甲醇羰基化反应生产乙酸工艺中脱除高锰酸盐降低化合物及烷基碘的方法

文档序号:3554872阅读:176来源:国知局
专利名称:甲醇羰基化反应生产乙酸工艺中脱除高锰酸盐降低化合物及烷基碘的方法
技术领域
本发明涉及脱除在第VIII族金属羰化催化剂存在下甲醇羰化所生成的高锰酸盐降低化合物及烷基碘的新方法。更确切地,本发明涉及在由上述羰化方法生成乙酸过程中从中间物流中降低和/或脱除高锰酸盐降低化合物及烷基碘的新方法。
在当前所用的合成乙酸的方法中,工业上最有利的是如1973年10月30日授予Paulik等的美国专利第3,769,329号中所讲述的甲醇与一氧化碳的催化羰化。羰化催化剂包括溶解或分散于液体反应介质中或者与含卤素催化剂促进剂如甲基碘一起承载于惰性固体上的铑。铑可以多种方式引入反应体系。即使确有可能,确定活性催化剂复合物中的铑成分的确切性质也是不合适的。类似地,卤素促进剂的性质也并不关键。该专利权人描述了数量极其庞大的适宜的促进剂,其中大部分为有机碘化物。最典型和最有利地是将催化剂溶解于一氧化碳气体连续鼓泡通过其中的液体反应介质中进行反应。
对先前的在铑催化剂存在下醇羰化制造比醇多一个碳原子的羰酸的方法的改进在共同转让的美国专利于1991年3月19日发布的第5,001,259号、于1991年6月25日发布的第5,026,968及于1992年9月1日发布的第5,144,068号以及于1992年7月1日公布的欧洲专利第161,874B2号中得以描述。如其所述,乙酸在含有醋酸甲酯、甲基卤、特别是甲基碘和以催化有效浓度存在的铑的反应介质中由甲醇制得。其中该专利基本上主要在于观察到通过在反应介质中与催化有效数量的铑一起维持至少一定浓度的水、醋酸甲酯和甲基碘、高于或超过以甲基碘或其它有机碘化物形式存在的碘含量的特定浓度的碘离子使催化剂的稳定性和羰化反应器的生产能力保持在令人惊奇的高水平上,即使在反应介质中极低水浓度即4(wt)%或更低下亦如此(尽管通常工业实际维持接近14wt%或15wt%的水)。碘离子以简单盐形式存在,优选采用碘化锂。以上专利提到醋酸甲酯和碘盐的浓度是影响甲醇羰化制乙酸速率的显著参数,在低反应器水浓度下尤为如此。通过采用相当高浓度的醋酸甲盐和碘盐,即使在液体反应介质含有低至约0.1wt%的水浓度—水浓度如此之低通常将其称为“有限浓度”水—也获得了令人惊异的催化剂稳定性和反应器生产能力。进一步,所采用的反应介质提高了铑催化剂的稳定性即抗催化剂沉析性,特别是在工艺过程的产品回收步骤,此时目的在于回收乙酸产品的蒸馏操作趋于从催化剂中脱除一氧化碳。在所维持的反应器条件下,一氧化碳是对铑有稳定作用的配合物。美国专利第5,001,259、5,026,908及5,144,068号在此作为参考。
已发现生产乙酸的低水羰化方法降低了如二氧化碳和丙酸等副产物。然而,通常以痕量存在的其它杂质量也增加并且在试图通过改进催化剂或改变反应条件以增加生产率时乙酸的质量有时受到影响。这些痕量杂质影响乙酸的质量,特别是它们在反应过程中循环时更是如此。杂质中使乙酸的高锰酸盐时间降低的有羰基化合物、不饱和羰基化合物及有机碘化物。此处所用的术语“羰基”意指含有醛或酮官能团的化合物,可以是饱和或不饱和化合物。
本发明目的在于脱除高锰酸盐降低化合物(PRC)如导致生成不饱和醛和其它羰基杂质如丙酮、甲基乙基酮、丁醛、巴豆醛、2-乙基巴豆醛、2-乙基丁醛及类似物及其醇醛缩合产物的乙醛。其它高锰酸钾降低化合物包括烷基碘如乙基碘、丙基碘、丁基碘、己基碘及类似物。另外其它高锰酸钾降低化合物包括乙酸工艺副产物丙酸。
高锰酸钾降低化合物通常具有与碘催化剂促进剂(如MeI)极其相近的沸点而难于充分除去烷基碘。由于(乙酸产物中的)这些痕量杂质易于使由乙酸所制造的最大宗产品乙酸乙烯酯的生产中所用的催化剂中毒,因此期望从反应产物中脱除烷基碘。由此本发明目的也在于脱除烷基碘,特别是C2-12烷基碘化合物。羰基杂质可进一步与碘催化剂促进剂反应生成多碳烷基碘如乙基碘、丁基碘、己基碘及类似物。由于许多杂质源于乙醛,因此主要目标是除去或降低反应系统中的乙醛和烷基碘含量。
