采用自支持加氢气化从含碳材料制备合成运输燃料的制作方法

文档序号:3465715阅读:409来源:国知局
专利名称:采用自支持加氢气化从含碳材料制备合成运输燃料的制作方法
技术领域
本发明涉及用含碳原料合成运输燃料(transportation fuel)。
背景技术
目前对于环境、健康、安全和未来不可避免的石油资源短缺的关注,使得人们不得不寻找新的化学能源和将其转化为可选择的运输燃料的生产方法。在全世界范围内,尤其是在中等发展中国家,用内燃机供给燃料的交通工具的数量持续增长。美国以外主要使用柴油的交通工具的数量增长速度比美国国内更快。这种状况只有引进采用混合和/或柴油发动机技术用的更高燃烧效率的交通工具以降低燃料消耗和全部废气排放才有可能转变。由于生产石油基燃料的能源日渐枯竭,只有发展非石油替代燃料,尤其是能实现清洁燃烧的合成柴油燃料,才能避免只依靠石油提供燃料的危机。而且,除了采取严格的尾气排放控制措施以外,传统发动机中石油基燃料的正常燃烧带来了严重的环境污染。清洁燃烧的合成柴油燃料有助于减少柴油发动机的排放。
清洁燃烧的运输燃料的生产要求改进现有石油基燃料,或者探索用废弃材料获取能源产品或合成燃料的新方法。有许多可用的能源得自可再生有机物质或废弃的含碳废料。利用含碳废料生产合成燃料是一个经济可行的方法,因为输入的原料是已经被认为几乎没有什么价值并被当作垃圾扔掉的,而且其处理常常会产生污染。
液体运输燃料相对于气体燃料来说有其自身的优势,在相同的压力和温度下,它有更高的能量密度(energy densities)。液体燃料能储存在大气压或低压下来获得液体燃料能量密度,而气体燃料必须在高压下储存于交通工具的容器中,在高压下还有泄漏或者突然破裂的安全隐患。液体燃料的输送比气体燃料更容易,仅仅用泵和管线就可实现。现有运输部门的液体燃料基础设施能保证易于并入到现有清洁燃烧的合成液体运输燃料的任何制备的现有市场。
清洁燃烧的液体运输燃料的可用性是国家优先考虑的。用含碳原料洁净、有效地生产合成气,能将其进行费托过程(Fisher-Tropsch process)来生产清洁的有价值的合成汽油和柴油,将有益于交通运输和公共健康。这一过程使得目前技术水平的发动机尾气后处理方法得以应用,该后处理方法用于减少NOx、除去柴油发动机排放物中的有毒颗粒和降低正常燃烧产物污染物,目前其通过催化剂来实现,当用从石油得到的普通的柴油燃料原料时,催化剂被燃料中存在的硫快速污染,降低了催化剂效率。通常,从生物质(biomass)得到的合成气生产的费托液体燃料是不含硫和芳香化合物(aromatic)的,而且合成的柴油燃料具有极高的十六烷值。
生物质(biomass)原料是最常用的用于生产可再生燃料的含碳废原料。废塑料、橡胶、肥料、农作物渣、森林、树木和草屑,及废水(污水)处理中的固体生物质(biosolid)也可以作为用于转化过程的含碳材料。可以转化生物质原料用来发电、产生热、生产有价值的化学品或燃料。加利福尼亚在利用和发展几种生物质应用技术上处于国内领先地位。每年在加利福尼亚,通过垃圾处理系统处理四千五百多万吨的城市固体废物。这些废物大约一半被掩埋。例如,仅在加利福尼亚区的Riverside县,估计每天处理大约四千吨废木。根据另外的估计,在Riverside县的收集区估计每天填埋多于十万吨的生物质。这些城市垃圾包含约30%的废纸或纸板、40%的有机废物(绿色植物和食品)和30%的木材、纸、塑料和金属废弃物的混和物。如果能转变为清洁燃烧的燃料,这些废弃物质中的含碳组分具有可以缓解对其它能源需求的化学能。含碳材料的废料来源不是唯一的可利用来源。因为许多现有的含碳废料如纸,可以分类、再利用和回收,对于其它材料,如果该废弃物能直接送至转化设备,废物制造者就不需要再支付倾倒费(tipping fee)。目前倾倒费是每吨30~35美元,垃圾管理部门征收这部分费用用于补偿垃圾处理费。因此,将废弃物送至废物-合成燃料加工厂,不仅减少了处理费用,而且由于垃圾处理成本降低,有更多的废物可利用。
木材在炉子中的燃烧就是一个使用生物质产成热能的例子。遗憾的是,敞开燃烧生物质废料以获得能和热不是清洁有效地利用热值的方法。现在发现了许多利用含碳废料的新方法。例如,有一种合成液体运输燃料的办法,和另一种生产用于转化为电力的高能气体的方法。
用可再生的生物质原料转化的燃料在为交通提供清洁有效的能量的同时,能实际降低温室气体如CO2的净累积。从生物质原料的共生产(co-production)合成液体燃料的主要优点之一是其在提供可储存的运输燃料的同时减轻了导致全球变暖的温室气体效应。将来,这些共生产过程能为持续性发展的可再生燃料经济提供清洁燃烧的燃料。
现有许多方法能将煤和其它含碳材料转化成清洁燃烧的运输燃料,但是这些方法由于成本过高而无法在市场上与石油基燃料相竞争,或者这些方法产生挥发性的燃料如甲醇和乙醇,由于其蒸汽压过高,在空气洁净法规的限制下,无法在高污染地区如南加州航空基地(air-basin)使用。HynolMethanal过程就是后者的一个例子,该过程采用将固体含碳材料和天然气一起输入,而加氢气化和蒸汽重整来合成甲醇,在实验室规模(bench-scale)上实施此过程表明,其碳转换效率率高于85%。
选择新的能源和方法生产运输燃料的需求要求不仅要考察目前生产石油基燃料方法的改进,而且要研究目前没有使用的资源和方法合成功能相当的替代燃料的新方法。从诸如有机废料的含碳材料生产合成液体燃料就是一个解决这些问题的办法。利用含碳废料生产合成燃料被认为是获得新燃料制备来源的可行方法,因为其原料已被看作是废料,没有价值的,并且其处理经常会产生另外的环境污染源。

发明内容
