烃的选择性氢化方法

文档序号:3595890阅读:309来源:国知局
专利名称:烃的选择性氢化方法
生产烯烃的许多方法,如蒸气裂化,催化裂化和减粘法生产的馏分被比所需烯烃更不饱和的分子污染。使用这些馏分令人满意地生产成品时,应包括这些含有共轭双键和/或叁键的分子的除去过程。将所述分子选择性氢化为相应的烯烃是除去这些分子同时进一步回收所需烯烃的优选的方法。
这些氢化反应通常在20至200℃之间的温度范围在10至100巴(1至10兆帕)之间的压力下以1至40m3/催化剂m3/h的空间速度进行。通常使用的催化剂由一种或多种沉积在氧化物载体上的金属组成。优选的基质金属是第Ⅷ族金属,更优选的是镍,钯和铂。载体通常选自氧化铝、氧化硅、氧化硅-氧化铝、铝酸盐或活性炭。
这种催化剂的工业使用过程通常在存在用于改善氢化反应的选择性的添加剂下进行。最普遍使用的化合物是一氧化碳,如在EP-81041中所要求保护的。
开发具有更好的活性和选择性为特征性能的催化剂导致在催化剂配方中加入其它金属。例如可以参考加银(本申请人的US-A-4,409,410)和金(本申请人的US-A-4,490,481),其非常明显地改善了第Ⅷ族金属的氢化反应催化性能。在本发明中我们发现可将不饱和二烯烃和炔烃化合物高选择性地氢化以转化为相应的烯烃化合物而不降低基质金属(即第Ⅷ族金属)的活性,并促进反应和在反应介质或在双金属合金制备中不使用添加剂。尽管可在高达例如300巴(30兆帕)下进行操作而没有不利影响,但操作过程通常在连续或间歇式反应器中和氢气存在下,在总压力在10至100巴(1和10兆帕)之间,优选的在20至80巴(2至8兆帕)之间,在温度为0至200℃之间,优选的是30至120℃之间,在新型的金属催化剂存在下进行。所述的催化剂含有(a)至少一种选自镍、钯、铂,铑和钌的Ⅷ金属(钯,铂和镍是优选金属),其重量百分比在0.1至10%之间,优选的在0.2至5%之间和(b)至少一种选自镓和铟的第ⅢA族的附加的金属元素,其重量百分比选择在0.01至10%之间,优选的是在0.1至5%之间,第ⅢA族金属元素与第ⅤⅢ族金属的摩尔比有利的是在0.2至5之间,优选的是在0.3至2之间和(c)一种选自氧化硅、氧化铝、氧化硅-氧化铝、铝酸盐和活性炭的载体。有利的是,可以使用元素周期表中的第ⅠA,ⅡA或ⅡB族中的元素的铝酸盐,例如Ca、Mg、Ba、-Zn、Na、K和Cd的铝酸盐及混合铝酸盐。
催化剂可以用不同的方法制备。优选的方法是浸渍载体,但本发明不局限于给出的方法。例如,浸渍过程包括将预成形载体与选自第ⅢA族的一种或多种金属(镓和铟)的化合物的含水的或有机的溶液相接触,该溶液体积比载体的保留体积大或优选的是等于所说的体积。将载体与溶液保持接触数小时之后,将所浸渍的载体过滤,用蒸馏水洗涤,干燥和在空气中通常在100℃至600℃之间,优选的是在110℃至500℃之间焙烧。在沉积一种或多种第Ⅷ族金属之前,有利的是其可以在氢气中还原。一般在50℃至600℃之间,优选的在90℃至500℃之间,或借助溶解的有机还原剂进行操作。这种操作能够进一步增加催化剂的活性。
然后按照所使用的前体种类的功能将所得产物在第Ⅷ族金属的有机溶液(如烃溶液)或水溶液中浸渍。在一种特别有利的方法中,使用镍或钯的硝酸盐水溶液。
将由此浸渍的载体过滤,任意地用蒸馏水洗涤,干燥和在空气中一般在约110℃至约600℃之间,优选的是在约110℃至约500℃之间焙烧。然后在氢气中一般在约50℃至约600℃之间。优选的是在约80℃至约500℃之间的温度下还原。第Ⅷ族和第ⅢA族元素即以氧化物和/或金属形式沉积在载体上。
另一种方法由将载体的湿粉与催化剂的前体混合,然后成形和干燥构成。
下面给出制备催化剂使用的金属前体的例子。对于第Ⅷ族金属,其可以使用化合物,如氯化物、硝酸盐、卤代胺化合物、氨基化合物,以及溶于浸渍溶剂的有机酸的盐。也可以使用在有机溶剂,如烃中的第Ⅷ族金属的金属有机化合物的溶液。作为烃类的例子可以参考饱和链烷烃类,其烃链每分子含6至12碳原子、每分子含6至12碳原子的环烷烃或每分子含6至12碳原子的芳烃。作为第Ⅷ族金属的金属有机化合物的例子可以参考羰基、卤代羰基和乙酰基丙酮酸酯化合物,但并不限制于所列的物质。
