耐大电流镁电解用石墨阳极及其制备工艺的制作方法

文档序号:10605509阅读:522来源:国知局
耐大电流镁电解用石墨阳极及其制备工艺的制作方法
【专利摘要】本发明涉及一种耐大电流镁电解用石墨阳极,是将占干料重量比为93?99%的延迟煅后石油焦、占干料重量比为1?3%的石墨碎料、添加剂Fe2O3和硬脂酸、占总重量比为20?30%的中温改质沥青混捏后,进行压型、焙烧、浸渍和石墨化等步骤制备而成;原料中还含有占干料重量比为0.5?5%的碳纤维短切料。本发明在制备时采用的石墨化工艺中,电极侧面和炉体之间采用绝热填料,电极端面与炉体之间的间隙中采用端部填充料,实现减小电阻率,减少电弧,减少电极端面的麻点的作用。
【专利说明】
耐大电流镆电解用石墨阳极及其制备工艺
技术领域
[0001 ]本发明涉及一种石墨电极配方及其制造技术。【背景技术】
[0002]在氯化镁电解制备金属镁等技术中,需要用到石墨作为电解阳极。石墨阳极制造技术主要分五步:a、选原料,主要原料为石油焦、沥青、石墨碎料和硬脂酸;b、进行原料破碎、筛选分、配料、混捏、生坯成型;c、将生坯进行数次焙烧、浸渍,使其碳化、致密化;d、在石墨化炉中加热到3000°C以上,使碳全部转化为石墨;e、使用多功位数控机床等进行后期机械加工成为阳极电极料。
[0003]申请号为2011101258657的一种镁电解用石墨阳极及其制备方法,属于炭素材料制备技术领域。将不同粒级的延迟煅后石油焦颗粒、延迟石油焦粉料、石墨碎配成干料;将干料加入混捏锅,再加入添加剂氧化铁粉和硬脂酸,加入粘结剂中温煤沥青进行湿混制得糊料,再进行压型、焙烧、浸渍、石墨化工艺制备而成。该发明的制品力学强度、电导率等技术指标尚不够尚,石墨化时能耗$父大。申请号为2013103482694的一种纳米碳材料高温石墨化处理方法,按如下步骤:纳米碳材料装入石墨罐压实盖紧;石墨罐的上、下端各开一孔,下接真空栗,上接高压氩气瓶;将 0.2?0.4MPa的氩气注入石墨罐中,在真空栗作用下,纳米碳材料中的空气被抽出,由氩气填满,然后将氩气压力提高到卜2MPa,拔掉真空栗抽气管,1?2MPa氩气压力下保持30?60min, 拔掉氩气堵住两端气孔;将封装好的石墨罐放入艾奇逊石墨化炉中,石墨罐周围充满焦炭, 焦炭外围再用焦粉、炭黑及硅砂/焦炭/碳化硅混合物热屏蔽,对焦炭在炉体的长度方向通电升温至2800?3000 °C ;冷却到室温后取出。该发明电极的端面容易出现麻点。[〇〇〇4]艾奇逊石墨化炉于1895年发明并首先在美国取得专利。在其发展过程中,虽然做了很多改进,发生了很大变化,但仍遵循最初的原理,保持其固有的特点。以外加热的方式为主,构成导电炉芯的是作为制品的炭的坯料和作为电阻料的炭的颗粒料。虽然制品既是发热的电阻,也是被加热的对象,但相比之下电阻料的电阻要大得多,因此制品石墨化所需的热量主要靠电阻料的传热。制品的加热是先从表面开始再逐渐向内部渗入的,这种外加热的方式造成温度分布不均和产生热应力,一般炭制品的导热性都比较差,当炉温上升较快时,就可能产生明显的外热内冷的情况,出现裂纹废品。
【发明内容】

[0005]发明目的:克服传统石墨电极力学强度偏低、制备时耗电太多的缺点,提供一种力学强度高、电阻率低、石墨化时能耗少的耐大电流镁电解用石墨阳极及其制备工艺。