脱除杂质的传统技术包括采用氧化剂、臭氧、水、甲醇、活性碳、胺及类似物处理乙酸,该处理可结合或不结合乙酸蒸馏进行。最典型的提纯处理涉及一系列最终产品的蒸馏。已知通过采用胺类化合物如羰基化合物反应生成肟的羟胺处理有机物流以有机物流中脱除羰基杂质,其后进行蒸馏从肟反应产物中分离出纯化的有机产物。然而,对终产品的额外处理使该方法的费用增加且发现对处理后的乙酸产物的蒸馏能够导致额外杂质的生成。
尽管有可能获得相当高纯度的乙酸,由上述低水羰化方法和提纯处理所生成的乙酸产物往往在高锰酸盐时间方面仍旧不足。这归因于其中少量残余杂质的存在。由于足够的高锰酸盐时间是乙酸产品在许多应用场合下必须达到的重要的工业测试,产品中这类降低高锰酸盐时间的杂质的存在是有害的。采用传统处理和蒸馏从乙酸中脱除这些微量杂质是不经济的或者由于杂质沸点与乙酸产品的沸点接近而使蒸馏在工业上不可行。
重要的是确定在羰化过程何处能够除去杂质。同样重要的是确定采用何种经济可行的方法能够除去杂质而不致造成终产品的进一步污染或不必要的费用增加。
日本专利申请第5-169205号公开了通过调节反应溶液的乙醛浓度低至1500ppm以下制造高纯度乙酸的方法。该申请声称,通过将反应溶液中的乙醛浓度维持在1500ppm以下有可能抑制杂质的生成并通过在所生成的粗乙酸提纯过程中仅采用基本蒸馏操作而制造高纯度乙酸。
于1995年4月12日发布的欧洲专利第487,284,B1号声称存在于乙酸产物中的羰基杂质通常富集在来自轻馏分塔的塔顶馏出物中。据此,采用胺类化合物即与羰基化合物反应的羟胺处理轻馏分塔的塔顶馏出物以使这些羰基物经蒸馏从其余的塔顶馏出物中分离出去获得高锰酸盐时间提高的乙酸产品。
欧洲专利第0687662A2号公开了一种制造高纯度乙酸的方法,其中通过采用单级或多级蒸馏过程进行脱除使反应器中维持400ppm或更低的乙醛浓度。设想用于脱除醛的物流包括主要含水、乙酸及醋酸甲酯的轻相;主要含有甲基碘、醋酸甲酯及乙酸的重相;主要含有甲基碘和醋酸甲酯的塔顶馏出物流;或含有轻、重相混合物的循环物流。尽管设想有四种工艺物流,该参考专利讲述并示例采用重相。未讲述或暗示哪一物流含有最大浓度的乙醛。
欧洲专利第‘622号还公开了控制反应条件以控制反应器中乙醛的生成。通过控制乙醛的生成,它声称副产物如巴豆醛、2-乙基巴豆醛、及烷基碘得以降低。但它指出反应条件控制“存在使副产物丙酸速率增加的缺陷”,这表明‘662所述的方法存在丙酸问题。
因此,欧洲专利第‘662号描述了反应条件的优化以避免乙醛的生成并脱除反应器中所生成的超过400ppm水平以上的乙醛。
尽管上述的方法已成功地从羰化系统中脱除羰基杂质且大多数情况下控制了最终乙酸产品中的乙醛水平及高锰酸盐时间问题,但仍有进一步改进之处。仍有必要确定在羰化过程何处高锰酸盐降低化合物、特别是乙醛和烷基碘最为富集并因此能被除去以保证产品纯度始终如一。与此同时,仍有必要提供脱除这类羰基物质和碘化物而不牺牲羰化方法的生产能力或不导致操作费用显著增加的方法。
已发现来自轻馏分蒸馏塔的轻馏分相含有含高锰酸盐降低化合物的羰基化合物、特别是可被进一步浓缩并从工艺过程中除去的乙醛。在本发明一方面,轻馏分相经两次蒸馏,一次流经用于从乙酸和水中分离乙醛、甲基碘及醋酸甲酯的蒸馏塔。第二蒸馏塔用于从甲基碘和醋酸甲酯中分离出乙醛并主要用于从工艺过程中浓缩并脱除乙醛。本发明另一方面,可选择地将自第二级蒸馏所得的馏份送往一萃取器以分离出浓乙醛并将残余饱和有机碘溶液返回到羰化反应器。
在本发明另外一方面,通过采用所述的双塔蒸馏工艺可将烷基碘化合物、特别是C2-12除去或显著降低。
