荧光陶瓷及其制备方法、发光装置以及投影装置与流程

文档序号:25420208发布日期:2021-06-11 21:31阅读:192来源:国知局
荧光陶瓷及其制备方法、发光装置以及投影装置与流程

本申请涉及荧光陶瓷领域,特别是涉及一种荧光陶瓷及其制备方法、发光装置以及投影装置。



背景技术:

yag荧光陶瓷有别于yag的纯相陶瓷,通过在yag中掺杂铈等镧系元素,使得微量的该元素取代部分钇的位置,从而使yag荧光陶瓷获得发光性能,能够将入射光转换为波长更长的光。

本申请的发明人在长期的研发过程中,发现对于荧光陶瓷而言,如何提高其发光效率至关重要。荧光陶瓷中纯相陶瓷由于其自身结构原因,难以对激发光源有较高的利用率;在荧光陶瓷受激发时,其发光中心相对较少而导致其发光效率较差。

因此,亟需发明一种新型荧光陶瓷,来提升目前透明荧光陶瓷的发光效率。



技术实现要素:

本申请提供一种荧光陶瓷及其制备方法、发光装置以及投影装置,能够提高荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

一方面,本申请提供了一种荧光陶瓷,荧光陶瓷至少包括:基质;分布于基质内的发光中心、第一散射单元以及第二散射单元;第一散射单元的折射率大于发光中心的折射率;第二散射单元的折射率小于发光中心的折射率。

另一方面,本申请提供了一种荧光陶瓷的制备方法,制备方法包括:按照预定比例配制荧光陶瓷的基质材料、散射材料以及荧光粉颗粒,其中,散射材料至少包括造孔剂以及第一散射颗粒、第二散射颗粒;将基质材料以及散射材料在第一溶剂中混合球磨,得到第一球磨浆料;将荧光粉颗粒在第二溶剂中混合球磨,得到第二球磨浆料;分别对第一球磨浆料和第二球磨浆料进行干燥,干燥后进行研磨过筛得到第一粉体和第二粉体;混合第一粉体和第二粉体,对混合后的粉体进行压制,得到预成型件;将预成型件进行高温排胶处理,得到素坯;将素坯进行冷等静压处理;对冷等静压处理后的素坯进行高温烧结处理,抛光后,得到荧光陶瓷。

又一方面,本申请提供了一种发光装置,包括激发光源和前述的荧光陶瓷,激发光源为入射激光光源。

再一方面,本申请提供了一种投影装置,包括如前述的发光装置。

本申请的有益效果是:区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率。由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能。

附图说明

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:

图1为本申请荧光陶瓷的一实施例的结构示意图;

图2为本申请荧光陶瓷的制备方法一实施例的流程示意图;

图3为实施例2所制备的荧光陶瓷的显微组织照片。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

请参阅图1,图1是本申请荧光陶瓷的一实施例的结构示意图,该荧光陶瓷至少包括:基质101、发光中心102、第一散射单元103以及第二散射单元104。发光中心102、第一散射单元103以及第二散射单元104分布于基质101内。

其中,基质101可以由陶瓷原料制备得到,陶瓷原料可以包括氧化铝、氮化铝、碳化硅、氮化硅、氧化锆中的一种,特点是折射率较低、导热效果好、透光性好,以耐受后续烧结时的温度。在其他实施例中,基质101可以为石榴石结构的立方晶系的透明陶瓷,发光中心102可以为石榴石结构的荧光粉,发光中心102和基质101同为石榴石结构时,能够优化荧光陶瓷的发光性能和机械性能。

优选的,基质101为氧化铝基质,发光中心102为荧光粉,其中,氧化铝属于三方晶系,存在双折射现象,所以氧化铝基质中存在着晶界双折射现象,入射激光在荧光陶瓷中会因晶界双折射而发生散射,被散射的入射激光能够激发其附近更多的发光中心,进而使得发光效率良好。

但是本申请的发明人在长期的研发过程中,发现由于氧化铝基质的折射率与荧光粉的折射率均为1.7-1.8,极为接近,导致荧光陶瓷对其内部的入射激光及荧光的折射或散射作用较弱,容易在陶瓷的横向方向上向四周传导,最终导致荧光陶瓷的荧光光斑较大,光斑扩散较大时,收集透镜的收集效率较低,影响光源系统中的光效利用率。