本发明利用蒸汽热解、加氢气化和蒸汽重整反应器生产合成气,采用费托链烷烃燃料(paraffinic fuel)合成反应器,该合成气能够转化为合成链烷烃燃料,尽管也可以生产合成汽油和喷气推进(jet propulsion)燃料,但优选柴油。或者,生产的合成气也可以用于同时共生(co-generated)能量转换和工艺热(process heat)系统中。对于从煤或其它含碳材料和液体水,合成清洁燃烧的液体运输燃料、热过程能(thermal process energy)和电能的共生产(co-production)过程,本发明给出了用于该通用级(general class)共生产过程的含碳材料的综合平衡热化学分析。它能够独立设计、高效运行,以及对煤或其它含碳材料进行综合分析,以共生产燃料、电力和热系统。
本发明提供了生产合成气的方法和装置,生产的合成气可用作气体燃料,或用作原料输入费托反应器,以在基本自支持(self-sustaining)过程中生成液体链烷烃燃料、循环水和显热。在产生过热蒸汽、甲烷、二氧化碳和一氧化碳的条件下,将悬浮在液态水中的含碳材料颗粒的浆液和来自内源(internal source)的氢气输入热解蒸汽发生器和加氢气化器中,然后在生成主要包含氢气和一氧化碳的合成气的条件下,输入蒸汽重整装置。采用氢气分离过滤器用于纯化,一部分由蒸汽重整装置生成的氢气作为内源氢气输入加氢气化器。蒸汽重整装置生成的余下的合成气可作为燃料用于使用气体燃料的发动机或燃气轮机以产生电和工艺热,或者输入费托燃料合成反应器,在一定条件下得到液体燃料和循环水。输入到费托燃料合成反应器的氢气与一氧化碳分子的准确化学计量比通过原料中水与碳的比例控制。使用熔盐回路(molten salt loop)将放热的加氢气化反应器产生的热量(和从生产液体燃料时放热的Fischer-Tropsch反应器产生的热量)输送至用于热解的吸热的蒸汽发生器和蒸汽重整反应器罐。
具体来讲,本发明有如下特征。
1)通用的固体含碳材料输入系统,其可以接收用于加氢气化的煤、城市和农业生物质、以及城市的固体废物的任意组合。
2)第一个阶段,用于热解的蒸汽发生器和加氢气化装置。
3)蒸汽重整装置作为第二个阶段的反应器,从第一个阶段用于热解的蒸汽发生器和加氢气化装置出来的产物生产富氢合成气。保持必要的蒸汽与碳的摩尔比使化学反应接近平衡;4)(a)将费托(合成气转化成液体)燃料合成器作为第三和最后阶段的反应器,以将来自蒸汽重整装置的合成气转化为不含硫的清洁燃烧的液体运输燃料和循环水,或者(b)将生成的合成气用作用于工艺热,和/或在能发电的用于燃料发动机或者燃气轮机中的燃料;5)以不需要额外原料和热源的连续自支持方式运行三个热化学过程反应器,以从含碳材料(如废木)中生产几乎纯净的链烷烃液体(类似于从石油中生产的柴油燃料)和石蜡状的化合物(类似于从石油中生产的USP石蜡胶状物(paraffinic jellies),其可用常规方法进一步炼制成与柴油更接近的燃料)。反应器结构也可以进行优化用于生产别的合成燃料,例如二甲醚(一种类似丙烷的燃料,可以作为运输燃料用于柴油发动机和燃气涡轮)和气体燃料级氢气(一种可用于发动机和涡轮的燃料,如果纯化除去CO还可用在燃料电池中用作电化学燃料),以及高能合成气用于联合循环(combined cycle)能量转化和电功率生产。
本发明高于先前技术的主要优点是(a)采用蒸汽热解法活化作为独立初始反应物的碳和氢气,将含碳材料中的可利用碳转化为甲烷的能量效率高(>85%),相比之下,部分氧化气化通常需要额外的能量密集的空气分离体系以提供所需的氧气;(b)通过将在第二阶段甲烷蒸汽重整装置产生的过剩氢气回输(feeding back),化学自支持运行第一阶段的加氢气化器;(c)用从蒸汽重整装置流出的气体高效能合成清洁燃烧的运输燃料,例如(i)用第三阶段的费托燃料合成反应器合成的链烷烃化合物,(ii)用第三阶段合成反应器合成的二甲醚,及(iii)不需要第三阶段的燃料合成反应器,用氢气分离器和/或纯化过滤器生产氢气产品;(d)采用组合熔盐或水/水蒸汽热交换流体、燃烧产品高能气以启动反应并维持过程温度,回收用于发电的工艺热,通过有效控制热和化学能来进行所有反应器的热量自支持操作,而不需要额外的燃料和外部能源;(e)相对于含碳材料的直接自然通气燃烧(通常称为敞开燃烧(open incineration)),大大降低了所有密闭过程的反应器和/或合成气燃烧器的空气排放物;(f)能捕获来自过程反应器或过程内部合成气燃烧器的所有气相二氧化碳流出物,用于隔离(sequestration)和/或用常规技术化学转换成凝相化合物。
这些过程反应器的新型构造能提高在合成燃料、化学品和能量的共生产车间中的含碳材料的总能量利用效率。


图1是本发明整体模型的流程图;图2是在HPR中30atm和800℃下,碳转化率与H2/C和H2O/C比的关系图;图3是在HPR中30atm和800℃下,CH4/C进料比与H2/C和H2O/C比的关系图;图4是在HPR中30atm和800℃下,CO2/C进料比与H2/C和H2O/C比的关系图;图5是在HPR中30atm和800℃下,CO/C进料比与H2/C和H2O/C比的关系图;图6是加氢气化器(HGR)中每摩尔碳2.629摩尔H2和0.0657摩尔H2O的固定进料比下,温度和压力条件对CO2/H比的影响图;图7是HGR中每摩尔碳2.629摩尔H2和0.0657摩尔H2O的固定进料比下,温度和压力条件对CH4/H比的影响图;图8是HGR中每摩尔碳2.629摩尔H2和0.0657摩尔H2O的固定进料比下,温度和压力条件对H2/C比的影响图;图9是HGR中每摩尔碳2.629摩尔H2和0.0657摩尔H2O的固定进料比下,温度和压力条件对CO/H的影响图;图10是HGR中30atm和1000℃下,在H2循环后通过净H2/CO比测量的进料H2O/C比对蒸汽重整装置(SPR)操作性能的影响图;图11是SPR中30atm和1000℃下,改变进料H2O/C比对SPR产物CO、CO2和CH4的影响图;图12是在SPR中(2.76摩尔H2O/每摩尔C加入SPR)温度和压力条件对H2/CO比的影响图;图13是在SPR中(2.76摩尔H2O/每摩尔C加入SPR)温度和压力条件对CH4/CO比的影响图;图14是用于生产费托链烷烃燃料的生物质加氢气化的质量流量示意图;图15是用于生产费托链烷烃燃料的生物质加氢气化的摩尔流量示意图;图16是用于生产费托链烷烃燃料的生物质加氢气化的热能控制示意图;图17是用于生产费托链烷烃燃料的生物质加氢气化的水/蒸汽流程示意图;图18是用于生产费托链烷烃燃料的生物质加氢气化的熔盐流程示意图;图19是生产二甲醚的生物质加氢气化过程的质量流量示意图;图20是生产二甲醚的生物质加氢气化的摩尔流量示意图;
