一种基于聚氨酯的互穿网络离子交换膜及其制备方法

文档序号:3698842阅读:129来源:国知局
专利名称:一种基于聚氨酯的互穿网络离子交换膜及其制备方法
技术领域
本发明涉及一种离子交换膜,特别涉及一种全钒液流电池(VRB)用基于聚氨酯的 互穿网络离子交换膜及其制备方法属于高分子功能膜材料领域。
背景技术
作为一种新型的绿色环保储能电池,全钒氧化还原液流电池是一种新型绿色的二 次电池,具有容量和功率可调、大电流无损深度放电、使用寿命长、易操作和维护等优点。它 作为一种单一金属离子的大型储能系统,避免了传统铅酸电池和Fe/Cr电池的电解液交叉 污染问题,在应用于再生能源的固定储能装置方面,展示了很大的优势。它既可以通过电力 充电又可以通过交换电解液方式机械充电的特性,使得它在应用于车载电源方面备受人们 的关注。经过20年的发展,正逐步走向实用化。全钒液流电池(VRB)不仅可以用作太阳能、 风能发电过程配套的储能装置,还可以用于电网调峰,提高电网稳定性,保障电网安全。
与其他蓄电池比较,全钒液流电池(VRB)有诸多优点(1)钒电池的额定功率和额 定能量是相互独立的,功率大小取决于电池堆的性能(如电池堆的电阻等),钒电池的能量 取决于电解液的体积和电解液的浓度。因此,可以通过增加电解液的浓度和体积来增加电 池的容量。(2)在充、放电期间,钒氧化还原液流电池只发生液相反应,电极不参与化学反 应。(3)钒电池储存寿命长,理论上保存期无限。因为电解液可以循环使用,这大大降低了电 池的成本。(4)钒电池可以实现100%深放电而不损坏电池。(5)钒电池的结构简单、材料 价格便宜、更换和维修费用低廉。(6)通过更换钒电池的电解液可以实现瞬间再充电。(7) 钒电池对环境友好,是新型的环保电池。 离子交换膜是全钒液流电池(VRB)的关键部件,起到交换离子、分隔正负极活性 物质(不同价态的钒离子)的双重功能。其性质对全钒液流电池(VRB)的性能、寿命和成 本产生重大影响。现行的全钒液流电池(VRB)中广泛使用的是全氟磺酸型离子交换膜,它 具有质子交换率高、机械稳定性和抗氧化降解性好等优点,但是该类膜的全氟化生产过程 复杂、过程参数控制严格、膜的生产成本过高,在很大程度上制约了全钒液流电池(VRB)的 工业化和商业化。与全氟磺酸型离子交换膜相比,烃类磺酸型离子交换膜具有制备工艺简 单、原料价廉易得、生产成本远低于全氟磺酸型离子交换膜等优点,但其却存在着化学稳定 性差、抗氧化降解能力弱等缺点,当其应用于全钒液流电池(V啦的隔膜时,容易被正极电 解质溶液中的强氧化性V5+所氧化降解,导致全钒液流电池(VRB)的电池性能下降,电池的 使用寿命縮短。 因此,研制开发价格低廉、性能优异、抗氧化性好的离子交换膜是促进全钒液流电 池(VRB)发展的关键之一,新型质子交换膜的制备已经引起全世界科研人员的关注。为 了克服这些困难,各国研究者进行了大量的工作。于景荣(phys.Chem.Chem.Phys. ,2003, 5(3) :611-615)等采用热压的方法,制备了PSSA-Nafion复合膜,并用于质子交换膜燃料电 池(PEMFC)上;Bo Yang等(Electrochemistry Communications 2004, (6) :231-236)采用 热压法制备了 Nafion/SPEEK/Nafion复合膜,并用于直接甲醇燃料电池(DMFC)中;任素珍(J. Membr. Sci. ,2005, (247) :59-63)等采用多次浸泡/干燥的方法,制备了 SPEEK麵fion 复合膜,并应用于直接甲醇燃料电池(DMFC)。以上制备的氟/烃复合离子交换膜,由于两层 膜之间没有化学键交联,其结合性较差,在应用过程中容易发生分层现象,从而导致氟/烃 复合离子交换膜的电阻增大。专利(公开号CN101383404)提出了一种适用于全钒液流电池 (VRB)的,全氟磺酸型离子交换膜与烃类磺酸型离子交换膜之间具有良好结合性的氟/烃 复合离子交换膜及其制备方法。然而此种复合与交联也只在两层接触面上进行,难以保证 整个复合膜的力学与机械性能的均一稳定性。文献(J Membr Sci, 1995,98C1-2) :77-87.) 使用交联剂二乙烯基苯处理离子交换树脂Amberlite CG400和AmberliteCG120浸渍后的 膜,改善对钒离子的阻挡效果。然而在增加交联度的同时可能会减小离子交换树脂的电导 率。 尽管上述研究在一定程度上提高质子交换膜性能,但普遍存在两方面问题。1)膜 材料复合过程难以控制,成本较高且磺化剂的使用容易引起环境污染;2)处理过程常常包 括多个步骤,难于适用于大规模批量化生产。

发明内容
针对现有技术的不足,本发明的目的在于提供一种适用于全钒液流电池(VRB)的
基于聚氨酯的互穿网络离子交换膜及其制备方法。 本发明的技术方案如下 本发明的一种基于聚氨酯的互穿网络离子交换膜是由全氟磺酸离子交换树脂分