[0006]技术方案:本发明提供的耐大电流镁电解用石墨阳极,以下列重量比的成分作为原料进行混捏:占干料重量比为93-99%的粒度为〇-2mm的延迟锻后石油焦、占干料重量比为1-3%的石墨碎料、添加剂Fe2〇3和硬脂酸、占总重量比为20-30%的中温改质沥青;混捏后,依次进行压型、焙烧、浸渍和石墨化、机械加工步骤制备而成;焙烧和浸渍各为一次或者为反复进行2-3次(2 次或3次焙烧与浸渍重复进行,使其碳化程度、致密化程度进一步提高)。原料中还含有占干料重量比为0.5-5%的碳纤维短切料,制品内部含有碳/碳纤维复合材料结构,Fe2〇3占总重量比为0.44-0.6%、硬脂酸占总重量比为0.05-0.09%。碳纤维短切料能够提高电极的导电率, 提高抗折强度;增加混捏时的可塑性,提高坯料韧性,即使减少Fe2〇3和硬脂酸的含量也不降低成型可塑性能。
[0007]所述中温改质沥青的技术指标为:甲苯不溶物30%-33%、喹啉不溶物9-12%、结焦值 55-60%、灰分A<0.1%、软化点为95-99°C。这样的沥青指标能够提高沥青的粘性好、有利于压型、有利于提升体积密度和对粘结强度的改善。
[0008]本发明还提供了一种上述耐大电流镁电解用石墨阳极的制备工艺,具有下列工艺过程:(1)混捏步骤中,先将经过筛分后的延迟煅后石油焦和石墨碎料按配方要求加入混捏锅内搅拌均匀,约10-15分钟后同时加入碳纤维短切料和Fe2〇3继续干混,干混约20-30分钟后加入沥青进行混捏,在出混捏锅前15-20分钟再加入硬脂酸,最后所得糊料出混捏锅,出混捏锅时的温度为150-170°C。该原料添加顺序,保证干湿料充分融合,挤出时流动性较好, 而且碳纤维后加不会被揉碎降低力学强度。
[0009](2)压型步骤中,将混捏好的糊料加入凉料机进行冷却凉料,凉料时间为5-15分钟,凉料温度为100_130°C,接着下料至压机的料室内,进行预压抽真空和挤压成型;真空度多85%,挤压力40-80kg/cm2,挤速2-4分钟/支坯料。凉料工艺参数保证流动性较好的同时不产生挥发分解,保证成分合适的比例不变。挤压工艺参数与流动性能匹配,挤出的坯料成型性较好。
[0010](3)浸渍步骤中,将焙烧后的半成品在350-380 °C温度条件下预热10-12小时后,进入浸渍罐;接着,在真空度多98%的条件下加压注入沥青,加压压力为1.8-2.2MPa,加压保压时间为4-6小时,一次浸渍增重率为13-15%;或有二次焙烧和二次浸渍,二次浸渍增重率为 8-10%。二次浸渍增重率小于一次浸渍增重率,使得制品的结构更加密实,比重更大,形成的石墨导电率更好。
[0011](4)石墨化步骤中,优选将两只或者多只焙烧品首尾相连装入改进的(可同时串联装入两只或者多只阳极坯料后进行石墨化作业,或者可以再进行并联装入)的改装的LWG石墨化炉中,首尾相接的电极之间用柔性石墨环垫好,装完最后一支时,用导电调节块及活动导电电极共同压紧,测算并保持合适的顶推压力以方便导电。
[0012]装炉时,电极侧面和炉体之间的采用粒径大小基本不同的绝缘性较好的冶金焦作为绝热填料;电极端部与炉体之间的间隙中、相邻两个并联电极的端部之间采用端部填充料;端部填充料粒径大小基本均匀一致,粒径为l_5mm,稳定性好、干燥度高(水分含量〈 0.5%,灰分〈0.1%,很少释放气体,减少气孔和麻点)的导电性良好的冶金焦。以实现减小电阻率,便于电极导电,减少电弧,减少电极端面的麻点的作用。
[0013]装炉后将电极通电,主要依靠电极本身通电产生的电阻热加热电极,绝热填料主要起保温作用;而不是传统的艾奇逊石墨化炉主要依靠填料受热并传热给电极的加热方法,电极升温快,受热均匀,填料受热较少,浪费电能较少。由于石墨受热集中,无需外面的介质传热,石墨化处理的最高温度可以减低为3000-3190 °C,冷却时间可以缩短为240-264 小时(碳纤维的添加,使得电阻率降低的同时,提高阳极内在质量的均一性,从而提高其热导率,产品热导率彡230W/mk)。