图21是生产二甲醚的生物质加氢气化的热能控制示意图;图22是生产二甲醚的生物质加氢气化的水/蒸汽流程示意图;图23是生产二甲醚的生物质加氢气化的熔盐流程示意图;图24是生产气体氢燃料的生物质加氢气化的质量流量示意图;图25是生产气体氢燃料的生物质加氢气化的摩尔流量示意图;图26是生产气体氢燃料的生物质加氢气化的热能控制示意图;图27是生产气体氢燃料的水/蒸汽的生物质加氢气化的流程示意图;图28是生产气体氢燃料的生物质加氢气化的熔盐流程示意图;图29是生产电的生物质加氢气化过程的质量流量方案示意图;图30是生产电的生物质加氢气化的摩尔流量示意图;图31是生产电的生物质加氢气化的热能控制示意图;图32是生产电的生物质加氢气化的水/蒸汽流程示意图;图33是生产电的生物质加氢气化的熔盐流程方案示意图;图34是生物质在绝热HGR和9∶1水进料下,生产费托链烷烃燃料的加氢气化的质量流量示意图;图35是生物质在绝热HGR和9∶1水进料下,生产费托链烷烃燃料的加氢气化的摩尔质量流量示意图;图36是生物质在绝热HGR和9∶1水进料下,生产费托链烷烃燃料的加氢气化的热能控制示意图;图37是生物质在绝热HGR和9∶1水进料下,生产费托链烷烃燃料的加氢气化的水/蒸汽流程示意图;图38是生物质在绝热HGR和9∶1水进料下,生产费托链烷烃燃料的加氢气化的熔盐流程示意图。
具体实施例方式
用于热解的蒸汽发生器,加氢气化器(HGR)和用于如Hynol过程的蒸汽热解重整装置(SPR)(也叫蒸汽热解反应器、蒸汽重整装置或蒸汽反应器),可以用于通过蒸汽热解原料、加氢气化和蒸汽重整反应,而生产合成气。反应在HGR中开始,将含碳原料中的碳转化为富甲烷产物气,并继续通过SPR产生合成气,准确控制其中氢气和一氧化碳的化学计量以有效进行费托过程。在工艺中费托过程作为最终步骤时,能生产如合成汽油、合成柴油和循环水。
对原料的要求是非常灵活的。许多由不同的含碳材料组成的进料可以湿磨制成水浆料(water slurry),该水浆料在高压下输入用于生产合成气的蒸汽热解器、加氢气化器和蒸汽重整装置中。进料与水的质量配比甚至可以在过程运行期间也可以改变,在知道进料的化学组成情况下,以保持优化燃料合成过程中所需的碳氢化学计量。合适的含碳材料包括生物质、天然气、油、石油焦、煤、石化和精炼厂副产品及废物、塑料、轮胎、污泥和其它有机废料。例如,在加州Riverside县易得的废木就是废生物质材料的一个例子。这些特定的废料可以与其它含碳材料,如在加州Riverside县可得的若不利用就只能通过掩埋处理的绿色垃圾和来自水处理的固体生物质混用以扩大废料来源。
当用于制造运输燃料如柴油时,设计该过程使得这些原料得到最大量的所需要的费托链烷烃产品。所需的产物由液体烃如十六烷C16H34组成,碳原子数范围在12到20之间,其适合作为柴油。从SPR中生成的过量的合成气,即从费托过程燃料生产工艺产生的“剩余”化学能,可用作高能燃料驱动燃气轮机来发电。在循环足够的氢气以维持加氢气化器后,合成气产物还可以根据用户的需要来利用。下面给出了本发明在将含碳材料转化为可用的运输燃料中使经济效益最大化的方法和通过燃气轮机联合循环(combined cycle)直接发电的可能性。
1)寻找可得到的含碳废物的大致数据,它们的化学组成,并根据过程的实际需要进行进一步分析。
2)在连续流过(continuous flow-through)的基础上,将发生在包括用于热解的蒸汽发生器、加氢气化器、蒸汽重整装置和费托反应器(或其它燃料合成反应器)的工艺中的重要反应建立模型。其可以通过优化费托反应器(或其它燃料的合成器)的原料以获得用于合成燃料的氢气和一氧化碳的最佳化学计量比来完成。
3)对成本进行经济分析以获得和准备所需的原料、资金投入、操作和维护、产量和价值。
下面结合图中的流程图给出具体的实施方式,这些实施方式表明,通过连接到燃气轮机联合循环的费托工艺,将作为含碳材料的废木转化为液体柴油运输燃料、循环水和备用电源(alternative power source)。
含碳材料的热化学转化通过两个主要过程进行加氢气化和蒸汽重整,在蒸汽发生器中进行原料的蒸汽热解以预处理原料和活化其中所含的碳。加氢气化器需要输入热解的含碳废料、氢气和水蒸汽,在高温高压的容器内反应,在具体实施方式
中采用大约30个大气压(atm)和1000℃。将HGR产生的富甲烷废气进行蒸汽重整也需要大约30atm和1000℃的条件。更普遍地,每个过程都可在700~1200℃的温度和20~50atm的压力下进行。使用合适的反应催化剂,采用相对较低的温度和压力也可得到实用的反应速率。
参照图1的总流程图,其主要反应过程的总的工艺顺序如图所示(具体实施方式
的具体数据显示在图14~38的流程图中)。管线用于在过程中输送物料。进料11在研磨机10中经过切、磨、碾变成细小颗粒,与循环水12混合,作为液体存放在储器或槽14中,悬浮浆料16作为压缩流体通过泵18送至蒸汽发生器20中,使浆料16在其中过热并热解,然后在蒸汽分离器22中分离出蒸汽,这样蒸汽经过管线24,从输送泵送浓料浆(slurrypaste)的管线26中分离出来,或者蒸汽经过管线27直接蒸汽热解进料。
