一种高吸附性能的陶瓷组合物及其制备方法与流程

文档序号:11270499阅读:260来源:国知局

本发明涉及复合陶瓷材料技术领域,尤其涉及一种高吸附性能的陶瓷组合物及其制备方法。



背景技术:

电气石是以含硼为特征的铝、铁、钠、镁、锂的环状结构硅酸盐矿物,呈黑色或灰黑色,粗针状、束状或放射状结构。电气石具有特殊的热电性和压电性,有很高的远红外辐射和负离子释放能力,并含有多种对人体健康有益的微量元素,广泛应用在饮用水活性化、空气净化、污水处理、陶瓷、建材、日用化工、电子、纺织、保健用品、美容化妆品等领域。

竹炭具有丰富的蜂窝状微孔结构,这种微孔结构使竹炭具有庞大的比表面积,呈现异常优异的吸附能力,有吸附、过滤、抑菌、蓄热、调湿作用。竹炭含有人体需要的钙、钾、钠、镁等矿物质,还有电磁屏蔽、辐射远红外线、产生负离子、增加水质碱性等特殊功效,可用于吸潮除臭、消毒杀菌、改善居住环境。

石墨烯是一种由碳原子构成的单层片状结构的新材料,是目前世上最薄却最坚硬的纳米材料,具有独特的物理化学性质。石墨烯与有机污染物之间可形成非常强的络合能力,从而对有机污染物有很强的吸附能力。

半导体二氧化钛的光化学性能已使其可用于许多领域,如空气、水和流体的净化。以碳或其他杂原子掺杂的光催化剂也可用于具有散射光源的密封空间或区域。用于建筑、人行石板、混凝土墙或屋顶瓦上的涂料中时,它们可以明显增加对空气中污染物如氮氧化物、芳烃和醛类的分解。二氧化钛可制作成光催化剂,净化空气,消除车辆排放物中25%到45%的氮氧化物,可用于治理pm2.5悬浮颗粒物过高的空气污染。

电气石、石墨烯、二氧化钛和竹炭具有独特的吸附性能和环境净化功能,将其组合制成复合陶瓷材料,使它既有一定的机械强度又有良好的吸附性能和环境净化功能,可以广泛应用在炊具、餐具、茶具、食物容器、装饰工艺品和建筑装饰材料等领域,能够极大地提高了陶瓷行业产品的科技含量和经济价值。

经查询,目前在国内外已经有企业利用竹炭为添加材料制造各种竹炭陶瓷材料,但是在原料配方和制造工艺方面还有一定的局限性,影响了应用的效果。例如:专利“竹基远红外复合材料及其制造方法”(公开号cn101333106a),权利要求书提出原料配比为竹炭50-95%;电气石0.5-30%;粘土1-10%;麦饭石0.5-20%;烧制工艺为氮气保护500-2000℃,1-5小时。专利“竹炭-电气石远红外复合材料及其制造方法”(公开号cn101486561a),权利要求书提出原料配比为竹炭40-50%;电气石40-60%;烧制工艺为电气石在500-700℃煅烧1-3小时,在真空环境下850-1000℃,1-5小时。专利“一种竹炭符合吸附剂及其制备方法”(公开号cn101632916a),权利要求书提出原料配比为竹炭20-90份;负离子矿物材料1-50份,硅藻土2-25份,粘接剂5-30份;烧制工艺为密封100-1300℃,1-2小时。专利“一种竹炭紫砂珠的制作方法”(公开号cn101311137a),权利要求书提出原料配比为竹炭10-30%;紫砂泥60-80%,原矿土10%;烧制工艺为1000-1180℃。专利“竹炭保健陶瓷砖的制造方法”(公开号cn101696117a),权利要求书提出原料配比为竹炭1份,陶瓷土1-3份;烧制工艺为坯体700-1250℃,冷却后上釉制品700-1250℃。专利“一种高吸附性能的电气石竹炭陶瓷及制备方法”(公开号cn103496945a)公开了一种以高温微晶竹炭粉、电气石晶体微粒为主要原料,粘土为辅料,经混合、成型、干燥和煅烧工艺制得,各组份的重量百分比为:竹炭粉10%-80%,电气石晶体微粒10-80%,粘土10-80%。

但是,这些专利公开的陶瓷组合物,其吸附性能还有待提高,缩小了其应用领域。



技术实现要素:

本发明的目的是为克服现有技术的不足,提供一种高吸附性能的陶瓷组合物及其制备方法,所述陶瓷组合物对于空气中的污染物具有良好的吸附性能,能够有效地净化空气。

所述高吸附性能是指24小时对空气中游离甲醛、苯、氨和tvoc的吸附率大于95%。

为达到此发明目的,本发明采用以下技术方案:

一种高吸附性能的陶瓷组合物,按重量份数由如下原料制备得到:

竹炭粉1-8份,如2份、3份、4份、5份、6份或7份等;

