流出物引入分离塔的冷却部分245,塔被输送冷却剂流体的冷却蛇管246所环绕。接受来自入口的含水浆料流的喷嘴252,优选把浆料流出物引至分离塔的冷却部分,其引入的方向是与分离塔纵轴相切,以便在分离塔的冷却部分产生螺旋状或环状的浆料流出物的流体。冷却蛇管优选把浆料流出物冷却至约0℃和约15℃的温度,以易于使颗粒的附聚,引起部分含颗粒附聚物或絮凝物的部分含水浆料停止悬浮而进入分离塔底部的固体沉降室254,而剩余在含水浆料内的上清液经上清液出口240排出。累积的固体既可间歇性地清除,也可通过真空由分离塔连续排出送到粗固体收集槽260。
参照图3和7,固体出口阀256可控制来自底部固体出口242的流体,致使部分含颗粒附聚物的固体沉降室内的含水浆料,按需要从固体沉降室经固体出口管线258排放到粗固体收集槽260,既可间歇性地,又可连续性地进行。在本发明最佳实施方案中,来自固体出口管线258的流出物通过与真空源264连接的真空重力管261而送到粗固体收集槽。当流体连续流过分离塔时,粗固体收集槽是空的。
在这最佳实施方案中,来自分离塔的上清液经上清液出口管线240流入一个或多个与真空源264连接的真空重力管262中。在一个最佳实施方案中,含水浆料在环境温度和压力下引入处理室。在这最佳实施方案中,来自分离塔的上清液管线连接到入口266而通到许多真空重力管,各真空重力管均具有与细淤渣收集槽270连接的上清液出口268,所述槽270具有出口272。
来自固体收集槽的出口管线280,与离心分离器282连接,以便输送来自粗固体收集槽出口的收集固体和来自细淤渣收集槽出口的细淤渣以及剩余在粗淤渣和细淤渣中的液体。在离心分离器内分离出的较轻液体部分引至上清液收集槽274。来自离心分离器浓缩的固体经固体出口管线287送至干燥器286。最后,固体是经固体废物管线288从干燥器收集。来自离心分离器的上清液流经上清液出口管线290进入上清液收集槽274。由离心提取的上清液,经过任选的UV光源和离子交换树脂珠除去溶解的固体,进入最终处理用的上清液收集槽。上清液的pH和总溶解固体,可分别通过与上清液收集槽连接的pH计292和总溶解固体检测站293监测。上清液经过出口294收集,并用泵296经管线298泵送,它可安装一个或多个过滤器297。
在二氧化硅基的和TEOS基的的浆料情况下,回收絮凝材料可再次使用浆料中的硅或TEOS。在氧化铝基的浆料情况下,絮凝材料也可回收以再次使用浆料中的硅。由于金属杂质,回收氧化铝基的浆料再次用于半导体工业中是不太可能的。在TEOS或二氧化硅基的和氧化铝或铯基的浆料混合情况下,絮凝的材料可按氧化铝基固体进行处理再次使用或废物处置。硅、氧化铝和其它金属的回用或处理以及任何这样的回用时的必要纯度,本领域一般技术人员是通晓的。
参照图8,在本发明第三最佳实施方案中,首先提供一种方法和设备,以从含有研磨材料的废水流中回收清彻液体,然后再从水溶液中除去固体。用于检测废水流中研磨剂固体含量的装置300,接受来自抛光机302的未处理废水,该废水包括含有研磨剂颗粒和从平整化半导体材料上去除的材料的含水浆料。装置300位于极靠近抛光工具的地方,并产生信号304到控制阀308的控制单元306,以指引来自检测装置300的流出物。当研磨剂固体含量低于预定的极限值时,由阀308把全部流出物液流转移到装置310,以回用于抛光工具中的非严格的漂洗用途中。当研磨剂固体的含量超过预定极限值时,全部流出物液流,包括含研磨剂颗粒和从平整化半导体材料除去的材料的含水浆料,由阀309转移至可以成为图1-2或图4-7的浓缩装置的装置312,以进一步分离清彻液体成分与研磨剂固体并且浓缩研磨剂固体以清除。来自浓缩装置312的清彻液体,经管线313循环返回到循环浓缩检测仪器300,以再循环或送至工业废物处理系统314以处理。浓缩的研磨剂固体和从平整化半导体材料去除的材料,转移至装置316,以另外填充若干废物收集容器317中的一个,当充满时,移出以进行工场外的处理318。