考虑到粒子散射能力取决于粒子的线度和相对折射率,本申请的发明人在氧化铝-荧光粉两相荧光陶瓷的基础上,在基质中分布有折射率与发光中心差异较大的至少第一散射单元和第二散射单元,且第一散射单元的折射率大于发光中心的折射率,第二散射单元的折射率小于发光中心的折射率。利用荧光陶瓷内第一散射单元、发光中心、第一散射单元的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),入射激光在各相界面处会发生的散射被强化。通过强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

进一步地,选用不同的发光中心102、第一散射单元103、第二散射单元104的材料时,第一散射单元103与发光中心102之间的折射率差值、第二散射单元104与发光中心102之间的折射率差值各不相同,具体不做限定。其中,第一散射单元103与发光中心102之间的折射率差值可达0.01~2.0,例如,0.01、0.4、0.6、0.8或2.0。第二散射单元104与发光中心102之间的折射率差值可达0.01~2.0,例如,0.01、0.4、0.6、0.8或2.0。

区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率。由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

在一实施例中,第一散射单元103为气孔或第一散射颗粒中的至少一种。

其中,上述气孔的折射率为1,气孔的粒径为0.2~2μm时,对激发光源的散射效果较佳。气孔的粒径可以为0.2μm、0.8μm、1.0μm或2.0μm。

需要说明的是,本实施例的气孔的粒径,在气孔为球形时,指气孔的直径;当气孔为非球形时,气孔的粒径为该气孔的最小外接球的直径。

为避免因气孔过多或过少影响荧光陶瓷额透光性,本实施例中气孔占荧光陶瓷的体积分数为0.01%~10%,例如0.01%、0.1%、1%、5%或10%。

在一实施例中,上述第一散射颗粒的折射率为1.2-3.5,例如1.2、1.7、2.1、2.5或3.5。第一散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。

其中,上述第一散射颗粒可以为二氧化钛、氧化锆、氧化钇、氟化钙或氟化镁中的至少一种。

进一步地,第二散射单元104为气孔或第二散射颗粒中的至少一种。

其中,气孔的折射率为1,气孔的粒径为0.2~2μm时,对激发光源的散射效果较佳。气孔的粒径可以为0.2μm、0.8μm、1.0μm或2.0μm。

需要说明的是,本实施例的气孔的粒径,在气孔为球形时,指气孔的直径;当气孔为非球形时,气孔的粒径为该气孔的最小外接球的直径。

为避免因气孔过多或过少影响荧光陶瓷额透光性,本实施例中气孔占荧光陶瓷的体积分数为0.01%~10%,例如0.01%、0.1%、1%、5%或10%。

在一实施例中,上述第二散射颗粒的折射率为1.2-2.5,例如1.2、1.4、1.6、1.8或2.5。第二散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。

其中,上述第二散射颗粒为氟化钙、氟化镁、氧化钇或氧化锆中的至少一种。

在一实施例中,为了进一步提高荧光陶瓷的散射效果,上述荧光陶瓷还包括:分布于基质101内的第三散射单元(图未示出),

其中,上述第三散射单元的折射率介于所述第一散射单元103与所述第二散射单元104之间。

进一步地,选用不同的发光中心102、第一散射单元103、第二散射单元104、第三散射单元的材料时,第一散射单元103与第三散射单元之间的折射率差值、第二散射单元104与第三散射单元之间的折射率差值、发光中心与第三散射单元之间的折射率差值各不相同,具体不做限定。其中,第三散射单元的折射率与第一散射单元103的折射率之间的绝对差值为0.6~1.5,例如,0.6、0.8、1.0或1.5。第三散射单元的折射率与第二散射单元104的折射率之间的绝对差值为0.6~1.5,例如,0.6、0.8、1.0或1.5。

具体地,第三散射单元为气孔或第三散射颗粒中的至少一种。上述第三散射颗粒的折射率为1.2-2.5,例如1.2、1.4、1.6、1.8或2.5。第三散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。

在一实施例中,上述发光中心102为粒径5μm~30μm的镧系元素掺杂的yag荧光粉颗粒,例如,5μm、10μm、20μm或30μm。掺杂量为1%~5%,例如,1%、2%、3%或5%。镧系元素掺杂的yag荧光粉颗粒占荧光陶瓷总质量的40%~50%,例如,40%、42%、45%或50%。

具体地,可以理解的是,荧光粉作为发光中心102,必须要有足够的量,才能保证荧光陶瓷发光强度。镧系元素掺杂的yag荧光粉颗粒占荧光陶瓷总质量的40%~50%时,由于具有大晶粒粒径的发光中心102,提高了发光效率,且没有杂相,晶界纯净,匀光性能好,能够满足入射激光等大功率光源的使用需求;同时,由于加入了散射颗粒,当入射激光照射到散射颗粒上时,激发光源被散射;激发光源被散射后,激发光在陶瓷中的光程变长,从而提升光转换效率。

