一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法与流程

文档序号:16724813发布日期:2019-01-25 16:47阅读:292来源:国知局
一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法与流程

本发明属于纳米多孔-碳气凝胶技术领域,具体涉及一种基于化学交联的高比表面积电导率石墨烯复合碳气凝胶的制备方法。



背景技术:

碳气凝胶是一种新型轻质纳米多孔无定形碳素材料,因其具有高比表面积、高孔隙率、高电导率、微结构可调等优点,得到了广泛关注和应用。高孔隙率、高比表面积及多级的孔道结构使得碳气凝胶表现出强的吸附能力,在催化剂载体、吸附剂等方面具有广泛的应用前景;高电导率、微结构可调、高比表面积等优点可作为储能器件尤其是锂离子电池或超电容器的理想点击材料。这些应用有利于解决当今社会的能源及环境问题,使得碳气凝胶自发现以来就成为研究热点。

目前,碳气凝胶的制备方法通常通过碳化处理酚醛类有机气凝胶得到的,一般采用间苯二酚和甲醛为原料,以碳酸钠为催化剂,经过加成缩聚得到间苯二酚-甲醛(RF)气凝胶,结合干燥和碳化工艺后,得到碳气凝胶,并通过再次活化方法制备高比表面积(>2000 m2·g-1)和高孔隙率碳气凝胶。但该制作过程工艺复杂,需要两次高温处理,操作风险大;此外,由于低密度有机RF气凝胶(<50 mg·cm-3)骨架结构纤细,力学性能差,在高温碳化过程中会发生严重的收缩坍塌情况,导致碳化后气凝胶密度大幅增加,因此很难获得同时具备低密度(<50 mg·cm-3)和高比表面积(>2000 m2·g-1)特性的碳气凝胶。本发明通过选用纳米填充材料来增强低密度RF气凝胶的纳米骨架强度,制备过程中通过特定配比来对气凝胶结构进行设计,并通过一次碳化的方法制备得到一种具有新型多级孔结构的低密度高比表面积碳气凝胶。

石墨烯是一种由碳原子以sp2杂化排列、紧密堆积而成的具有蜂窝晶格结构的二维纳米碳材料,因其具有力学性能突出、比表面积大、载流子迁移速率大及导电率高等物理特性,在过去几年中,已经成为了材料科学领域的一个研究热点。三维石墨烯或者石墨烯基气凝胶材料主要是将二维石墨烯材料通过自组装或与其他材料组装为三维网络结构来制备,是一种具有多种优异性能的多孔材料。目前,石墨烯主要是通过还原氧化石墨烯得到。氧化石墨烯的纳米层片上还有多种含氧官能团(例如羟基、羰基、羧基等)不仅能够增加片层的亲水性,实现其在水中稳定均匀地分散;还可以作为反应的活性位点,参与很多化学反应。故本发明利用氧化石墨烯纳米片上的含氧官能团,将氧化石墨烯作为交联剂,结合有机RF气凝胶微结构调控,通过溶胶-凝胶反应制备氧化石墨烯/RF有机气凝胶,最终通过一步碳化,得到低密度高比表面积石墨烯复合碳气凝胶。



技术实现要素:

本发明目的在于提供一种制备基于化学交联的高比表面积高电导率石墨复合碳气凝胶胶的制备方法。

本发明提出的一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其中:采用氧化石墨烯交联间苯二酚-甲醛(RF)得到石墨烯复合碳气凝胶,所述石墨烯复合碳气凝胶具有共价键交联形成的分级孔结构,密度为70.5 mg·cm-3 ~ 23.5 mg·cm-3,比表面积为2563m2·g-1 ~ 3214 m2·g-1,具有优良的电学、热学性能;具体步骤如下:

(1)采用超声振荡将氧化石墨烯分散于去离子水中,得到分散稳定的氧化石墨烯水溶液;控制氧化石墨烯水溶液的质量浓度为5~10 mg∙mL-1

(2)将间苯二酚、甲醛溶于步骤(1)得到的氧化石墨烯水溶液中,加入催化剂在室温条件下搅拌至完全溶解,得到混合溶液,缓慢滴加硝酸溶液,调节混合溶液的pH值为5.4~5.6,在室温条件下继续搅拌2小时,得到前驱体溶液;其中:间苯二酚与甲醛的摩尔比为1:2,氧化石墨烯与间苯二酚和甲醛总质量比为5:100~50:100,所述间苯二酚和催化剂的摩尔比为50:1;

(3)将步骤(2)得到的前驱体溶液置于85℃恒温箱中进行溶胶-凝胶反应5~7天,制备得到氧化石墨烯/RF有机湿凝胶;