已发现当关闭羰化系统、特别是本方法中所采用的蒸馏塔时,乙醛聚合物倾向于在第二塔塔底生成并聚结。本发明另一方面描述了处理这一问题的方法。已发现采用恒定流量的溶剂以维持第二蒸馏塔中的物流与来自内部物流(如含大百分比乙酸或醋酸甲酯的物流)的溶剂之间的接触使得单元关闭后塔底无聚合物。通过使塔底避免聚合物聚结可以相当可靠、有效且节省费用的方式关闭或随后开动塔。
本发明采用工艺过程中的内部中间物流轻相而非(如欧洲专利’622中所建议的)重相来脱除PRC和烷基碘化合物。传统工艺采用重相处理或脱除羰基杂质,特别是脱除乙醛。至今,先前工艺并不了解相对于重相,轻相是浓缩并从中脱除乙醛的更佳选择。已发现在第二蒸馏塔采用结构填料比塔板获得更大程度的羰基杂质的分离。通常,先前工艺在第二蒸馏塔之前采用萃取器;已发现在第二蒸馏塔之后采用萃取器更大程度地脱除乙醛。亦发现由于双塔蒸馏过程与萃取器联用,基本上不从工艺过程脱除甲基碘,加工/处理废液物流(2wt%MeI,25wt%水、73wt%乙醛)数量很小335gpm甲醇单元0.42gpm。发现利用含约70wt%水和30wt%乙酸的内部物流能够消除或抑制第二塔中多聚和三聚乙醛的生成。因是内部物流而不对工艺过程造成加水负担。进一步发现,第一塔残余物循环回轻馏分塔倾析器能被用来将更多乙醛从重相萃取到轻相,由此提高了工艺过程的总的乙醛和烷基碘脱除效果。
本发明一优选实施方案目的在于降低和/或脱除甲醇羰化制乙酸过程中生成的高锰酸盐降低化合物及C2-12的烷基碘化合物的方法,其中所说的甲醇在含有第VIII族金属催化剂、有机碘及碘盐催化剂促进剂的适宜的液相反应介质中进行羰化,上述羰化的产物分离为含产物的挥发相和含第VIII族金属催化剂、乙酸及碘催化剂促进剂的低挥发相;上述产物相在蒸馏塔中蒸馏得到纯化产物和含有机碘、醋酸甲酯、水、乙酸及未反应的甲醇的塔顶馏出物,将至少部分塔顶馏出物送往塔顶馏出物接收器倾析器将塔顶馏出物分割为含乙酸和水的轻相及含醋酸甲酯和有机碘的重相;并将重相循环回羰化反应器。改进措施包括(a)将含乙酸和水的轻相送往蒸馏塔将该混合物分割为两股物流含水和乙酸的残余物流(1)及含甲基碘、醋酸甲酯、甲醇、C2-12的烷基碘化物以及高锰酸盐除低化合物(PRC)的塔顶馏出物流2);(b)将步骤(a)的物流(1)进一步处理并最终将其循环回反应器,以及步骤(a)的物流(2)送往第二蒸馏塔从该混和物中脱除PRC和烷基碘化物;(c)任意选择地将步骤(b)的含PRC的塔顶馏出物流送往一萃取器从中脱除有机碘化合物;并(d)分离出浓PRC和烷基碘化物留待处理并将(c)的有机碘相作为含低百分比PRC和C2-12烷基碘化物的物流返回羰化反应器。
得自轻相的塔顶馏出物的主体返回反应器。由此,根据本发明,包括乙醛和烷基碘在内的PRC总量经多级蒸馏外加选择性萃取过程而大大降低,在达到这一产品质量的同时并未显著增加生产费用。
具体地讲,本发明公开了以下内容1.防止甲醇羰基化制乙酸过程中所采用的上述的塔在关闭时塔内乙醛聚合的方法,其中所说的甲醇在含有第VIII族金属催化剂、有机碘及碘盐催化剂促进剂的适宜的液相反应介质中进行羰基化,上述羰基化的产物分离为含产物的挥发相和含第VIII族金属催化剂、乙酸及碘催化剂促进剂的低挥发相;上述产物相在蒸馏塔中蒸馏得到纯化产物和含有机碘、醋酸甲酯、水、乙酸及未反应的甲醇的塔顶蒸汽相乙酸物流,将至少部分塔顶馏出物送往容器(16)将塔顶馏出物分割为含乙酸和水的轻相(30)及重相;并将重相循环回羰基化反应器,其特征在于包括a)将轻相(30)送往蒸馏塔(18)将该混合物分割为两股物流含水和乙酸的塔底物流(38)及含甲基碘、醋酸甲酯、甲醇、C2-12的烷基碘化物以及乙醛的第二蒸汽相(36);b)将步骤(a)的物流(38)循环回反应器、步骤(a)的物流(36)送往第二蒸馏塔(22)从该混合物中脱除乙醛;c)将(b)的物流(2)与含有选自乙酸、醋酸甲酯、甲醇、水、醋酸甲酯、甲基碘、乙醛或其混合物的溶剂的物流接触,溶剂流量足以避免乙醛聚合物的产生;d)分离出浓乙醛(52)并将有机碘相(44)返回羰基化反应器。
2.上款1的方法,其中溶剂主要为乙酸。