基质101的材料为粒径0.05μm~1μm的氧化铝,例如,0.05μm、0.1μm、0.5μm或1.0μm。氧化铝占荧光陶瓷总质量的40%~60%,例如,40%、50%、55%或60%。

在一实施例中,镧系元素掺杂的yag荧光粉颗粒为ce或lu掺杂的yag荧光粉颗粒。

具体地,本实施例采用的制备方案在yag基质101中掺杂了百分比为1%~5%的ce,在其他实施方式中可以掺杂lu,使得yag基质101也可以发光,作为荧光陶瓷的发光补充。本实施例中,yag基质101做粘结介质粘结大晶粒粒径的yag荧光粉颗粒,进一步可以通过调节粘结介质中ce或lu的掺杂含量,可以在一定范围内实现荧光陶瓷的色坐标可调;yag基质101和大晶粒粒径的yag荧光粉颗粒中的掺杂含量不同,荧光光谱范围不同,二者相互补充,提高了受入射激光的显色性。并且在荧光陶瓷中均匀分布了高折射率的散射颗粒,当入射激光照射到散射颗粒上时,激发光源被散射;激发光源被散射后,激发光在陶瓷中的光程变长,从而提升光转换效率。

图2为本申请荧光陶瓷的制备方法一实施例的流程示意图。本申请还提供了一种荧光陶瓷的制备方法,制备方法包括:

s10:按照预定比例配制荧光陶瓷的基质材料、散射材料以及荧光粉颗粒。

具体地,基质材料可以选用纯度为99.0%,粒径0.05μm~1μm的氧化铝。荧光粉颗粒可以选用纯度为99.0%,粒径5μm~30μm的镧系元素掺杂的yag荧光粉颗粒。

其中,散射材料至少包括造孔剂以及第一散射颗粒、第二散射颗粒。

造孔剂为淀粉(粒径0.1μm~10μm,例如0.1μm、1μm、10μm)或者pmma微球(粒径0.1μm~10μm,例如0.1μm、1μm、10μm)。第一散射颗粒可以选用纯度为99.0%的二氧化钛、氧化锆、氧化钇、氟化钙或氟化镁中的至少一种。第二散射颗粒可以选用纯度为99.0%的氟化钙、氟化镁、氧化钇或氧化锆中的至少一种。

s20:将基质材料以及散射材料在第一溶剂中混合球磨,得到第一球磨浆料。

具体地,将基质材料以及散射材料按照预设配比混合,以第一溶剂作为液相介质,放入球磨罐中,进行球磨混料,球磨转速为120r/min~300r/min,球磨1h~4h后,得到第一球磨浆料。第一溶剂可以为包括苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、萜品醇、丁基卡必醇、pva、pvb、paa、peg中的一种或多种的混合体。

s30:将荧光粉颗粒在第二溶剂中混合球磨,得到第二球磨浆料。

具体地,以第一溶剂作为液相介质,将荧光粉颗粒放入球磨罐中,进行球磨混料,球磨转速为120r/min~300r/min,球磨0.5h~4h后,得到第二球磨浆料。第二溶剂可以为包括苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、萜品醇、丁基卡必醇、pva、pvb、paa、peg中的一种或多种的混合体。

s40:分别对第一球磨浆料和第二球磨浆料进行干燥,干燥后进行研磨过筛得到第一粉体和第二粉体。

具体地,进行干燥前,可以对第一球磨浆料和第二球磨浆料进行真空除泡,得到适用于流延成型的低气泡甚至无气泡第一球磨浆料和第二球磨浆料。将对第一球磨浆料和第二球磨浆料在真空恒温干燥得到干粉,将干粉在马弗炉中煅烧,除去干粉中的有机成分,然后将该粉末过筛造粒,得到第一粉体和第二粉体。

s50:混合第一粉体和第二粉体,对混合后的粉体进行压制,得到预成型件。

具体地,称取适量的第一粉体和第二粉体装入石墨模具,对混合后的粉体进行压制。压制的方法不特别限定,可使用常规的压制方法如冷等静压法等进行。压制的压力通常在5mpa~200mpa,优选15mpa~100mpa压力下。如果压力太小,会导致孔隙较多较大,影响最终烧结成品的致密度。