选自镓和铟的元素优选的是以至少一种选自氯化物、硝酸盐、卤代胺化合物、氨基化合物和溶于浸渍溶剂的有机酸的盐的无机化合物形式引入。有利的是第ⅢA族金属借助于所说的第ⅢA族金属的无机化合物的水溶液引入。选自镓和铟的元素也可以通过溶于有机溶剂,如烃的金属有机化合物被引入。作为烃类的例子可以参考饱和链烷烃类,其烃链中每分子含6至12碳原子、每分子含6至12碳原子的环烷烃或每分子含6至12碳原子的芳烃。作为镓和铟金属的金属有机化合物的例子可以参考烷基类、烷氧基类、乙酸酯类和乙酰丙酮酸酯类,但并不以任何方式限制于所列的物质。
正如前文所述,载体可以有不同的类型。一种特别适合的载体具有特殊的特征,如用B.E.T方法测定的比表面积在10至500m2/g之间,优选的是在50至500m2/g之间,和载体的总的孔体积是0.2至1.3cm3/g。
一旦这类金属已经被固定在载体上,则有利的是在氢气中在高温下,如50至600℃,将催化剂进行活性处理,以便得到活性的金属相。这种在氢气中的处理方法包括例如在氢气流中慢慢升温至最高还原温度,如在50至600℃之间,优选的是在80至500℃之间,之后保持这种状态,例如1至6小时。
下面的非限定性实施例举例说明本发明。
实施例1(对比例)该实施例的目的是将按重量计为10%的在庚烷中的丁二烯组成的物料氢化。反应在搅拌良好的,Grignard型间歇式反应器中在压力为20巴和温度为20℃下进行。所用的氢气中不含一氧化碳。
所用的催化剂(称为催化剂A)由沉积在比表面积为70m2/g的过渡态氧化铝上的含量为0.3%(重量)的钯组成。其通过借助于硝酸钯溶液将孔体积为0.6cm3/g的四方形γ氧化铝无水浸渍制备。浸渍之后,将样品在120℃温度下干燥2小时,然后在空气流下在450℃焙烧2小时。在进行试验之前将催化剂在氢气流下在150℃温度下还原2小时。在反应进行过程中定期地取出样品并用气相色谱法分析以便观察丁二烯向丁烯和丁烷的转化。所得结果列于下表中。
时间丁二烯丁烯丁烷(分)(wt.%)(wt.%)(wt.%)0100--180.8519.10.05275.7524.150.136633.850.15454.545.330.1754356.80.263267.70.21720.579.280.228990.70.3实施例2(根据本发明)在本实施例中按照与实施例1中相同的条件进行相同的反应,但在本实施例中依次使用含按重量计为0.3%的钯和各种镓含量的不同催化剂。所用的载体与实施例1中的单金属催化剂的载体相同。各批载体用具有各种浓度的硝酸镓溶液无水浸渍。浸渍之后,将样品在120℃温度下干燥2小时,然后在空气流中在450℃温度下焙烧2小时。接着使用与如实施例1中描述的催化剂A的相同的方法将钯沉积在载体上。进行试验之前在氢气流中在150℃温度下将催化剂还原2小时。
下表列出对于每种用它们的镓含量表示的催化剂,以及实施例1中的单金属催化剂在反应8分钟后得到的产物的组成。
镓含量丁二烯丁烯丁烷(wt.%)(wt.%)(wt.%)(wt.%)0990.70.30.076.5793.160.270.215.5594.20.250.427.592.220.280.82891.70.31.1910.389.40.3可以看出,镓含量在按重量计为0。07%至0.82%的催化剂具有比单金属催化剂更高的活性,因为经过相同的反应时间(8分钟)之后,其产物中的丁二烯含量较低。而且可以看到,这些比单金属催化剂具有更高活性的催化剂也具有更高的丁烯氢化选择性。因此,虽然丁二烯转化率更大,但可以看到丁烯含量也更高以及生成的丁烷减少。
实施例3(根据本发明)本实施例使用与实施例1相同的反应和相同的条件。在本实施例中使用沉积在与实施例1中相同的载体上的和按照实施例2中相同的制备方法制备的含0.3%(重量)钯和0.24%(重量)镓的催化剂B。也使用具有相同组成的催化剂C,但其与催化剂B的不同在于在制备过程中所用的在氧化铝上的镓前体在钯沉积之前已经在氢气下在450℃温度下还原2小时。反应8分钟后得到的产物的组成列于下表中
催化剂丁二烯丁烯丁烷(wt.%)(wt.%)(wt.%)B5.694.140.26C4.295.530.27可以看到,就丁二烯的氢化而言,催化剂C比催化剂B活性更高。同时存在选择性的改进,因为催化剂C具有更高的丁二烯转化率,其丁烯含量更高。
实施例4(对比例)本实施例的目的是氢化具有下列组成的C3物流裂化馏分丙烷=3.59%丙烯=92.14%丙炔(MA)=1.78%丙二烯(PD)=1.65%该反应以液相在连续的固定床反应器中在压力为24巴和温度为50℃下进行。其空间速度是20物料cm3/催化剂cm3/h,氢气与丙炔加丙二烯的摩尔比为1.2。所用的氢气不含一氧化碳。所用的催化剂是实施例1中的催化剂A。