浓料浆进料26,或直接蒸汽热解进料27进入HGR28。来自内源的氢气(来自蒸汽重整,经过下述的氢气分离过滤器)和一部分先前产生的蒸汽一起进入HGR28来获得所需的出料。输出气体主要包括CH4、H2、CO和过热蒸汽。HGR28产生的气体离开反应室后被泵送到SPR30。HGR中未反应的残渣(或灰份)用一个带双挡板的封闭料斗装置(a double bufferedlock-hopper arrangement)定期地从反应器容器的底部除去,这种装置经常用在压力较高的气化体系中。灰份预计由沙、SiO2,和氧化铝、Al2O3组成,并带有痕量金属。SPR30的进料通过管线32经过加热器34,再经过管线36从蒸汽分离器22进入,或者通过HGR28输出管线进入,提供比理论蒸汽/碳的比值大的进料进入SPR30,以减轻反应器结焦。出料是较大量的H2和CO,其具有用于下述所需的烃燃料合成过程的合适的化学计量。
SPR30的出料直接通过管线38送到热交换器40和42。冷凝水44通过一个热交换器和液体水膨胀器(expander)47从SPR的出料中分离出来。SPR30不可冷凝气体产品再送到氢气分离过滤器46。SPR出料的部分氢,此实施方式中大约是50%,从过滤器46出来后,经过热交换器40后温度升高(此实施方式中从220℃升高到970℃),然后送到HGR28作为其氢气进料。来自SPR出料的热流出物经过热交换器40和42后被冷却,分别用于加热循环氢和产生蒸汽。离开热交换器47的冷凝水44循环回体系中作为用于浆料的水源12。通过这种方式,便完成了自支持工艺。
燃料合成气的使用有两种选择。基于热值,合成气可以进入用来直接产生能量的燃气轮机联合循环中,或者也可以通过燃料合成反应器(在此实施方式中,用于生产清洁柴油和循环水的费托过程)。根据本发明的具体实施方式
,通过降低费托过程反应器50的气体进料的压力,合成气直接通过膨胀涡轮机48获得机械能。液态涡轮机,Brayton和Rankine循环涡轮机产生的机械能可用于给内部淤浆、水进料泵、空压机提供能量,余下的可用于发电,见表1-7。
通过调整输入和过程参数可最大限度地提高效率。生物质/煤的不同的混合物进料加入水中而制备浆料,借此蒸汽分离后的碳氢比对工程是合适的。浆状进料需要足够的水来运行加氢气化器、蒸汽重整装置,并保持进料在蒸汽分离后仍处于浆料状态。现有技术试图用干燥进料进行生物质转化,在将固体进料加入高温高压HGR反应室的过程中经常遇到机械故障。根据C.B.Thorsness等人(UCRL-ID 119685,由Lawrence Livermore国家实验室发表,Livermore,CA 1995)的“Hydrothermal Treatment of Municipal SolidWaste to Form High Solids Slurries in a Pilot Scale System”的结果,这种浆料进料的方法已经得到说明并研究。另外,在制备和操作煤水浆料的相关技术方面也有发表物,例如,Z.Aktas等人的“Fuel Processing Technology”(62,2000,1-15)。加氢气化和蒸汽重整两个主要过程的基本反应如下所示。HGR的独立反应可表示为(1)(2)(3)反应2和3是吸热反应。反应1放出的热足够提供反应2和3所需的热。需要预热HGR以使反应器达到其运行温度。因此,一旦反应开始并进入稳态,HGR就可以自支持了。
HGR过程的主要目的是将原料中的碳最大程度地转化成高能气体CH4和CO。之后,过热蒸汽与CH4和CO在SPR中反应产生氢。在SPR中,一半的氢气由过热蒸汽得到,另一半由CH4转化而来。SPR中的主要反应被认为有(4)(5)蒸汽重整反应(4和5)经常在蒸汽浓度比上述反应所要求的化学计量高下进行。这样可避免焦炭的形成并提高转化效率。所要求的蒸汽浓度一般用蒸汽/碳的摩尔比(S∶C)表示,即HGR进料中每个碳原子的水蒸汽分子比例。优选SPR操作中(S∶C)比大于3。富蒸汽条件对水-气转化反应有利。反应轻微放热(AH°=-41kJ/mol CO);然而,反应产生额外的氢气,而且将CO转化为CO2。不幸地是,还发生了另外的不希望的副反应,即甲烷化反应,该反应消耗掉氢气(6)两个主要反应器之后得到的流出物是富含氢气、一氧化碳和水蒸汽的合成气。SPR产生的氢气大约一半循环回HGR。因此不需要外部氢气源来维持稳态操作。因而可以认为HGR和SPR过程是化学自支持的。余下的合成气可用于合成燃料和工艺热。
本发明采用费托过程可以制得不含硫、超高十六烷值、柴油状的燃料和有用的石蜡(paraffin wax)产品。不含硫使得能生产低污染物和颗粒排放的柴油。
本发明还提供了副产物。其中一种有用的副产物是纯化过的水,其可再循环回到体系用于浆料进料生成。在Rentech的1998年名为“FuelProcessing Technology”的报告(见Rentech发布网站http://www.rentechinc.com)中,Rentech指出在用铁催化剂的费托过程,每桶费托产品产生7/10桶水,而用钴催化剂的费托过程,每桶费托产品产生1.1~1.3桶水,比铁催化剂时多得多。部分水可以进行循环在蒸汽重整装置中产生蒸汽,以及在合成气和整个费托过程中用于冷却。
费托反应也产生含H2、CO、CO2和一些轻烃气体的尾气。H2可以从尾气中分离出来并循环回HGR或费托反应器。其它少量的气体如CO和CO2可以烧掉。
费托过程两个主要的产品可以以合成燃油和石蜡为特征。按照Rentech在上面报告中的费托过程的具体实施方式
,固体石蜡与液体的比例约是50/50。费托产品完全不含硫、氮、镍、钒、沥青质和芳香化合物,而这些杂质在原油中经常见到。产品基本上全部是链烷烃和石蜡,含微量或几乎不含环烃和含氧物(oxygenates),否则就需要进一步分离和/或处理才能得到可用的最终产品。另外,不含硫、氮和芳香化合物也大大减少了有害排放物。