3.上款1的方法,其中溶剂以约0.25-5加仑每分(gpm)的流量与物流2b接触。
4.上款2的方法,其中溶剂以大约0.5-2gpm的流量进行接触。
5.上款4的方法,其中溶剂与物流2b在塔底进行接触。
已发现PRC,特别是乙醛、巴豆醛、2-乙基巴豆醛及烷基碘、特别是己基碘至少降低50%,这通常高于采用以上发明方法所能达到的效果。此外,丙酸降低约1/2,通常降低超过20%,往往超过30和40%,总碘化物量降低约1/3或百分比降低约50%,往往降低60%以上。观察到采用本发明方法高锰酸盐时间提高约7倍或百分比约50%,通常大于70%。
本发明方法操作过程中在关闭系统时,观察到乙醛聚合物倾向于在第二塔中聚结而堵塞塔。发现这一问题可通过将流经第二蒸馏塔的物流与足以避免醇醛缩合聚合物的生成或避免乙醛聚合物生成的足够数量和足够流量的约1gpm的溶剂物流相接触而避免。溶剂可选自乙酸、醋酸甲酯、甲醇、水、甲基碘、乙醛及类似物或及其混合物。考虑到有丰富的内部物流可供利用,优选乙酸作为溶剂。通常,足以避免醇醛缩合反应发生的溶剂流量约在0.25-5加仑每分(gpm),优选约0.5-2gpm,最优选约1gpm。不期望采用过量溶剂,因这会对系统造成较大的溶剂再处理负担。尽管多处加入溶剂是可接受的,优选使溶剂在第二蒸馏塔内于塔底与物流接触。


图1表示从羰化反应生产乙酸的羰化过程的中间物流中脱除羰基杂质的优选实施方案。
本发明的提纯方法可用于任何用以在第VIII族金属催化剂如铑及碘促进剂存在下将甲醇羰化成乙酸的方法。特别有用的方法是上述美国专利第5,001,259号中示例所述的甲醇低水铑催化羰化制乙酸。通常,催化剂体系的铑组分被认为以与卤素组分形成铑配位化合物的形式存在,卤素组分提供该配位化合物的至少一个配位体。除铑与卤素配合物外,也认为一氧化碳与铑进行配合。催化剂体系的铑组分可通过向反应区加入金属铑、铑盐如氧化物、乙酸铑、碘化物等或其它铑的配位化合物及类似物而实现。
催化剂体系的卤素促进组分包括含有机卤的卤化物。由此,烷基、芳基及取代烷基或芳基卤均可采用。卤素促进剂优选以其中的烷基自由基与进行羰化的原料醇的烷基自由基相应的烷基卤形式存在。由此,在甲醇羰化制乙酸时,卤素促进剂将包括甲基卤,更优选包括甲基碘。
所用的液体反应介质可包括任何与催化剂体系相适应的溶剂,可包括纯的醇类,或醇类混和物和/或期望的羰酸和/或这两类化合物的酯。低水羰化方法的优选溶剂和液体反应介质包括羰酸产物。由此,甲醇羰化制乙酸中优选溶剂为乙酸。
反应介质中含有水,但水浓度远低于以前所认为的实现充分反应速率的实际水浓度。先前认为对本发明所述类型的铑催化羰化反应,水的加入对反应速率起到有利作用(美国专利第3,769,329号)。因此,大多数工业操作在至少约14wt%的水浓度下进行。据此,在低于14wt%和低至约0.1wt%的水浓度下达到与采用如此高水平水浓度下所达到的反应速率基本相同及更高的反应速率极其出乎意料。
根据本发明的制造乙酸最有利的羰化方法,通过在反应介质中加入醋酸甲酯及外加超过以催化剂促进剂如甲基碘或其它有机碘形式存在的碘离子即使在低水浓度下也达到期望的反应速率。外加的碘促进剂为碘盐,优选为碘化锂。发现在低水浓度下,醋酸甲酯和碘化锂仅在各自浓度相当高时才作为速率促进剂且当两种组分同时存在时促进作用较高(美国专利第5,001,259号)。在优选羰化反应系统的反应介质中所用的碘化锂的浓度据认为相对于涉及在这类反应系统中应用卤盐的先前工艺的少量碘化锂而言相当高。碘离子含量的绝对浓度并不限制本发明的应用。