(4)将步骤(3)得到的氧化石墨烯/RF有机湿凝胶在水浴条件下,加入到乙醇和乙酸组成的混合溶液中进行酸洗老化,再用无水乙醇进行溶剂替换,干燥制备得到氧化石墨烯/RF有机气凝胶,记作GO-RF-X;其中:乙醇:醋酸的体积比为7:3;

(5)将步骤(4)得到的氧化石墨烯/RF有机气凝胶进行高温碳化,得到石墨烯复合碳气凝胶,记作GNS/CAs-X。

本发明中,步骤(1)中,控制前驱体溶液中间苯二酚和甲醛的(间苯二酚+甲醛)总含量为2 wt%。

本发明中,步骤(2)中,所述催化剂为Na2CO3。

本发明中,步骤(4)中,将该有机湿凝胶放入乙醇和乙酸组成的混合溶液中在40-45℃水浴中酸洗老化,干燥采用CO2超临界干燥。

本发明中,步骤(5)中,所述高温碳化是将氧化石墨烯/RF有机气凝胶置于管式炉中,在氮气或氩气氛围下,在900~1100℃的碳化温度下保温1~3小时。

利用本发明制备方法得到的石墨烯复合碳气凝胶作为高温隔热保温材料、吸附材料、超级电容器或锂离子电池的电极材料的应用。

本发明中,所述的氧化石墨烯是由Hummers方法制备得到。

本发明的有益效果在于:本发明基于溶胶-凝胶方法,将氧化石墨烯作为增强凝胶骨架的力学改性材料和交联剂,结合有机RF气凝胶微结构调控,控制前驱体溶液中反应物的量和pH值,制备了三维网络骨架增强的低密度氧化石墨烯/RF有机气凝胶,显著抑制了碳化中气凝胶骨架坍塌和收缩,得到低密度高比表面积石墨烯复合碳气凝胶。打破了传统高比表面积碳气凝胶的活化工艺过程,降低了成本,简化了工艺。制备的石墨烯复合碳气凝胶密度为70.5 mg·cm-3 ~ 23.5 mg·cm-3,比表面积为2563m2·g-1 ~ 3214 m2·g-1,同时具有优良的电学(电导率高达2.25 S·cm-1)和热学性能,在高温隔热保温材料、吸附材料及超级电容器或锂离子电池的电极材料等领域具有广阔的应用前景。

附图说明

图1是本发明中氧化石墨烯、石墨烯、石墨烯复合碳气凝胶的拉曼光谱图。

图2是本发明中不同GO含量的石墨烯复合碳气凝胶的扫描电镜图。

图3是本发明中不同GO含量的石墨烯复合碳气凝胶碳化前后的N2吸脱附曲线和对应的孔径分布曲线。

图4是本发明中石墨烯复合碳气凝胶电导率与GO含量的关系。

具体实施方式

下面结合具体实施案例,进一步阐明本发明,应记住,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

取4.32mL的所超声分散好的5mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-5.

获得样品的密度为70.5 mg·cm-3,BET比表面积为2563m2·g-1,其的形貌图如图2(a)所示,图3(a)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。

实施例2

取8.11mL的所超声分散好的8mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-15.

获得样品的密度为49.2 mg·cm-3,BET比表面积为2988m2·g-1,室温电导率1.54Ω-1·cm-1为其的形貌图如图2(b)所示,图3(b)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。

实施例3

取10.82mL的所超声分散好的10mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-25.

获得样品的密度为23.5 mg·cm-3,BET比表面积为3214m2·g-1,室温电导率2.25Ω-1·cm-1为其的形貌图如图2(c)所示,图3(c)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。

实施例4

取21.64mL的所超声分散好的10mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-50.

获得样品的密度为37.5 mg·cm-3,BET比表面积为3025m2·g-1,室温电导率1.65Ω-1·cm-1为其的形貌图如图2(d)所示,图3(d)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。

由石墨烯复合碳气凝胶的拉曼和性能测试结果分析可知,在溶胶-凝胶反应中,氧化石墨烯与间苯二酚-甲醛纳米团簇发生了交联反应,增强了气凝胶三维网络骨架,在高温碳化过程中,抑制了碳气凝的孔洞坍塌和体积收缩,同时氧化石墨烯被还原为石墨烯与碳气凝胶骨架颗粒之间形成了以碳-碳化学键为连接的三维网络结构。制备的石墨烯复合碳气凝胶具有较低的密度,形貌优良,其孔径分布主要集中在0.7nm和大于100nm之间,是典型的微孔-大孔型材料。当氧化石墨与间苯二酚、甲醛总质量比分别为25:100和50:100时,其密度分别为23.5 mg·cm-3和37.5 mg·cm-3,其比表面积分别为3214m2·g-1和3025m2·g-1,得到低密度高比表面积碳气凝胶,同时具有优良的电学(电导率高达2.25 S·cm-1)和热学性能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1