加州空气质量监督局(California′s Air Resources Board(CARB))规定柴油的十六烷值最小应达到48,而且硫含量尽可能低。上述Rentech研究从费托过程得到的壳牌(Shell)柴油的十六烷值是76。CARB规定运输用的柴油中的硫含量以重量计为500ppm,壳牌费托过程生产的柴油中的硫在ppm级上检测不出来。CARB规定芳香化合物体积含量不超过10%(小炼厂标准是20%),壳牌费托过程生产的柴油中检测不出芳香化合物。
Rentech通过研究进一步证实柴油不需要进一步处理,因为其纯度和链烷烃产品质量甚至比原油炼制的柴油更好。费托柴油工艺是清洁合成过程,其产品是清洁产品,有更高的十六烷值,与原油炼的柴油相比,更不需要进一步处理。
用于生产电力的燃气轮机联合循环也是一种选择。如果费托产品成本太高,基于合成气转化为电能总效率是65%,利用合成气的热值也是一个可行的方案。相对于从管线中取出的天然气,合成气是在高温下开始的,因此该数字是合理的。
可以通过过程模型化(modeling)最大化合理地生产合成气来获得高产量的CO和化学计量的氢气。首先,将加氢气化器、蒸汽重整装置和费托反应器的单元操作反应模型化。这可以采用平衡模型化的DOS系统的计算机程序Stanjan来完成。通过改变参数如温度、压力、初始进料和气体流量,基于成本投入和产出效益进行参数化分析。调整加氢气化器的参数以获得最大的实际碳转化效率。调整蒸汽重整装置的参数以得到最大的实际CO产率、足够的用于循环输出的氢和最小的CO2产量。研究中固定一个参数,改变另两个参数,观察各参数的变化,得到三维(3-D)参数化分析。下面讨论用Stanjan程序将主要反应过程模型化得到的结果。
参照图2,该图显示了在HGR中30atm和800℃的条件下,不同水或蒸汽和氢气的比对原料碳的转化效率的影响。随着输入HGR的氢气和水的增加,原料中碳的转化效率增大直到最终达到100%。落入100%转换率区域的条件就是模型化目标之一,这些条件可被采用。为了避免循环氢的费用,应尽量选择最少量的H2循环返回HGR。图3显示了在HGR中30atm和800℃条件下,氢气和水对甲烷的影响。图4显示了在HGR中30atm和800℃条件下,氢气和水对二氧化碳的影响。当H2量高而水量低时,CO2量较低。虽然目标是使合成气中的CO2的量最小化,但没有必要使HGR中的CO2最小化,因为CO2在SPR的反应中通过水气转化反应来调整,以获得得到最大的费托柴油馏分所需的适当的H2和CO比例。图5显示了在HGR中30atm和800℃条件下,氢气和水对一氧化碳的影响。
图6、7、8和9显示了在HGR中进料组成为每摩尔C 2.76mol H2和0.066mol H2O的条件下,改变温度和压力对从HGR流出的气体化学组成的影响。在这些氢气和水输入HGR的条件下,在温度800~1000℃和压力30~50atm范围内,对于化学平衡时碳转化率估计接近100%。
图10显示了输入费托燃料合成反应器的H2和CO的比例与加入在30atm和800℃条件下的SPR的水蒸汽量的关系。该比例随着加入SPR的蒸汽的增多而增大,当原料中每摩尔C加入的蒸汽量(或水)为3.94mol时,该比例达到2.1。使用此蒸汽加入量,系统将达到化学和热量自支持并提供合适比例的H2和CO用于费托合成十六烷。图11显示了在30atm和800℃条件下加入SPR的H2O的影响。图12和图13显示了在SPR中温度和压力对H2和CO比例以及CH4转化率的影响。在高温和低压下该比例较高。与H2和CO比例的趋势类似,CH4转化率随着温度升高和压力下降而增大,因此,在SPR中采用高温和低压有利。
费托过程的链烷烃液体燃料产物的碳原子数的范围很宽。根据上述Rentech报道,大约50%的产物是柴油,大约一半产物以蜡形式存在,并伴生少量的气体如未反应的反应物和烃气体(如甲烷、乙烷、丙烷等)。为使本发明具体化,选择柴油组成(C11~C20)的中间位置的组分十六烷作为柴油。
废木(生物质),作为一种原型的含碳原料,通过对它的加氢气化转化过程的热化学和热力学模型化结果来考察本发明的细节并说明本发明的特征。对过程反应器的新工序进行模拟以揭示生产合成燃料所需的热化学条件。例如,合成柴油的生产中,其目标是使得第一阶段的加氢气化器的操作达到自支持。在具体的实施方式中,这一目的在以下条件完成通过控制全部热量和化学势能,在平衡温度1000℃(绝热条件下是738℃)和30atm下,进料的总氢碳摩尔比至少为3.48∶1(绝热条件下是1.67∶1),水碳进料比至少是0.07∶1(绝热条件下是0.43),第二阶段蒸汽重整装置进料中水与碳的摩尔比至少3.91∶1(绝热条件下是1.67∶1),操作条件也是平衡温度1000℃(绝热条件下是900℃)和30atm,以达到同时满足用于第一阶段加氢气化器自支持操作的产物氢气的最优量和输入第三阶段费托反应器的剩余合成气中有足够的氢碳摩尔比(至少是2.1∶1),费托过程的操作条件是200℃和10atm,并实现特定HGR和SPR组合反应器的绝热自支持操作,及接下来进行的SPR和费托反应器的常规操作。
表1~5显示进入和离开了转化过程的每个操作模式的每个热交换器和能量转化单元的总能量转移率(energy transfer rate)。对于转化过程的五种操作模式中的每种模式,质量流量、摩尔流量、热能控制、水/蒸汽和熔盐的示意图分别表示在图14~18、19~23、24~28、29~33和34~38中。表6和表7总结了转化过程的五种操作模式的每种模式的工艺结构参数和实施结果。