甲醇羰化成乙酸产物的羰化反应可通过将液相甲醇进料与鼓泡通过含铑催化剂、甲基碘促进剂、醋酸甲酯及外加的可溶碘盐的液体乙酸溶剂反应介质的气态一氧化碳进行接触在适宜生成羰化产物的温度和压力条件下进行。通常认识到催化剂体系中的碘离子浓度而非碘化物的阳离子具有重要性,并且在给定碘的摩尔浓度下,阳离子性质不如碘浓度影响显著。任何金属碘盐或任何有机阳离子的碘盐或四价阳离子如四价胺或膦化氢或无机阳离子均可采用,只要该盐在反应介质中充分溶解以提供期望水平的碘。当碘以金属盐加入时,优选采用含有如CRC Press,Cleveland,Ohio出版的“化学和物理手册”1975-76(第56版)中所述的周期表中的IA族和IIA族金属的系列碘盐。特别地,碱土金属碘化物是有利的,优选采用碘化锂。在本发明的最有利的低水羰化方法中,外加的超过并高于有机碘促进剂的碘在催化剂溶液中存在的含量为约2-约20wt%,醋酸甲酯含量为约0.5-约30wt%,甲基碘含量为约5-约20wt%。铑催化剂含量为约200-约1000ppm。
典型羰化反应温度为大约150-约250℃,优选温度范围从约180-约220℃。反应器中的一氧化碳分压可大范围变化但通常为约2-约30大气压,优选为约3-约10大气压。由于副产物分压及所含有的液体的蒸汽压的原因,总反应器压力范围为约15-约40大气压。
用于由碘促进的铑催化甲醇羰化制乙酸的典型反应及乙酸回收系统如图1所示,它包括液相羰化反应器、闪蒸器及甲基碘乙酸轻馏分塔14。塔14设有乙酸侧线物流17,物流17经进一步处理。反应器和闪蒸器在图1中未示出。它们被视为羰化过程领域中公知的标准设备。羰化反应器通常为搅拌釜式,釜内的反应液体内容物被自动维持在恒定液位。向反应器中连续加入新鲜甲醇、一氧化碳、在反应介质中维持至少有限浓度水所需的足够的水、来自闪蒸器底的循环催化剂溶液、循环甲基碘及醋酸甲酯相以及来自甲基碘乙酸轻馏分塔顶馏出物接收器倾析器或分相塔14的循环乙酸溶液相。采用蒸馏系统提供回收粗乙酸及将催化剂溶液、甲基碘以及醋酸甲酯循环回反应器的装置。在一优选方法中,一氧化碳恰在用以搅拌反应器内容物的搅拌器下连续加入。气相进料被搅拌装置充分分散于反应液体中。气体吹除物流从反应器排出以防止气体副产物的累积并维持给定总反应器压力下的设定一氧化碳分压。控制反应器的温度并以足以维持期望的总反应器压力的流量加入一氧化碳。
液体产品以足以维持反应器中恒定液位的流量下排出反应器并进入闪蒸器。在闪蒸器中,催化剂溶液作为塔底物流(主要为含铑与碘盐以及较少量的醋酸甲酯、甲基碘及水的乙酸),而闪蒸器的蒸汽塔顶馏出物流主要含有产品乙酸以及甲基碘、醋酸甲酯及水。以侧线物流排出反应器并进入闪蒸器的溶解气体含有部分一氧化碳以及气体副产物如甲烷、氢气及二氧化碳。溶解气作为塔顶馏出物流排出闪蒸器并作为物流26去往轻馏分或分相塔14。
已观察到轻相中含有的PRC、特别是乙醛的浓度比排出塔14的重相物流中的高约3倍。因此,根据本发明,含PRC的物流28去往塔顶馏出物接收器倾析器16,16的轻馏分相物流流30去往蒸馏塔18。
本发明可大致视为是从蒸汽相乙酸物流中蒸馏出高锰酸钾降低化合物、主要是醛类及烷基碘。蒸汽相物流经两次蒸馏并可选择经萃取脱除高锰酸钾降低化合物。发明所述为从第一蒸汽相乙酸物流中脱除醛类和烷基碘并降低丙酸水平的方法,它包括a)在第一冷凝器中将上述第一蒸汽相乙酸物流冷凝并进行两相分离形成第一重液相产物和第一轻液相产物,其中所说的第一重液相比所说的第一轻液相产物含有更大百分比的催化组分;b)在第一蒸馏塔中蒸馏上述轻液相产物,该蒸馏操作用于产生相对于上述第一蒸汽相乙酸物流而言富含醛类和烷基碘的第二蒸汽相乙酸产物物流;c)在第二冷凝器中将上述第二蒸汽相冷凝并进行两相分离形成第二重液相和第二轻液相产物,其中所说的第二重液相比所说的第二轻液相产物含有更高百分比的催化组分;及d)在第二蒸馏塔中蒸馏上述第二轻液相产物,其中所说的蒸馏操作用于脱除醛类和烷基碘废物物流中的上述第一蒸汽相乙酸物流中的至少50%的烷基碘和醛类杂质以及至少20%的丙酸。