参照图9,在另一最佳实施方案中,检测水溶液中研磨剂和其它材料含量的装置320,接受固体检测装置322内的可能含有研磨剂颗粒的含水浆料的未处理废水,在那里进来的流体324和流出物pH326都可以检测。固体检测装置利用光、超声或类似的检测技术,以检测浊度和/或颗粒密度。固体检测装置产生信号328,到控制阀332的控制单元330,以引导来自固体检测装置的流出物。假若引入的流出物液流含有预定极限值下的固体,则把全部流出物液流由阀332转入至一个或多个收集槽334;否则,含有研磨剂固体的全部流出物液流由阀332转移至一个或多个局部过滤的收集槽336。如图10中所说明的,从槽336出来,含有研磨剂固体和来自抛光半导体晶片的材料的流出物,由泵338输送过陶瓷或烧结金属结构的超滤装置340。超滤装置优选由陶瓷或烧结金属制造,尽管其它的结构材料如聚砜也可以代替使用。在一次通过后,含有研磨剂固体和来自抛光半导体晶片的材料的水溶液,由排水管342送到固体浓缩装置以进一步处理。来自该超滤装置的清彻液体收集在一个或多个收集槽334中。当抛光机344需要非工艺装置漂洗水时,有抛光机的控制单元的电子界面有指示。基于接受来自抛光机的信号,泵346自一个或多个收集槽334提取清彻液体,经流量计348和阀350后泵送液体返回抛光机以作为非工艺装置的漂洗水。当相当的回用水不能从收集槽334得到时,可通过旁路阀352打开去离子水而获得另外的漂洗水。当收集槽334供料足够满足抛光机需要时,过量水时可以经溢流管354转移至工业废物处理系统。
参照图11,用于浓缩废水流中的研磨剂固体的装置360,接受来自固体检测装置362的水溶液进入一个或多个浓缩槽364。该槽的固体含量可连续用固体含量测量装置366监测,而液体的pH用pH传感器368连续监测。当固体含量低于预定的极限值和槽中的流体含量低于传感器370的水平时,泵372再循环水溶液流经超滤装置374,如图10所示。超滤装置374优选由陶瓷或烧结金属制成,尽管其它的结构材料如聚砜也可以代替使用。来自超滤器的滞留物(retentate)375返回到浓缩槽364以再次过滤,而来自超滤装置374的渗透液377或清彻的液体被送至工业废物处理系统(未画出)或返回固体检测装置362用作非工艺装置用漂洗水,或者经阀376到反冲洗水收集槽379。超滤装置374,通过阀378转移废水至收集固体废物的装置(未画出)和短时间开启阀380而间歇性地进行反冲洗(优选每次为10-20分钟)。反冲洗水由泵从反冲洗水收集槽(未画出)提取并用于对超滤装置的反面加压。这一点有可能引起包埋的颗粒从超滤单元冲出而返回浓缩槽364。
当固体含量达到预定的极限值,或当浓缩槽364中的流体含量达到传感器370的水平,则由泵372流出的流体由阀378转入至收集固体废物的装置(未画出)。
很明显,根据前述,尽管已阐述和说明本发明特殊形式,但仍可作出各种改进方案而不偏离本发明的精神和范围。由此,它不能用于对本发明进行限制,除非所附的权利要求书。
权利要求
1.一种用于从浆料废水流中回收用于化学机械平整化的液体和研磨剂材料颗粒的方法,浆料废水流的液体中研磨剂材料颗粒的密度不规则变化,该方法包括的步骤有测量浆料废水流中的研磨剂颗粒密度;比较浆料废水流中的研磨剂颗粒密度和含水浆料密度的极限值;当浆料废水流中研磨剂颗粒的密度低于所述含水浆料流密度的极限值时,根据密度测量值转移浆料废水流到至少一个回用收集槽;和当浆料废水流中的研磨剂颗粒密度大于或等于所述含水浆料的密度极限值时,根据密度测量值将浆料废水流转移;以分离研磨剂颗粒与废水流的液体而提供废固体流。