前述的含碳材料进料过程起初采用水浆化悬浮液进料工艺(water slurrysuspension feed technology),该工艺最初由Texaco提出,用于部分氧化气化器,其能使用来源广泛的含碳材料,并可通过控制泵送计量进入第一阶段的加氢气化器(HGR)以高转化率(测量出至少有85%的碳原料化学利用率)生产富甲烷产物气。可获得足够的热量用于从生物质-水浆料产生过热蒸汽以供给并运行第二阶段的蒸汽-甲烷重整装置。重整装置产生的气体通过氢气膜过滤器(hydrogen membrane filter)得到纯的氢气,返回第一阶段反应器以维持生物质的加氢气化反应。余下的第二阶段生成气,不通过氢气过滤器,冷却以冷凝,并且回收任何水蒸汽返回含碳材料浆料进料系统。未经过滤的气体进入燃料合成反应器,其包含费托链烷烃合成反应器,操作条件是200℃和10大气压。过程模拟显示,氢/碳进料比至少是2.1∶1以优化化学纯和清洁燃烧的(不含硫)类柴油燃料及高价化学纯石蜡状蜡的生产,而无需额外的燃料和能源(图14~18、表1、6和7或图34~38和表5、6和7用于说明绝热的第一阶段反应器的操作);或者二甲醚合成反应器,操作条件为200℃和70atm。该反应器产生大约92.4%DME和7.1%甲醇。甲醇燃烧一共产生30MW电能和20MW的工艺热量,用于熔盐和水/蒸汽传热回路热交换(见图19~23和表2、6和7),及用于氢气燃料合成(见图24~28和表3、6和7)和所有不合成燃料的电力生产(见图29~33和表4、6和7)。
在模拟生物质加氢气化工艺车间的五种操作模式中都可能有电功率的净输出。这些模拟的结果总结在表6和7中。总的能量利用率从费托过程的50.7%(如果绝热71.2%)到生产氢气的67.2%。在对于清洁燃烧的功率转化,生物质原料中,优化的电力生产利用了大约38.2%的化学势能。通常,在分离出足够纯的氢气用于第一阶段加氢气化器之后,采用适当的比例阀分配合成气产物,可以进行过程模式的转变。
图1中显示的总模拟结果归纳如下。
1.HGR的最佳条件1000℃和30atm条件下操作;原料中每摩尔C2.76mol H2以维持自支持;原料中每摩尔C 0.066mol H2O。
2.SPR的最佳条件1000℃和30atm条件下操作;原料中每摩尔C 4.022mol H2O。
3.费托过程产品每吨原料0.199吨蜡;每吨原料68.3加仑十六烷柴油(C16H34)。
尽管已经对本发明及其优点进行了详细描述,但其应理解为在不背离所附的权利要求书确定的本发明的实质和范围的条件下,可以进行各种改变、取代和修正。而且,其也意指本申请的范围不受说明书中描述的过程和装置的具体实施方式
限制。本领域的普通技术人员容易体会本发明的公开内容,利用现有的或以后有的工艺和装置,根据本发明来发展它们以实施与在此描述的相应的实施方式基本相同的功能来获得基本相同的结果。因此,所附的权利要求书意指包括在此范围内的工艺和装置。
表1 用于生成费托链烃所优化的生物质转化输入能量率(MW) 输出量功率(MW)组成PCE 热功 PCE热 功热交换器HX1 53.4 53.4HX2段1 78.8段2 212.9HX3 段1 2.22.2段2 112.0HX4(HGR) 50.2HX5(SPR) 93.3HX6 段1 46.6段2 8.7HX7216.3HX843.3HX2的段1 78.8HX9(FTR) 45.9HX10 11.8HXG1 165.0HXG2 21.8HXG3 68.4水力 浆料泵 0.3液态水涡轮机 0.2Brayton循环 涡轮机1 7.9涡轮机2 75.0涡轮机3 0.0空压机43.4Rankine循环 热 290.0机械功率0.5103.5来自蒸汽循环的废热 186.9化学转换过程生产的合成链烃137生产的合成柴油* 116输入转换过程生物质(废木)输入PCE473.0总能量平衡 总能量 473.0 827.3 44.1 137 1014.2186.6排出的净废热 186.9需要的净输入能0.0电力转换过程净电量 123.8总的可输出电量 123.8总的热力学转换效率 50.7%注*假定所生产的合成链烃产物是50%的十六烷和50%的蜡蜡可常规加工成十六烷,转化率为70%
表2用于生产二甲醚(DME)所优化的生物质转化输入能量率(MW) 输出能量率(MW)组成PCE 热 功 PCE 热功热交换器HX1 53.4 53.4HX2段154.5段2160.0HX33.8HX4(HGR) 50.2HX5(SPR) 91.3HX6 36.6HX7 152.8HX8 29.9HX2的段1 54.5HX9(DME-R) 32.3HX10 0.7HX11 1.6HX12 3.2HXG1 150.2HXG2 21.3HXG3 66.8HXG4段1(至HX7) 49.4段2(至HX2) 64.5水力浆料泵 0.2液态水涡轮机 0.1Brayton循环涡轮机2 3.4涡轮机3 4.0涡轮机4 70.7压缩机 5.2空压机 39.8Rankine循环热(HX3,9,10,11,12&G4) 266.1机械功率 0.495.0来自蒸汽循环的废热171.5化学转化过程二甲醚(DME)生产 160.6输入转换过程生物质(废木)输入PCE 473.0总能量平衡总能量 473.0 698.2 45.6 160.6 869.8 173.2排出的净废热 171.5需要净输入能 0.0电力转换过程净电量 110.3可输出电量 110.3总的热力学转换效率 57.3%
表3用于生成气体氢气燃料所优化的生物质转化输入能量率(MW) 输出能量率(MW)组成 PCE 热 功 PCE 热 功热交换器HX153.4 53.4HX2段154.5段2160.0HX3 105.4HX4(HGR) 50.2HX5(SPR) 91.3HX6 36.6HX7152.8HX829.9HX2的段1 54.5HXG1151.0HXG220.5HXG3段1(至HX7) 10.7段2(至HX2) 53.6水力浆料泵 0.2液态水涡轮机 0.1Brayton循环涡轮机1 6.7涡轮机2 57.3空压机 29.4Rankine循环热 213.6机械功率 0.4 76.3来自蒸汽循环的废热 137.7化学转化过程气体H2燃料生产 221.4输入转换过程生物质(废木)输入PCE 473.0总能量平衡总能量 473.0 645.8 29.9221.4783.5 140.4排出的净废热 137.7需要净输入能 0.0电力转换过程净电量 96.4总的可输出电量 96.4总的热力学效率 67.2%