参考图1,第一蒸汽相乙酸物流(28)含有甲基碘、醋酸甲酯及其它羰基组分。该物流随后(在罐16中)进行冷凝并分离形成第一蒸汽相物流以分离出含大量催化组分的重相产物及含乙醛、水和乙酸的轻相(30)。重相返回反应器(图中未示出)。轻相(30)随后经两次蒸馏将物流中的PRC、主要是乙醛组分脱除。轻相(30)去往塔18,塔18用以形成相对物流28而言富含醛类和烷基碘的第二蒸汽相(36)。物流(36)(在釜20中)冷凝并进行两相分离形成第二重液相和第二轻相液体产物。第二重液相比第二轻液相含有较高比例的催化组分并随后循环回反应器(图中未示出)。含乙醛、甲基碘、甲醇及醋酸甲酯的第二液体轻相(40)去往第二蒸馏塔(22)。在塔(22)中从其它组分中分离出乙醛。催化组分包括甲基碘、醋酸甲酯、甲醇及水。本发明方法发现可将乙酸物流中所含有的烷基碘和醛类杂质的至少50%脱除。已表明乙醛被除去至少50%,往往被除去60%以上。
本发明的一个优选实施方案示于图1。气体经物流28自轻馏分或分相塔14顶部排出经冷凝后去往16。气体被冷却到足以使可凝性甲基碘、醋酸甲酯、乙醛及其它羰基组分以及水冷凝并分离为两相的温度。轻相去往蒸馏塔18。塔18用于浓缩物流32中的乙醛。物流30的部分-物流34返回轻馏分塔14作为回流。物流28的一部分含有不凝性气体如二氧化碳、氢气及类似物并以如图1所示的物流29排出。离开塔顶馏出物接收器倾析器16的物流也是物流28的重相,这未在图1示出。该重相通常返回反应器。但在本发明的另一方面,通常重相的少量滑流,如25vol%、优选低于约20vol%的重相去往本发明的羟基处理过程,所余重相返回反应器。重相的滑流可被单独处理,或与轻相物流30混合以进一步蒸馏并萃取羰基杂质。
物流30作为物流32大约在中部进入塔18。塔18用于通过分离水和乙酸浓缩物流32中的醛类化合物。在本发明的一优选方法中,物流32在塔18中蒸馏,塔18具有约40块塔板,塔内温度范围从塔底的约283°F(139.4℃)到塔顶的约191°F(88.3℃)。从18塔顶排出含PRC及特别是乙醛、甲基碘、醋酸甲酯、甲醇及烷基碘的物流36。从18塔底排出含约70%水和30%乙酸的物流38。利用热交换器将物流38冷却并最终将其返回反应器。发现物流36在流经塔16后醛含量提高了约7倍。已发现将标识为物流46的物流38的一部分经16循环提高了本发明方法的效率并使轻相物流32中能存在更多乙醛。物流36在经冷却使所含有的任何可凝性气体冷凝后去往塔顶馏出物接收器20。
含乙醛、甲基碘、醋酸甲酯及甲醇的物流40排出20。物流40的一部分,即侧线物流42返回18作为回流。物流40大约在塔底部进入蒸馏塔22。塔22用于从物流40中的甲基碘、醋酸甲酯及甲醇中分离出大部分乙醛。在一实施方案中,塔22设有约100块板,其操作温度范围从塔底的约224°F(106.6℃)到塔顶的约175°F(79.4℃)。在另一实施方案中,塔22设有结构填料代替塔板。优选填料为相际面积约65ft2/ft3的结构填料,优选由金属合金如2205或其它填料材料制成,填料材料要求与组分相适应。实验过程中观察到采用结构填料比塔板更能达到良好分离所要求的均匀塔负荷。塔22的残余物流44在塔底排出并循环回羰化过程。
在甲基碘存在下乙醛聚合形成多聚乙醛和三聚乙醛。因此优选在塔22中需要阻聚剂以降低这些杂质即多聚乙醛和三聚乙醛的生成。阻聚剂通常含有C1-10醇,优选甲醇、水、乙酸及类似物,阻聚剂可单独使用或相互混合使用或与其它一种或多种阻聚剂混合使用。塔18残余物流的一部分及物流38的侧线物流的物流46含有水和乙酸,由此可作为阻聚剂。物流46如图1所示分割形成物流48和50。将物流50加入塔22以阻止多聚乙醛和三聚乙醛杂质的形成。由于22的残余物循环回反应器,故所加入的任何阻聚剂均必须与反应化学特性相适应。已发现少量水、乙醇、乙酸或及其混合物与反应化学特性不发生冲突并实际上消除了多聚乙醛和三聚乙醛的产生。由于物流50不改变反应器水平衡,它也优选作为阻聚剂。最不优选水作阻聚溶液,这是由于通常需要大量水才得到有效阻聚剂,这往往导致萃取大量乙醛,使排出塔22的物流52的纯度降低。