[0014](5)机械加工步骤后,可以在密闭容器内进行表面抗氧化处理,指定部位浸渍专用纳米陶瓷粉抗氧化剂,进行抗氧化处理,使阳极板在电解槽中暴露于空气中的部分受到抗氧化剂保护,减少阳极局部氧化变细而导致的折断。
[0015]有益效果:该产品技术的主要技术优势在于:a)在阳极生坯制造中使用碳纤维增强技术,大幅提高产品体积密度和抗折强度。产品体积密度彡1 ? 75g/cm 3,抗折强度达彡18MPa;b)在阳极制作坯品及石墨化过程中的碳纤维、沥青、Fe2〇3、硬脂酸等原料的选择技术, 大大降低产品灰份含量、电阻率、CTE。电阻率低了,相同的电压加载时,能够产生并承受更大的电解电流,提高用于氯化镁电解等加工的效率。
[0016]c)采用新型装炉技术和石墨化工艺,电阻率降低的同时,提高阳极内在质量的均一性,从而提高其热导率,降低使用过程中热量损失和电能消耗。端部填充料的利用,减少电极端面的麻点,实现减小端面电阻率,减少电弧的作用,做电极时导电效果好,耐更大电流电压。
[0017]d)采用纳米陶瓷粉抗氧化剂对石墨阳极局部进行抽真空浸渍处理,使阳极板在电解槽中暴露于空气中的部分受到抗氧化剂保护,减少阳极局部氧化变细而导致的折断。【附图说明】
[0018]附图1是本发明的几个电极半成品在装炉进行石墨化时的一种结构示意图;图中,1、炉壁、2-绝热填料、3-导电调节块、4-第一支坯料、5-端部填充料、6-柔性石墨环、7-第二支坯料、8-导电正电极、18-导电负电极。【具体实施方式】
[0019]—种耐大电流镁电解用石墨阳极,以下列重量比的成分作为原料进行混捏:占干料重量比为93-99%的粒度为0_2mm的延迟锻后石油焦、占干料重量比为1-3%的石墨碎料、添加剂Fe2〇3和硬脂酸、占总重量比为20-30%的中温改质沥青(甲苯不溶物30%-33%、喹啉不溶物9-12%、结焦值55-60%、灰分A<0.1%、软化点为95-99°C );混捏后,依次进行压型、焙烧、浸渍和石墨化、机械加工这些步骤制备而成;焙烧和浸渍各为一次或者为反复进行2-3次,其特征在于:原料中还含有占干料重量比为0.5-5%的碳纤维短切料,使得制品内部含有碳/碳纤维复合材料结构;Fe2〇3占总重量比为0.44-0.6%、硬脂酸占总重量比为0.05-0.09%。
[0020]其中,(1)混捏步骤中,先将经过筛分的延迟煅后石油焦和石墨碎料按配方要求加入混捏锅内搅拌均匀,约10-15分钟后同时加入碳纤维短切料和Fe2〇3继续干混,干混约20-30分钟后加入沥青进行混捏,在出混捏锅前15-20分钟再加入硬脂酸,最后所得糊料出混捏锅,出锅时的温度为150-170 °C;(2)浸渍步骤中,将焙烧后的半成品在350-380°C温度条件下预热10-12小时后,进入浸渍罐;接着,在真空度多98%的条件下加压注入沥青,加压压力为1.8-2.2MPa,加压保压时间为4-6小时,一次浸渍增重率为13-15%;或有二次焙烧和二次浸渍,二次浸渍增重率为8-10%〇