二氧化钛10-15份,如11份、12份、13份、14份或14.5份等;

硼酸锌1-5份,如2份、3份、4份或4.5份等;

电气石晶体微粒1-5份,如2份、3份、4份或4.5份等;

粘土40-60份,如42份、45份、48份、50份、52份、53份、55份、58份或59份等。

本发明提供的陶瓷组合物中硼酸锌和二氧化钛的组合促进了竹炭粉、粘土及电气石晶体微粒对空气中污染物的吸附,显著提高了该陶瓷组合物对空气净化的能力。

作为优选的技术方案,本发明提供了一种高吸附性能的陶瓷组合物,按重量份数由如下原料制备得到:

所述的高温微晶竹炭粉为由竹炭经1200℃以上高温烧制,如1250℃、1300℃、1350℃、1380℃、1400℃或1450℃等,改变了微晶体的排列,形成的结晶化竹炭粉。

竹炭粉平均粒径为30μm-100μm,如40μm、50μm、60μm、70μm、80μm或90μm。

所述硼酸锌的粒径为100-200μm,如100μm、120μm、150μm、180μm或190μm等。

所述的电气石材料为高纯电气石原矿,电气石结晶度≥95%,如96%、97%、98%或99%等,动态负离子数值≥500ions(离子)/cm3,如520ions/cm3、530ions/cm3、550ions/cm3、580ions/cm3、600ions/cm3、700ions/cm3、800ions/cm3或900ions/cm3等,波长4μm-14μm的远红外线辐射率≥90%,如91%、92%、93%、94%、95%、96%、97%或98%等。

电气石粉平均粒径为10μm-50μm,如15μm、20μm、25μm、30μm、40μm或45μm。

所述的粘土可选自:高岭土、膨润土、漂白土或普通粘土中的任一种或至少两种的混合物,典型但非限制性的组合如:高岭土与膨润土,膨润土与漂白土,膨润土、漂白土与普通粘土,优选为质量比为1-5:1的高岭土与膨润土的组合物,如质量比为1.5:1、2:1、2.5:1、3:1、3.5:1、4:1或4.5:1等。

所述的二氧化钛粒径为0.5μm-20μm,如1μm、5μm、8μm、10μm、15μm或18μm。

二氧化钛半导体材料由于其自身的许多优良品质目前被广泛应用于光催化领域,其能够利用太阳光中紫外光的照射将有毒有害的物质分解,并且由于其自身具有润湿性,可以达到自我清洁的目的。

上述高吸附性能的陶瓷组合物的制备方法,包括如下步骤:

(1)将竹炭粉、二氧化钛、硼酸锌、电气石晶体微粒和粘土按比例搅拌混合,研磨成泥料;

(2)将泥料置于真空炼泥机中炼泥两次以上,再放置24小时以上(如25h、26h、28h、30h、32h、36h或48h等)自然陈腐;

(3)将经过自然陈腐的泥料放入成型设备造型,得到成型坯料;

(4)将成型坯料自然风干,或置于烘箱在80-100℃的温度条件下烘干,如在82℃、83℃、84℃、85℃、88℃、92℃、95℃或98℃等;

(5)将干燥的坯料置于窑炉中,在还原气氛缓慢升温至600-800℃煅烧(如620℃、650℃、680℃、700℃、720℃、730℃、750℃或780℃等),保温30-50分钟(如32分钟、35分钟、38分钟、40分钟、42分钟、45分钟或48分钟等);

(6)将上述煅烧物自然冷却至室温,制得电气石竹炭陶瓷。

与现有技术相比,本发明的有益效果为:

1、本发明的陶瓷组合物对甲醛、苯酚、二氧化硫、tvoc以及其他有害物质的吸附率强(吸附率为95%以上),能够有效的净化空气;

2、本发明的陶瓷组合物具有自清洁的功能;

3、本发明的陶瓷组合物其烧成收缩率低,抗折强度大;

4、本发明的陶瓷组合物结晶化竹炭微粒镶嵌在陶土基体中,保留原有竹炭材料以中孔为主的孔隙结构和类石墨化晶体结构。

具体实施方式

实施例1:

按重量百分比配置原料:

本实施方式使用的结晶化竹炭粉经1200℃高温烧制,竹炭粉平均粒径为30μm。使用的电气石粉为高纯电气石原矿晶体,电气石结晶度≥95%,动态负离子数值≥500ions/cm3、波长4μm-14μm的远红外线辐射率≥90%。电气石粉平均粒径为50μm。所述硼酸锌的粒径为100μm。二氧化钛粒径为20μm。

其制备方法包括如下步骤:

(1)将竹炭粉、二氧化钛、硼酸锌、电气石晶体微粒和粘土按比例搅拌混合,研磨成泥料;

(2)将泥料置于真空炼泥机中炼泥两次以上,再放置24小时自然陈腐;