定期地取出产物样品并用气相色谱法分析以便观察丙炔和丙二烯的转化,以及丙烯的含量。所得的结果列于下表中
时间丙烯丙炔丙二烯(小时)(wt.%)(wt.%)(wt.%)5094.87-0.07110094.92-0.06915095.13-0.08020094.78-0.05230094.90-0.065在操作过程中计算丙二烯和丙烯的平均含量,可以计算出丙炔和丙二烯的平均转化率,以及所得丙烯的平均数。在该实施例中转化率为98%,用产物中的丙烯含量与物料中的丙烯含量的比率表示的丙烯产率为103%。
实施例5(根据本发明)本实施例使用与实施例4中相同的反应和相同的条件,但在实施例3中的催化剂C存在下进行。所得的分析结果列于下表中时间丙烯丙炔丙二烯(小时)(wt.%)(wt.%)(wt.%)5095.41-0.007210095.43-0.008915095.39-0.007020095.05-0.009030095.56-0.0060在该实施例中转化率为99.78%,用在产物中的丙烯含量与物料中的丙烯含量的比率表示的丙烯产率为103.5%。
实施例6(对比例)本实施例使用与实施例1相同的反应并在相同的条件下进行,但在本实施例中依次使用按重量计为0.3%的钯和各种镓含量的不同催化剂。所用的载体与实施例1中的单金属催化剂的相同。各批载体通过使用与实施例1中描述的催化剂A的相同的方法用硝酸钯无水浸渍。然后通过用具有各种浓度的硝酸镓溶液浸渍将镓沉积在载体上。浸渍后,将样品在120℃温度下干燥2小时,然后在空气流中在450℃温度下焙烧2小时。在试验之前,在氢气流中在150℃温度下将催化剂还原2小时。
下表中列出用镓含量表示的每一种催化剂,以及实施例1中的催化剂A经反应8分钟后的产物组成。
镓含量丁二烯丁烯丁烷(wt.%)(wt.%)(wt.%)(wt.%)0990.70.30.081.5792.140.290.235.9593.780.270.418.591.220.280.808.691.10.31.2210.289.490.31可以看到,镓含量在按重量计为0.08%至0.80%之间的样品比实施例1中的单金属催化剂具有更高的活性,因为经过相同的反应时间(8分钟),产物中的丁二烯含量较低。而且,比单金属催化剂活性更高的这些催化剂也具有更高的丁烯氢化选择性。因此,虽然丁二烯转化率更高,但丁烯含量也更大并且生成的丁烷减少。
权利要求
1.将含有不饱和二烯烃和/或炔烃化合物的物料选择性氢化的方法,该方法通过在温度为0至200℃之间和压力为20至300巴之间将物料和氢气与催化剂相接触组成,该方法的特征在于,根据催化剂总重量计算,其含有a)0.1至10%的至少一种选自镍、钯、铂、铑、和钌的第Ⅷ族金属,b)0.01至10%的至少一种选自镓和铟的第ⅢA族的附加的金属元素。
2.根据权利要求1的方法,其特征在于第Ⅷ族金属选自钯,铂和镍。
3.根据权利要求1和2中之一的方法,其特征在于载体选自氧化硅、氧化铝、氧化硅-氧化铝、铝酸盐或混合的碱金属、碱土金属、锌或镉的铝酸盐。
4.根据权利要求1至3任何之一的方法,其特征在于第Ⅷ族金属浓度按重量计为0.2至5%之间。
5.根据权利要求1至4任何之一的方法,其特征在于第ⅢA族金属浓度按重量计为0.1至5%之间。
6.根据权利要求1至5任何之一的方法,其特征在于附加的第ⅢA族金属元素与第Ⅷ族金属的摩尔比是0.2至5。
7.根据权利要求1至6任何之一的方法,其特征在于其摩尔比是0.3至2。
8.根据权利要求1至7任何之一的方法,其特征在于催化剂通过沉积第ⅢA族金属,然后沉积第Ⅷ族金属制备。
9.根据权利要求8的方法,其特征在于用第ⅢA族金属浸渍的载体在沉积第Ⅷ族金属之前先进行还原。
10.根据前述权利要求任何之一的方法,其特征在于催化剂在与物料接触之前先被活化。
全文摘要
本发明涉及一种选择性氢化不饱和烃的方法,其特征在于催化剂含有第Ⅷ族金属和选自镓和铟的元素。
文档编号C07C5/05GK1081664SQ9310544
公开日1994年2月9日 申请日期1993年4月2日 优先权日1992年4月2日
发明者P·沙拉辛, J·-P·博伊蒂欧 申请人:法国石油公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1