表4用于发电所优化的生物质转化输入能量率(MW) 输出能量率(MW)组成 PCE 热 功PCE 热 功热交换器HX153.4 53.4HX2段1 78.8段2 212.9HX4(HGR) 50.2HX5(SPR) 93.3HX6 55.2HX7216.3HX843.3HX2的段1 78.8HXG1 243.2HXG2段1 73.0段2(用于蒸汽涡轮机2) 70.3HXG3段1(至HX2) 77.1段2(至HX7) 88.0HXG4(来自HXG1的冷侧) 56.4 56.4水力液体泵 0.3液态涡轮机 0.2Ranklne循环#1HX2(段2) 212.9HXG3 77.1机械功率 0.5 103.5来自蒸汽循环的废热 186.9合成气燃料的CPE 596.8Brayton循环#1涡轮机1 7.9空压机 64.6联合循环气体循环 109.3涡轮机2蒸汽循环2HXG2 70.3HXG4 56.4机械功率 0.2 45.3来自蒸汽循环的废热 81.7输入转换过程生物质(废木)输入PEC 473.0总能量平衡总能量 473.01008.3 65.5 596.8 1276.9 266.2排出的净废热 268.6需要的净输入能 0.0功率转换过程净电量 180.6总的可输出电量 180.6总的热力学转换效率38.2%
表5 用于生成费托链烃产物所优化的生物质转化,采用加大的输入水∶生物质=9∶1和绝热HGR(AHGR)输入能量率(MW) 输出能量率(MW)组成PCE 热 功 PCE 热功热交换器HX1 22.822.8HX2段149.0段2151.1HX3段156.4段224.8HX4 23.623.6HX5(SPR) 129.8HX6 32.832.8HX7 603.4 481.8HX8 15.9HX2的段1 49.0HX9(FTR) 37.437.3HX10 17.3HXG1 122.0HXG2 23.7HXG3段118.818.8段28.0水力液体泵 0.6涡轮机1 7.3涡轮机2 54.9涡轮机3 0.0Brayton循环涡轮机4 20.5 20.5涡轮机5 103.5 103.5涡轮机6 1.0 1.0压缩机 2.8空气压缩机 31.2冷凝器热 85.8涡轮机7和8 0.123.6来自蒸汽循环的废热 62.2化学转化过程所生产的合成链烃214.9所生产的合成柴油*输入转换过程生物质(废本)输入PCE473.0总能量平衡总能量 473.0 1106.9 34.7 214.91169.2 210.8排出的净废热 62.2需要的净输入能 0.0功率转换过程净电量 155.1总的可输出电量总的热力学转换效率注*假设所生产的合成链烃产物是50%的十六烷和50%的蜡蜡可以常规加工成十六烷,转化率为70%
表6 生物质转化方案优化实施研究的归纳原料输入速率 水/生物 每天有效 CPE功率CPE输入kg/hrMT/天质比 生产量MWch 百分数干燥废木837752011473.0 100.0%转化方案 版本10/12/01注所有的转化方案都不需要额外的能量或高能原料所有排出的废热都在40℃以下并且假设是不能回收的#在20℃,5.1atm下贮存DME为压缩液体,密度为668g/L,LHV为28.4MJ/kg
表7 生物质转化方案优化实施研究的归纳*原料 输入速率水/ 每天有效CPE率CPE输入kg/hr MT/天生物质比 生产量 MWch 百分数固体废木 83775 2011 473.0100.0%转化方案 版本 10/9/2001注意所有的转化方案都不需要额外的能量或高能原料所有排出的废热都在40℃以下并且假设是不能回收的# 在20℃,5.1atm下贮存的DME为压缩液体,密度为668g/L,LHV为28.4MJ/kg1 bbl的压缩液体DME具有106.2kg的质量和3.02GJ的LHV CPE+ 1 atm20K大约3.7MJ/kg能量的液化氢每天需要冷却的立方米数,液化氢具有144MJ/kg的HHV* 所有的热力学和热动力学模拟时间为10/1/200权利要求
1.一种生产用作气体燃料或用作引入费托反应器中生产液体燃料的原料的合成气的方法,其改进包括在产生富甲烷产物气的条件下,将含碳材料、来自内源的氢气和水引入加氢气化反应器中;在生成包含氢气和一氧化碳的合成气的条件下,将来自加氢气化反应器的富甲烷产物气引入蒸汽热解重整装置;将蒸汽热解重整装置产生的一部分氢气作为所述的来自内源的氢气引入加氢气化反应器;和将蒸汽热解重整装置产生的所述合成气用于工艺热或作为发动机燃料以发电,或者在制备液体燃料的条件下将所述合成气引入费托反应器。
2.权利要求1所述的方法,其中所述蒸汽热解重整装置产生的所述部分氢气是通过氢气纯化过滤器获得的。
3.权利要求1所述的方法,其中在加氢气化反应器中的所述条件和所述含碳材料、氢气和水的相对量是使得在放热下生产所述富甲烷产物气。
4.权利要求3所述的方法,其中产生富甲烷产物气的条件包括超级大气压(super-atmospheric pressure)。
5.权利要求1所述的方法,其中含碳材料作为在水中的含碳颗粒浆料引入加氢气化反应器。
6.权利要求5所述的方法,其中所述浆料是通过在水中研磨所述含碳材料而形成的。
7.权利要求5所述的方法,其中所述含碳材料的浆料在引入加氢气化反应器之前用来自蒸汽发生器的过热蒸汽加热。
8.权利要求7所述的方法,其中在浆料输入加氢气化反应器之前,将所述过热蒸汽从浆料中分离出来,并引入蒸汽热解重整装置中与来自加氢气化反应器的富甲烷产物气进行反应。
9.权利要求7所述的方法,其中所述浆料和过热蒸汽一起输入加氢气化反应器中。
10.权利要求9所述的方法,其中在制备液体燃料的条件下,将由蒸汽热解重整装置产生的合成气引入费托反应器中。
11.权利要求10所述的方法,其中在费托反应器中的所述条件以及氢气和一氧化碳的相对含量是使得在放热下制备所述液体燃料。