[0021](3)石墨化步骤中,将两只或者多只焙烧品首尾相连装入如图1所示的LWG石墨化炉中;首尾相接的电极之间用柔性石墨环垫好,装完最后一支时,用导电调节块及活动导电电极共同压紧,测算并保持合适的顶推压力以方便导电;电极侧面和炉体之间的采用粒径大小基本不同的冶金焦作为绝热填料;电极端部与炉体之间的间隙中、相邻两个并联电极的端部之间,采用端部填充料;端部填充料的粒径大小基本均匀一致,粒径为l_5mm,稳定性好、干燥度高的导电冶金焦。然后通电,主要依靠电极本身通电产生的电阻热加热电极,绝热填料主要起保温作用。
【主权项】
1.一种耐大电流镁电解用石墨阳极,以下列重量比的成分作为原料进行混捏:占干料 重量比为93-99%的粒度为0_2mm的延迟锻后石油焦、占干料重量比为1-3%的石墨碎料、添加 剂Fe2〇3和硬脂酸、占总重量比为20-30%的中温改质沥青;混捏后,依次进行压型、焙烧、浸渍 和石墨化、机械加工这些步骤制备而成;焙烧和浸渍各为一次或者为反复进行2-3次,其特 征在于:原料中还含有占干料重量比为0.5-5%的碳纤维短切料,使得制品内部含有碳/碳纤 维复合材料结构;Fe2〇3占总重量比为0.44-0.6%、硬脂酸占总重量比为0.05-0.09%。2.如权利要求1所述的耐大电流镁电解用石墨阳极,其特征在于:所述中温改质沥青的 技术指标为:甲苯不溶物30%_33%、喹啉不溶物9-12%、结焦值55-60%、灰分A<0.1%、软化点 为95-99 °C。3.—种制备如权利要求1或2所述的耐大电流镁电解用石墨阳极的制备工艺,其特征在 于:具有下列工艺过程:(1)混捏步骤中,先将经过筛分的延迟煅后石油焦和石墨碎料按配方要求加入混捏锅 内搅拌均匀,约10-15分钟后同时加入碳纤维短切料和Fe2〇3继续干混,干混约20-30分钟后 加入沥青进行混捏,在出混捏锅前15-20分钟再加入硬脂酸,最后所得糊料出混捏锅,出锅 时的温度为150-170 °C;(2)浸渍步骤中,将焙烧后的半成品在350-380°C温度条件下预热10-12小时后,进入浸 渍罐;接着,在真空度多98%的条件下加压注入沥青,加压压力为1.8-2.2MPa,加压保压时间 为4-6小时,一次浸渍增重率为13-15%;或有二次焙烧和二次浸渍,二次浸渍增重率为8-10%〇4.如权利要求3所述的耐大电流镁电解用石墨阳极的制备工艺,其特征在于:石墨化步 骤中,将两只或者多只焙烧品首尾相连装入改进的的LWG石墨化炉中;首尾相接的电极之间 可以用柔性石墨环垫好,装完最后一支时,用导电调节块及活动导电电极共同压紧,测算并 保持合适的顶推压力以方便导电;然后通电,主要依靠电极本身通电产生的电阻热加热电极,填料主要起保温作用;石墨 化处理的最高温度为3000-3200°C,然后冷却时间为240-264小时。5.如权利要求4所述的耐大电流镁电解用石墨阳极的制备工艺,其特征在于:装炉时, 电极侧面和炉体之间的采用粒径大小基本不同的冶金焦作为绝热填料;电极端部与炉体之 间的间隙中、相邻两个并联电极的端部之间,采用端部填充料;端部填充料的粒径大小基本 均匀一致,粒径为1 -5mm,稳定性好、干燥度高(水分含量〈0.5%,灰分〈0.1 %)的导电冶金焦。6.如权利要求3所述的耐大电流镁电解用石墨阳极的制备工艺,其特征在于:机械加工 步骤后,在密闭容器内对指定部位浸渍专用纳米陶瓷粉抗氧化剂,进行抗氧化处理。
【文档编号】C25C3/04GK105967718SQ201610535578
【公开日】2016年9月28日
【申请日】2016年7月8日
【发明人】刘明, 谢康民, 余国礼, 朱毅
【申请人】南通扬子碳素股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1