2.按权利要求1所述的方法,其中所述使研磨剂颗粒与废水流的液体分离的步骤还包括使所述研磨剂颗粒与废水流的液体通过超滤分离。
3.按权利要求1所述的方法,进一步包括再循环所述废固体流的步骤以进一步浓缩所述废固体流中的研磨剂颗粒和进一步除去所述废固体流中的清彻液体。
4.按权利要求3所述的方法,进一步包括的步骤有测量所述废固体流中的研磨剂颗粒密度;比较所述废固体流中的研磨剂的密度与废固体流密度极限值;和当所述废固体流中的研磨剂颗粒密度大于或等于所述废固体流密度极限值时转移所述废固体流。
5.一种从浆料废水流中回收用于化学机械平面化的液体和研磨材料颗粒用的设备,浆料废水流的液体中的研磨剂材料颗粒的密度不规则的变化,该设备包含供测量浆料废水流中的研磨剂颗粒密度用的装置;用于比较浆料废水流中研磨剂颗粒密度与含水浆料密度极限值的装置;当浆料废水流中研磨剂颗粒密度低于所述含水浆料密度极限值时,用于根据密度测量值转移浆料废水流到至少一个回用收集槽的装置;和当浆料废水流中的研磨剂颗粒密度大于或等于所述含水浆料密度极限值时,用于根据密度测量值转移浆料废水流至使研磨剂颗粒与废水流的液体分离的装置中的装置。
6.按权利要求5所述的设备,其中用于分离研磨剂颗粒与废水流中的液体的装置包括超滤装置。
7.按权利要求5所述的设备,进一步包括再循环所述废固体流以进一步浓缩所述废固体流中的研磨剂颗粒和进一步除去所述废固体流中的清彻液体用的装置。
8.按权利要求7所述的设备,进一步包括测量所述废固体流中的研磨剂颗粒密度用的装置;比较所述废固体流中的研磨剂颗粒密度与废固体流密度极限值用的装置;当所述废固体流中的研磨剂颗粒密度大于或等于所述废固体流密度极限值时,转移所述废固体流用的装置。
9.一种从浆料废水流中回收用于化学机械平面化的液体和研磨材料颗粒用的设备,浆料废水流的液体中研磨材料颗粒的密度不规则变化,该设备包括;接受含有液体和研磨材料颗粒的浆料废水流的检测器,用于测量浆料废水流中研磨剂颗粒的密度;用于比较浆料废水流中研磨剂颗粒密度与含水浆料密度极限值的比值器;和当浆料废水流中的研磨剂颗粒的密度低于所述含水浆料密度极限值时,根据密度测量值转移浆料废水流到至少一个回用收集槽用的阀,以及当浆料废水流中研磨剂颗粒的密度大于或等于所述含水浆料密度极限值时,根据密度测量值转移浆料废水流至超滤装置,以分离研磨剂颗粒与废水流中的液体用的阀。
10.按权利要求9所述的设备,进一步包括再循环所述废固体流用的阀,以便进一步浓缩所述废固体流中的研磨剂颗粒和进一步去除所述废固体流中的清彻液体。
11.按权利要求10所述的设备,进一步包括测量所述废固体流中所述研磨剂颗粒密度用的检测器;比较所述废固体流中所述研磨剂颗粒密度与废固体极限值用的比值器;和当所述废固体流中所述研磨剂颗粒密度大于或等于所述废固体极限值时用于转移所述废固体流的阀。
全文摘要
一种从含有粉碎的、悬浮固体的含水浆料中回收液体和研磨剂的方法,该法包含至少一个过滤步骤,该步骤用烧结金属膜和/或陶瓷膜并和测量比重或密度方法相连结、物理地浓缩和使研磨剂颗粒从可通过标准工业废物系统处置的液流中分离或回用上清液流的方法。该方法还用于回收固体以回用于其它的、严格性差些的用途中,由此减少或消除抛光工艺的无用的副产物。
文档编号B24B37/04GK1305393SQ99807438
公开日2001年7月25日 申请日期1999年5月25日 优先权日1998年6月18日
发明者加里·L·科利特, 小爱德华·T·费里, J·托宾·吉茨 申请人:卢西德处理系统公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1