12.权利要求11所述的方法,包括将来自加氢气化反应器和费托反应器之一或二者放出的热量传送至蒸汽发生器和蒸汽热解重整装置之一或二者。
13.权利要求11所述的方法,包括将加氢气化反应器和费托反应器放出的热量传送至蒸汽发生器和蒸汽热解重整装置。
14.权利要求13所述的方法,其中使用熔盐回路以传送所述放出的热量。
15.权利要求1所述的方法,其中所述含碳材料包含生物质。
16.权利要求15所述的方法,其中所述生物质包含城市固体废物。
17.权利要求10所述的方法,其中引入费托反应器的合成气中的氢气和一氧化碳的相对量是使得所述液体燃料基本上为十六烷。
18.一种用于从含碳材料制备液体燃料的基本自支持的方法,包括在水中研磨所述的含碳材料以制备含碳颗粒的浆料;用来自蒸汽发生器的过热蒸汽加热该浆料;在超级大气压下放热制备富甲烷产物气的用量和条件下,将来自内源的氢气、浆料和过热蒸汽引入加氢气化反应器;在生成包含氢气和一氧化碳的合成气的条件下,将来自加氢气化反应器的富甲烷产物气和所述过热蒸汽引入蒸汽热解重整装置;将由蒸汽热解重整装置生成的、通过氢气纯化过滤器得到的一部分氢气引入加氢气化反应器,该氢气构成所述来自内源的氢气;在放热生产液体燃料的条件下,将由蒸汽热解重整装置生成的余下的合成气引入费托反应器;和将由加氢气化反应器和费托反应器放出的热量传送至蒸汽发生器和蒸汽热解重整装置,借此所述方法为基本上自支持的。
19.权利要求18所述的方法,其中使用熔盐回路以传送所述放出的热量。
20.权利要求18所述的方法,其中所述含碳材料包含生物质。
21.权利要求18所述的方法,其中所述生物质包含城市固体废物。
22.生产用作气体燃料或作为引入费托反应器以制备液体燃料的合成气的装置,包括含碳材料源和水源;加氢气化反应器;和蒸汽热解重整装置;连接所述含碳材料和水的来源和加氢气化反应器的管线,该管线用于向加氢气化反应器中引入含碳材料和水以产生甲烷和一氧化碳;连接加氢气化反应器和蒸汽热解重整装置的管线,该管线用于将加氢气化反应器中产生的富甲烷产物气引入蒸汽热解重整装置以生成包含氢气和一氧化碳的合成气;以及连接蒸汽热解重整装置和加氢气化反应器的管线,该管线用于将由蒸汽热解重整装置生成的一部分氢气引入加氢气化反应器中。
23.权利要求22所述的装置,包括氢气纯化过滤器,通过所述过滤器获得所述由蒸汽热解重整装置生成的一部分氢气。
24.权利要求22所述的装置,包括形成含碳材料颗粒的研磨机,存放形成含碳颗粒浆料的颗粒和水的储器,和连接储器和加氢气化反应器的管线,该管线用于将浆料输入加氢气化反应器中。
25.权利要求24所述的装置,包括用于用过热蒸汽加热含碳材料浆料的蒸汽发生器,用于在浆料引入加氢气化反应器之前将过热蒸汽从浆料中分离出来的蒸汽分离器,以及用于将分离的蒸汽引入蒸汽热解重整装置以和来自加氢气化反应器的富甲烷产物气反应的管线。
26.权利要求24所述的装置,包括用于用过热蒸汽加热含碳材料浆料的蒸汽发生器,借此可将浆料和过热蒸汽引入加氢气化反应器。
27.权利要求26所述的装置,包括费托反应器和连接蒸汽热解重整装置和费托反应器的管线,该管线用于将蒸汽热解重整装置产生的余下的合成气输入费托反应器以制备液体燃料。
28.权利要求27所述的装置,包括用于将来自加氢气化反应器和费托反应器之一或二者的热量传送至蒸汽发生器和蒸汽热解重整装置之一或二者的熔盐回路。
29.权利要求27所述的装置,包括用于将来自加氢气化反应器和费托反应器的热量传送至蒸汽发生器和蒸汽热解重整装置的熔盐回路。
30.用于以基本自支持方法制备液体燃料的装置,包括含碳材料和水的来源;加氢气化反应器;蒸汽热解重整装置;氢气纯化过滤器;费托反应器;形成含碳材料颗粒的研磨机;存放所述颗粒和水以形成含碳颗粒浆料的储器;用于用过热蒸汽加热浆料和通过热裂解活化碳的蒸汽发生器;连接蒸汽发生器和加氢气化反应器的管线,该管线用于将浆料和过热蒸汽引入加氢气化反应器中以产生甲烷和一氧化碳;连接蒸汽热解重整装置和加氢气化反应器的管线,该管线用于将加氢气化反应器产生的富甲烷产物气引入蒸汽热解重整装置以形成包含氢气和一氧化碳的合成气;通过氢气纯化过滤器连接蒸汽热解重整装置和加氢气化反应器的管线,该管线用于将蒸汽热解重整装置生成的一部分氢气引入加氢气化反应器;和连接蒸汽热解重整装置和费托反应器的管线,该管线用于将蒸汽热解重整装置产生的余下的合成气引入费托反应器中以制备液体燃料。
31.权利要求30所述的装置,包括将来自加氢气化反应器和费托反应器之一或二者的热量传送至蒸汽发生器和蒸汽热解重整装置之一或二者的熔盐回路。
32.权利要求30所述的装置,包括将来自加氢气化反应器和费托反应器的热量传送至蒸汽发生器和蒸汽热解重整装置的熔盐回路。
全文摘要
一种生产合成气的方法和装置,其生产的合成气可用作气体燃料,或者作为原料输入费托反应器在基本自支持过程中得到液体燃料。将含碳材料颗粒在水中的浆液和来自内源的氢气输入加氢气化器中,在一定条件产生富甲烷产物气,然后输入蒸汽热解重整反应器,在一定条件下生成包含氢气和一氧化碳的合成气。产生于蒸汽热解重整装置的一部分氢气通过氢气纯化过滤器后作为内源氢气引入前述加氢气化器。蒸汽热解重整装置生成的余下的合成气还可作为燃料用于使用气体燃料的发动机以产生电和/或工艺热,或者输入费托反应器在一定条件下生产液体燃料。使用熔盐回路将加氢气化器和生产液体燃料时费托反应器产生的热量传送至蒸汽发生器和蒸汽热解重整装置。
文档编号C01B3/02GK1642851SQ03807372
公开日2005年7月20日 申请日期2003年2月4日 优先权日2002年2月5日
发明者约瑟夫·N·诺贝克, 科林·E·哈克特, 詹姆斯·E·休曼, 尤伊·Q·恩戈, 古文·T·特兰, 比尔格·伊尔马兹 申请人:加利福尼亚大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1