含PRC的物流52在塔22顶部排出。物流52去往冷凝器并随后去往塔顶馏出物接收器24。经冷凝后任何可凝性物质从接收器24排出。物流54排出24。物流56的侧线物流54作为22的回流。含甲基碘、甲醇、醋酸甲酯、甲醇及水的物流44在22底部排出。该物流与物流66混合后去往反应器。
萃取机理上重要的是22的塔顶物流保持低温,温度通常为约13℃。该物流可由本领域技术人员熟知的常规技术或任何工业上普遍接受的方法于约13℃下获得或保持在约13℃。
在本发明一优选实施方案中,物流54/58在排出24后流经冷凝器/冷却器(现为物流62),此后去往萃取器27以从溶液高锰酸钾降低化合物流中脱除少量甲基碘并将其循环。不凝性气体自24顶部排出。在萃取器27中采用水、优选采用来自内部物流的水以维持反应系统中的水平衡对PRC及烷基碘进行萃取。经萃取从溶液PRC和烷基碘相中分离出甲基碘。在一优选实施方案中,采用水/原料比为2的混合-分离器。
含甲基碘的物流66排出萃取器并循环回反应器。溶液物流64从顶部离开萃取器。富含PRC、特别是富含乙醛的该溶液相去往废物处理。
自轻相所得的物流的PRC(52)及富烷基碘相(44)可选择去往萃取器(27)以脱除其中的有机碘化合物。本发明方法已实现从乙醛中分离出循环回反应器的甲基碘。此外,烷基碘如己基碘经在此所述的双塔蒸馏后显著降低。己基碘降低约6/7或百分比降低约50%,通常降低70%以上。进一步发现杂质如巴豆醛、2-乙基巴豆醛显著降低或被从工艺过程中完全除去。发现巴豆醛和乙基巴豆醛降低约50%,往往降低75%以上,有时100%被除去。发现与由罐14中脱除的(未经处理的)初始物流相比,丙酸浓度降低约1倍或百分比降低至少20%,通常降低约30或40%。发现总碘量降低约2倍或百分比降低至少50%,通常降低约60%以上。
经所述方法处理后的乙酸产物物流的高锰酸盐时间提高约8倍,或以未采用在此所述的方法处理的产品物流的高锰酸盐时间提高约50%到提高75%或85%以上。数据表明高锰酸盐时间分别从50和35秒提高到约6和5分钟。
尽管以上本发明通常描述利用塔14的轻馏分相,但羰化过程中任何含有高浓度PRC和烷基碘的物流均可根据本发明进行处理。
未示于图1的本发明的说明性替代实施方案包括但并不限于a)将来自罐16含有轻相有机物的塔顶馏出物流送往塔18并实施上述方法;b)将来自罐16含有重相有机物的残余物流送往塔18并实施上述方法;c)利用物流29输送物流、优选输送来自轻馏分接收器排放倾析器的残余物流并实施上述方法;
d)将来自轻馏分排放提取塔的物流输送并实施上述方法;e)以上(a-d)中含有高浓度PRC、丙酸及烷基碘杂质的物流的任意混合物。
在采用其它物流对本发明方法进行优化时,可能需要改造设备以实现从羰化过程中最高效地脱除PRC和烷基碘。例如,若如上述优选物流(即利用物流28)的操作将同样设备用于其它物流,可能需要更高的塔18以达到最大脱除效率。若在本发明中采用含重相组分的物流,相较于严格从轻相物流中脱除乙醛,乙醛脱除可能并不同样有效。
发现在关闭羰化系统、特别是本方法所采用的蒸馏塔时,乙醛聚合物倾向于在第二塔塔底形成并聚结。这是由于乙醛与塔中存在的HI的反应,并且在温度约为102℃时观察到这一反应。在本发明另外一方面,发现采用恒定流量的溶剂维持第二蒸馏塔内的物流与来自内部物流(如含有大百分比乙酸或醋酸甲酯的物流)的溶剂之间的接触在关闭塔或PRC/烷基碘脱除过程时在塔底无聚合物。通过使塔底避免聚合物聚结可以相当可靠、有效且节省费用的方式关闭或随后开动塔。
优选溶剂包括主要含乙酸、醋酸甲酯、甲醇、水、醋酸甲酯、甲基碘、乙醛或及其混合物的内部物流。为维持系统内的内部平衡,优选采用内部物流,但也可采用来自外界源的溶剂。由于乙酸的沸点高,这有助于提取乙醛塔顶馏出物。但任何正常沸点高于或等于甲基碘沸点的非反应物溶剂也是可以接受的。可通过将残余物送往回收设备(如提取器、倾析器或渗透膜)来回收溶剂。通常,溶剂以足以避免醇醛缩合反应发生的溶剂量进行接触并以使停留时间小于约2小时的流量下加入。进一步,尽管可采用0.25-5gpm范围内的溶剂流量,溶剂优选以约1加仑每分(gpm)的流量下进行接触。虽然溶剂可在整个蒸馏塔的任何位置加入,优选在塔底加入溶剂。