s60:将预成型件进行高温排胶处理,得到素坯。

具体地,将载有预成型件的坩埚放入马弗炉中靠近热电偶的位置,开始进行排胶过程。排胶工艺可为:以0.3℃/min~0.6℃/min的升温速率,升温至200℃保温0h~2h,排除坯体中的自由水、结晶水等水分。再以0.4℃/min~0.7℃/min的升温速率升温至500℃保温0h~3h,使坯体中的有机物分解挥发。再以0.4℃/min~0.7℃/min的升温速率升至致密化温度保温2h~6h,通过本过程,陶瓷坯体能够产生一定的强度,不至于坍塌。致密化温度一般低于该陶瓷烧结温度300℃~1000℃,避免原料粉末与陶瓷坯体发生烧结过程,为原料粉末的清除提供便利。冷却方式为炉冷,气氛为大气气氛。通过排胶工艺,不仅清除了坯体中的水分和有机物,还使坯体获得了均匀收缩、实现了一定的致密化,体积收缩为4%-30%,失重20%-50%。

s70:将素坯进行冷等静压处理。

具体地,在排胶结束后将荧光陶瓷素坯在150mpa~200mpa压力下进行冷等静压处理,以提高陶瓷素坯的致密度。

s80:对冷等静压处理后的素坯进行高温烧结处理,抛光后,得到荧光陶瓷。

将排胶干净的陶瓷坯体再次放入马弗炉中,在1℃/min~3℃/min的升温速率下升温至烧结温度,保温1h~12h,气氛为空气,再随炉冷却至室温,抛光后,得到荧光陶瓷。

经过热处理后得到的荧光陶瓷,还进一步包括对荧光陶瓷的还原处理步骤,该步骤在还原气氛下进行(如氮气/氢气混合气体),该还原处理在略低于热处理烧结温度下进行,还原温度为1200℃~1650℃。该还原处理过程可以将热处理步骤中附着在荧光陶瓷上的杂质去除,避免杂质成为荧光陶瓷在工作环境下的产热中心而影响荧光陶瓷的使用。

优选的,荧光陶瓷的基质可以为氧化铝基质,发光中心为荧光粉,由于氧化铝属于三方晶系,存在双折射现象,所以氧化铝基质的荧光陶瓷中存在着晶界双折射,入射激光在荧光陶瓷中会因晶界双折射而发生散射,被散射的入射激光能够激发其附近更多的发光中心,进而使得发光效率良好。

但是本申请的发明人在长期的研发过程中,发现由于氧化铝基质的折射率与荧光粉的折射率均为1.7-1.8,极为接近,导致荧光陶瓷对其内部的入射激光及荧光的折射或散射作用较弱,容易在陶瓷的横向方向上向四周传导,最终导致荧光陶瓷的荧光光斑较大,光斑扩散较大时,收集透镜的收集效率较低,影响光源系统中的光效利用率。

考虑到粒子散射能力取决于粒子的线度和相对折射率,本申请的发明人在氧化铝-荧光粉两相荧光陶瓷的基础上,在基质中分布有折射率与发光中心差异较大的至少第一散射单元和第二散射单元,且第一散射单元的折射率大于发光中心的折射率,第二散射单元的折射率小于发光中心的折射率。利用荧光陶瓷内第一散射单元、发光中心、第一散射单元的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),入射激光在各相界面处会发生的散射被强化。通过强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率,由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

下面进一步列举实施例以详细说明本申请。同样应理解,以下实施例只用于对本申请进行进一步说明,不能理解为对本申请保护范围的限制,本领域的技术人员根据本申请的上述内容作出的一些非本质的改进和调整均属于本申请的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

选取纯度为99.0%以上的氧化铝粉、氧化锆粉和氟化镁粉,按质量百分数,称取氧化铝粉99.0%、氧化锆粉0.5%和氟化镁粉0.5%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为24h,得到第一球磨浆料。

称取yag:ce荧光粉,其中,yag:ce荧光粉占荧光陶瓷的粉体总质量的50%,再用湿法球磨法,以pvb乙醇溶液为介质来研磨混合粉体原料,球磨时间为1h,得到第二球磨浆料。其中,pvb乙醇溶液中pvb的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指pvb的质量占由pvb和乙醇组成的溶液的总的百分比值。

在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。

将混合后的荧光陶瓷粉体在80mpa压力下压制成块体。然后将成型后的陶瓷素坯在马弗炉中排胶处理,其排胶工艺为500℃保温2h,900℃保温4h。在排胶结束后将荧光陶瓷素坯在200mpa压力下进行冷等静压处理,以提高陶瓷素坯的致密度。

