一种Co-Ti-Ta基介质陶瓷材料及其制备方法与流程

文档序号:17132102发布日期:2019-03-16 01:25阅读:222来源:国知局
一种Co-Ti-Ta基介质陶瓷材料及其制备方法与流程

本发明属于电子陶瓷及其制造领域,具体涉及一种co-ti-ta基介质陶瓷材料及其制备方法,材料结构为trirutile相。



背景技术:

随着电子通信的高速发展,微波通信(主要是uhf、shf频段,300mhz~300ghz)在现代通信传输领域的重要性逐渐显著,在移动、广播电视、卫星通信以及军用雷达等领域取得了广泛的发展。因此对微波设备诸如谐振器、滤波器、介质天线、介质导波回路等微波元器件的需求也日益增加。由于金属谐振腔和金属波导体积和重量过大限制了微波集成电路的发展,而微波介质陶瓷制作的谐振器与微波管、微带线等构成的微波混合集成电路,可使器件尺寸达到毫米量级,这就使微波陶瓷成为实现微波控制功能的基础和关键材料。微波介质陶瓷应具有适中的介电常数,高的品质因数q×f值和低的损耗。

trirutile相微波介质陶瓷cota2o6具有适中的介电常数:εr=29、q×f=2300ghz、τf=23ppm/℃。但其烧结致密化所需温度达到1500℃,极大的限制了其应用。



技术实现要素:

针对上述存在问题或不足,为解决现有trirutile相微波介质陶瓷烧结温度以及参数性能不佳的问题,本发明提供了一种co-ti-ta基介质陶瓷材料及其制备方法。

本发明提供的co-ti-ta基介质陶瓷材料,为co0.5ti0.5tao4微波介质陶瓷材料,具有trirutile相晶体结构,预烧温度800℃-1100℃,烧结温度1000-1100℃相对较低,介电常数适中(36-41),损耗低至4.3×10-4。其原料组成为co2o3,tio2,ta2o5,化学通式co0.5ti0.5tao4,通过固相法制得。

其制备方法具体如下:

步骤1:将氧化钴(co2o3)、二氧化钛(tio2)和氧化钽(ta2o5)的原始粉末按照化学通式co0.5ti0.5tao4配料。

步骤2:将步骤1所得配料同氧化锆球和去离子水,以质量比1:4-6:3-6配比,行星球磨6-8小时,然后在80℃-120℃下烘干,再以60-200目筛网过筛,最后在800℃-1100℃大气氛围中预烧3-5小时合成主晶相co0.5ti0.5tao4;

步骤3:将步骤2所得粉料按照粉料:氧化锆球:去离子水质量比1:3-5:2-4,行星球磨混合4-6小时,然后在80℃-100℃下烘干,烘干后添加质量百分比2~5%的pva溶液作为粘结剂造粒,然后压制成型,最后在1000℃-1100℃大气气氛中烧结4-6小时,制成co0.5ti0.5tao4微波介质陶瓷材料。

本发明对cota2o6从原料上引入tio2,考虑ti4+离子与co2+及ta5+离子具有相近的离子半径,从而使得晶体结构上,ti4+离子能够进入格点位置,形成固溶体。利用该固溶体的形成温度较低(预烧温度为800℃即可形成晶相结构),并且由于ti4+离子的引入,改变了该固溶体系的摩尔体积与离子极化率,结合克劳修斯-莫索蒂方程,最终制备的材料介电常数高于cota2o6陶瓷,且烧结温度1000-1100℃远低于cota2o6陶瓷的1500℃。

附图说明

图1为实施例1-5的xrd图;

图2a为实施例1的表面形貌sem图,图2b为实施例3的表面形貌sem图,图2c为实施例4的表面形貌sem图,图2d为实施例5的表面形貌sem图。

具体实施方式

下面结合附图和实施例对本发明做进一步的详细说明。

步骤1、将co2o3、tio2和ta2o5的原始粉末按照化学通式co0.5ti0.5tao4配料。

步骤2、将步骤1所得粉料,按照粉料:氧化锆球:去离子水的质量比1:4:3加入尼龙罐中,行星球磨混合6小时,取出后在100℃下烘干,以200目筛网过筛,后在1000℃大气氛围中预烧4小时合成主晶相co0.5ti0.5tao4。

步骤3、将步骤2预烧后所得的粉料按照粉料:氧化锆球:去离子水的质量比1:5:1加入尼龙罐中,行星球磨混合4小时,取出后在100℃下烘干,烘干后添加质量百分比为4%的pva溶液作为粘结剂造粒,压制成型,最后在1000-1100℃大气气氛中烧结6小时,制成微波介质陶瓷材料。

图1为实施例1-5所取烧结温度(1000、1025、1050、1075、1100)的xrd图,其中si峰作为内标法校准实验及仪器误差。在不同的烧结温度下,样品的衍射峰与trirutile相cota2o6卡片(jcpds#32-0314)匹配,说明此时形成了trirutile相固溶体co0.5ti0.5tao4。但实际衍射峰峰位存在右移现象。依据布拉格衍射定律,峰位右移是由于晶胞体积变小导致。相较cota2o6而言,co0.5ti0.5tao4相中ti4+离子在相同配位数下离子半径小于co2+及ta5+离子,因此晶胞体积将会降低,故衍射峰右移。

图2(a)至(d)依次对应实施例1、3、4、5的表面形貌sem图。明显地,随着烧结温度的升高,样品微观气孔减少,致密度提高,并且晶粒尺寸从1.42增加至10.86μm。

实施例的成分和微波介电性能如下

从上表可以看出,1号实施例损耗较大,介电较低,且收缩较小,结合sem形貌图看出此时样品并未完全烧结致密。随着烧结温度的进一步提升,从2-4号实施例可以看出样品此时收缩明显,并且介电常数和品质因数均有明显提高,结合sem图可以说明此时样品逐渐变得致密。但当烧结温度进一步提高时(实施例5),可以看出收缩将变小,介电常数及品质因数均有不同程度的降低,从sem图中晶粒尺寸的异常生长说明样品此时已经过烧,过高的烧结温度将不利于样品的性能发展。

综上可见,本发明提供的co-ti-ta基介质陶瓷材料,具有较低的烧结温度,适中的介电常数以及较低的介质损耗,性能参数佳;且其制备方法工艺简单,易于工业化生产。



技术特征:

技术总结
本发明属于电子陶瓷及其制造领域,具体涉及一种Co‑Ti‑Ta基介质陶瓷材料及其制备方法。本发明提供的Co‑Ti‑Ta基介质陶瓷材料,为Co0.5Ti0.5TaO4微波介质陶瓷材料,具有Trirutile相晶体结构,预烧温度800℃‑1100℃,烧结温度1000‑1100℃相对较低,介电常数适中(36‑41),损耗低至4.3×10‑4。其原料组成为Co2O3,TiO2,Ta2O5,化学通式Co0.5Ti0.5TaO4,通过固相法制得。本发明的材料介电常数高,烧结温度低,且其制备方法简单,易于工业化生产。

技术研发人员:李恩竹;杨鸿宇;杨鸿程;陈亚伟;钟朝位;张树人
受保护的技术使用者:电子科技大学
技术研发日:2018.12.14
技术公布日:2019.03.15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1