采用上述方法所体现出的总体益处包括1、较少的丙酸;2、羰化反应可采用较少量的铑;3、产品乙酸中较低的总碘量;
4、较低的PRC浓度;5、高锰酸盐时间测试值提高。
下表1表示采用本发明方法前后的不同PRC及高锰酸盐时间的数据。数据取自反应器达到稳态操作的反应器、残余物或侧线物流。
表1取自稳态条件下操作的反应器的反应器、残余物或侧线物流的数据
ss=侧线流res=残余物本发明与欧洲专利第‘662号的几处区别1.欧洲专利第‘662号采用重相;建议采用轻相,但未讲述其用法;仅仅建议与其它三种可能物流一起应用;2.欧洲专利第‘662号试图优化反应条件以实现反应器中乙醛为400ppm的目标。通过优化反应条件,据认为将不会产生羰基杂质。本发明方法不优化反应条件而是蒸馏出所生成的杂质。本发明方法目的在于处理所存在的杂质而并不避免含羰基杂质/化合物的产生。
3.本发明人发现在关闭第二蒸馏塔时乙醛的聚合问题。在欧洲专利第‘662号中并未意识到该问题。
权利要求
1.防止甲醇羰基化制乙酸过程中所采用的上述的塔在关闭时塔内乙醛聚合的方法,其中所说的甲醇在含有第VIII族金属催化剂、有机碘及碘盐催化剂促进剂的适宜的液相反应介质中进行羰基化,上述羰基化的产物分离为含产物的挥发相和含第VIII族金属催化剂、乙酸及碘催化剂促进剂的低挥发相;上述产物相在蒸馏塔中蒸馏得到纯化产物和含有机碘、醋酸甲酯、水、乙酸及未反应的甲醇的塔顶蒸汽相乙酸物流,将至少部分塔顶馏出物送往容器(16)将塔顶馏出物分割为含乙酸和水的轻相(30)及重相;并将重相循环回羰基化反应器,其特征在于包括a)将轻相(30)送往蒸馏塔(18)将该混合物分割为两股物流含水和乙酸的塔底物流(38)及含甲基碘、醋酸甲酯、甲醇、C2-12的烷基碘化物以及乙醛的第二蒸汽相(36);b)将步骤(a)的物流(38)循环回反应器、步骤(a)的物流(36)送往第二蒸馏塔(22)从该混合物中脱除乙醛;c)将(b)的物流(2)与含有选自乙酸、醋酸甲酯、甲醇、水、醋酸甲酯、甲基碘、乙醛或其混合物的溶剂的物流接触,溶剂流量足以避免乙醛聚合物的产生;d)分离出浓乙醛(52)并将有机碘相(44)返回羰基化反应器。
2.权利要求1的方法,其中溶剂主要为乙酸。
3.权利要求1的方法,其中溶剂以约0.25-5加仑每分(gpm)的流量与物流2b接触。
4.权利要求2的方法,其中溶剂以大约0.5-2gpm的流量进行接触。
5.权利要求4的方法,其中溶剂与物流2b在塔底进行接触。
全文摘要
制造高纯度乙酸的方法。虽然所述方法与低水羰化过程有关,但本发明也适用于其它导致在中间工艺物流中生成高锰酸盐降低化合物如乙醛、丙酸及烷基碘杂质的制造乙酸的方法。已发现采用多级蒸馏过程结合可选的乙醛萃取可方便地从反应过程的中间物流的轻相中除去高锰酸盐降低化合物及烷基碘。蒸馏过程涉及首先将轻相蒸馏使高锰酸盐降低化合物、特别是乙醛浓缩,之后在第二蒸馏塔中分离出高锰酸盐降低化合物和烷基碘。第二蒸馏塔用于从甲基碘、醋酸甲酯及甲醇的混合物中除去高锰酸盐降低化合物和烷基碘。作为可选的第三个步骤,经两次蒸馏后的物流可去往萃取塔除去乙醛溶液物流中的残余甲基碘以获得纯度高于99%的乙酸终产品。
文档编号C07C51/12GK1572768SQ20041006179
公开日2005年2月2日 申请日期1997年10月17日 优先权日1996年10月18日
发明者M·辛格, G·A·布赖, M·L·卡尼洛, M·A·米尔彻, W·D·皮卡德, V·桑蒂兰, M·O·斯卡特斯, R·S·坦可, G·P·多里尼克, R·F·小沃格尔, R·J·瓦尼尔 申请人:国际人造丝公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1