(3)将经过自然陈腐的泥料放入成型设备造型,得到成型坯料;

(4)将成型坯料自然风干,或置于烘箱在100℃的温度条件下烘干;

(5)将干燥的坯料置于窑炉中,在还原气氛缓慢升温至600℃煅烧,保温50分钟;

(6)将上述煅烧物自然冷却至室温,制得陶瓷。

实施例2:

按重量百分比配置原料:

本实施方式使用的结晶化竹炭粉经1250℃高温烧制,竹炭粉平均粒径为100μm。使用的电气石粉为高纯电气石原矿晶体,电气石结晶度≥95%,动态负离子数值≥500ions/cm3、波长4μm-14μm的远红外线辐射率≥90%。电气石粉平均粒径为10μm。所述硼酸锌的粒径为200μm。二氧化钛粒径为0.5μm。

其制备方法包括如下步骤:

(1)将竹炭粉、二氧化钛、硼酸锌、电气石晶体微粒和粘土按比例搅拌混合,研磨成泥料;

(2)将泥料置于真空炼泥机中炼泥两次以上,再放置30小时自然陈腐;

(3)将经过自然陈腐的泥料放入成型设备造型,得到成型坯料;

(4)将成型坯料自然风干,或置于烘箱在80℃的温度条件下烘干;

(5)将干燥的坯料置于窑炉中,在还原气氛缓慢升温至800℃煅烧,保温30分钟;

(6)将上述煅烧物自然冷却至室温,制得陶瓷。

实施例3:

按重量百分比配置原料:

本实施方式使用的结晶化竹炭粉经1300℃高温烧制,竹炭粉平均粒径为50μm。使用的电气石粉为高纯电气石原矿晶体,电气石结晶度≥95%,动态负离子数值≥500ions/cm3、波长4μm-14μm的远红外线辐射率≥90%。电气石粉平均粒径为20μm。所述硼酸锌的粒径为130μm。二氧化钛粒径为15μm。

其制备方法包括如下步骤:

(1)将竹炭粉、二氧化钛、硼酸锌、电气石晶体微粒和粘土按比例搅拌混合,研磨成泥料;

(2)将泥料置于真空炼泥机中炼泥两次以上,再放置36小时自然陈腐;

(3)将经过自然陈腐的泥料放入成型设备造型,得到成型坯料;

(4)将成型坯料自然风干,或置于烘箱在85℃的温度条件下烘干;

(5)将干燥的坯料置于窑炉中,在还原气氛缓慢升温至700℃煅烧,保温35分钟;

(6)将上述煅烧物自然冷却至室温,制得陶瓷。

实施例4:

按重量百分比配置原料:

本实施方式使用的结晶化竹炭粉经1400℃高温烧制,竹炭粉平均粒径为70μm。使用的电气石粉为高纯电气石原矿晶体,电气石结晶度≥95%,动态负离子数值≥500ions/cm3、波长4μm-14μm的远红外线辐射率≥90%。电气石粉平均粒径为30μm。所述硼酸锌的粒径为120μm。二氧化钛粒径为5μm。

其制备方法包括如下步骤:

(1)将竹炭粉、二氧化钛、硼酸锌、电气石晶体微粒和粘土按比例搅拌混合,研磨成泥料;

(2)将泥料置于真空炼泥机中炼泥两次以上,再放置24小时自然陈腐;

(3)将经过自然陈腐的泥料放入成型设备造型,得到成型坯料;

(4)将成型坯料自然风干,或置于烘箱在90℃的温度条件下烘干;

(5)将干燥的坯料置于窑炉中,在还原气氛缓慢升温至650℃煅烧,保温45分钟;

(6)将上述煅烧物自然冷却至室温,制得陶瓷。

实施例5

除所述粘土为质量比为1:1的高岭土与膨润土的组合物外,其余与实施例4相同。

实施例6

除所述粘土为质量比为5:1的高岭土与膨润土的组合物外,其余与实施例4相同。

实施例7

除所述粘土为质量比为3:1的高岭土与膨润土的组合物外,其余与实施例4相同。

对比例1

一种陶瓷组合物,除不含有二氧化钛和硼酸锌外,其余与实施例4相同。

对比例2

一种陶瓷组合物,除不含有二氧化钛外,其余与实施例4相同。

对比例3

一种陶瓷组合物,除不含有硼酸锌外,其余与实施例4相同。

吸附试验:

在刚装修完的房间中测试实施例1-7及对比例1-3所得陶瓷对空气中有害污染物的吸附性能:相同质量(5mg)的每种陶瓷组合物放入相同容积(1l)的带盖的瓶子中,间隔24h后,测试瓶子中气体中有害物质的含量,其中,房间中污染物的含量见表1:

表1

测试结果如表2所示:

表2

经过对比前后测得的空气里有害物质的含量,说明本发明的陶瓷组合物具有更强的污染物吸附能力。

申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1