将陶瓷素坯置于真空炉中,真空度为10-3pa,1650℃下烧结4h。待真空烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。

实施例2

选取纯度为99.9%以上的氧化铝粉,纯度为99%的氧化钛以及造孔剂,按质量百分数,称取氧化铝粉98.0%、氧化钛粉1.0%和造孔剂1.0%,以无水乙醇为介质来研磨混合粉体原料,球磨时间为24h,得到第一球磨浆料。

称取yag:ce荧光粉,其中,yag:ce荧光粉占荧光陶瓷的粉体总质量的40%,再用湿法球磨法,以pvb乙醇溶液为介质来研磨混合粉体原料,球磨时间为0.5h,得到第二球磨浆料。其中,pvb乙醇溶液中pvb的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指pvb的质量占由pvb和乙醇组成的溶液的总的百分比值。

在60℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。

将混合后的荧光陶瓷粉体在50mpa压力下压制成块体。然后将成型后的陶瓷素坯在马弗炉中排胶处理,其排胶工艺为600℃保温2h,1000℃保温6h。在排胶结束后将荧光陶瓷素坯在180mpa压力下进行冷等静压处理,以提高陶瓷素坯的致密度。

将陶瓷素坯置于真空炉中,真空度为10pa-3pa,1600℃下烧结4h。待真空烧结后,将荧光陶瓷在空气气氛下,1350℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。

请参见图3,图3为实施例2所制备的荧光陶瓷的显微组织照片。从图中可看出,在氧化铝陶瓷基质中除去均匀分散的荧光粉颗粒,还存在少量的低折射率相(气孔)和高折射率相(氧化钛)

实施例3

选取纯度在99.9%以上的氧化铝粉、氟化镁、氧化钛和氧化锆,按质量百分数,称取氧化铝粉99.0%、氟化镁0.30%、氧化钛0.30%和氧化锆0.40%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为36h,得到第一球磨浆料。

称取yag:ce荧光粉,其中,yag:ce荧光粉占荧光陶瓷的粉体总质量的60%,再用湿法球磨法,以pvb乙醇溶液为介质来研磨混合粉体原料,球磨时间为0.5h,得到第二球磨浆料。其中,pvb乙醇溶液中pvb的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指pvb的质量占由pvb和乙醇组成的溶液的总的百分比值。

在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。

将陶瓷粉体充填到石墨模具中,在5-20mpa压强下进行预压制处理,随后将石墨模具置于sps热压炉中,在真空/氩气气氛中,1200℃-1600℃下保温烧结0.5h-4h,烧结时压力在20mpa-150mpa。待热压烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。

对比例

选取纯度在99.9%以上的氧化铝粉和yag:ce荧光粉,按质量百分数,称取氧化铝粉50.0%、yag:ce荧光粉50.0%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为36h,得到浆料。

在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。

将陶瓷粉体充填到石墨模具中,在50mpa-20mpa压强下进行预压制处理,随后将石墨模具置于sps热压炉中,在真空/氩气气氛中,1200℃-1600℃下保温烧结0.5h-4h,烧结时压力在200mpa-150mpa。待热压烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。

实施例4

将实施例1、实施例2、实施例3所制得的荧光陶瓷以及未进行优化处理的荧光陶瓷(即对比例)加工成测试样品,置于测试平台中进行测试比较,所得测试结果如下表所示,表中光效特指蓝色入射激光光功率的转换效率。

由上表可以看出,由于实施例1-3在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且基质内第一散射单元、发光中心、第一散射单元的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

本申请还提供了一种发光装置,包括激发光源和上述荧光陶瓷,其中激发光源为入射激光光源,通过该激发光源照射荧光陶瓷,产生高亮度的光。该发光装置可以应用于投影、显示系统,例如液晶显示器(lcd,liquidcrystaldisplay)或数码光路处理器(dlp,digitallightprocessor)投影机;也可以应用于照明系统,例如汽车照明灯;也可以应用于3d显示技术领域中。在发光装置中,上述荧光陶瓷还可以制作成为可运动的装置,如色轮,使激发光源发出的激发光源入射到旋转运动的色轮上,从而产生受入射激光。

本申请还提供了一种投影装置,该投影设备可以是教育投影仪、入射激光电视、微投或者影院机等,该投影设备包括上述实施例的发光装置,该发光装置的具体结构参照上述实施例。

以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1