子与一种聚氨酯交联聚合物组成互穿网络结构。其互穿网络结构示意图参见附图1。
互穿聚合物网络结构即IPN(interpenetrating Polymer Network),是两种或两
种以上的共混聚合物,分子链相互贯穿,并至少一种聚合物分子链以化学键的方式交链而 形成的网络结构。 互穿聚合物网络(IPN)是20世纪70年代发展起来的一种新型高分子材料,由于 IPN材料中2种或2种以上的聚合物网络相互缠结,互穿而不失去原聚合物固有的特性,从 而获得其他聚合物无法比拟的独特性能。 所述的全氟磺酸型离子交换树脂的化学结构如结构式1所示
F2 F2 C 一C -
F
-c-
F2 -C -
F2 -C
F
c-
OCF2CF"H)(CF2)nS03X Rf
CF3 结构式1 其中x、 y、 z分别为1 10000的整数;且x/(x+y+z) = 40% 85%, y/(x+y+z) =10% 50%,z/(x+y+z) = 0. 01% 10%,均为摩尔比;其中,m为0、1或2,n为1-6的 整数;Rf为_F、 -CF3、 _CF2CF3、 _CF2CF2CF3或_CF(CF3)2 ;根据m、 n取值及结构中单体比例的 不同,所形成的全氟磺酸离子交换树脂交换容量在0. 8-2. 6mmol/g。 X为H+或Na+。
5
所述的全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万。 所述的一种聚氨酯交联聚合物是指由多元异氰酸酯与多元醇聚合而生成的交联
聚氨酯聚合物。无水多元异氰酸酯与无水多元醇在含有全氟磺酸型离子交换树脂的有机溶
剂中反应,形成聚氨酯交联聚合物的同时,与全氟磺酸型离子交换树脂组成互穿网络结构。 本发明的一种基于聚氨酯的互穿网络离子交换膜,其制备过程包括下列步骤 (1)将干全氟磺酸型离子交换树脂溶解于有机溶剂中,然后在无水条件下加入无
水多元异氰酸酯与无水多元醇,搅匀溶液待用; (2)使用流延法把步骤(1)得到的溶液在无水条件下,在水平且平滑的玻璃板或 哈氏合金钢板表面流延成薄膜; (3)把步骤(2)得到的薄膜在无水条件下加热到一定温度,一段时间后从平板表 面剥离得到互穿网络结构的全氟磺酸离子交换膜; (4)把步骤(3)得到的离子交换膜,用氟气进行氟化得到本发明的互穿网络结构 离子交换膜,本步骤非必须步骤,依具体情况可以省略。 步骤(1)中所述的有机溶剂为N, N- 二甲基甲酰胺(DMF) 、 N, N_ 二甲基乙酰胺 (DMAc)、二甲基亚砜(DMSO)或N-甲基_2_妣咯烷酮(NMP)中的一种或多种溶剂的混合溶 剂; 步骤(1)中所述的全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万, 为H+型或Na+型,交换容量为0. 8-2. 60mmol/g,在溶液中的浓度用重量百分数表示时为 5% 50%,与步骤(1)中所述的多元异氰酸酯和多元醇总质量比为1 : 1 15 : 1;
步骤(1)中所述的多元异氰酸酯,选自甲苯二异氰酸酯(TDI,包括甲苯-2,4-二 异氰酸酯和甲苯-2,6-二异氰酸酯)、二苯基甲烷二异氰酸酯(MDI,包括4,4' -、2,4, -、2, 2'-、三种异构体)、三苯基甲烷三异氰酸酯(TTI)、六亚甲基二异氰酸酯(HDI)、异佛尔酮二 异氰酸酯(IPDI)、二 (二异氰酸酯甲基)环己烷(HXDI)或上述多元异氰酸酯的部分氟化及 全氟化物中的一种或几种的混合物; 步骤(1)中所述的多元醇选自乙二醇、一縮二乙二醇、丙三醇、三羟甲基丙烷 (TMP)、季戊四醇、三乙醇胺、聚乙烯醇中的一种或者几种交联剂的混合物,所述多元醇加 入量与多元异氰酸酯加入量之功能官能团数量比(羟基-0H数与氰酸酯基-NC0数)为
i : o. 8 i : 2; 步骤(2)中所得到的薄膜,膜厚在15 250微米之间;干燥后可从所述平板表面 剥离; 步骤(3)中所述的加热温度为50°C 18(TC,加热时间的长度在10分钟到12个
小时,其中升温过程可以包括梯度升温。 与现有技术相比,本发明的优良效果如下 本发明所述的方法避免现有方法中使用磺化剂、多步处理等繁琐的工艺过程,以 及熔融法无法制备均相或交联质子交换膜的缺点。在铸膜液中预先导入具有质子交换功能 的磺酸基团,使用溶液流延法制备均相质子交换膜。发挥含氟高分子材料耐电化学腐蚀性 强,韧性好的特长,组成膜材料的基本部分。使用加热引发方式使单体化合物发生聚合反 应,和含氟元素的基体高分子形成互穿网络构造,因此可以使用高交换容量的全氟磺酸树 脂,所含的磺酸基团彼此连接组成离子通道,有效降低膜质子交换阻力。所述制膜方法简单,容易实现工业化放大生产。该质子交换膜适用于用作全钒液流电池的隔膜,也可以作为 常见的阳离子交换膜用于电场驱动的分离过程等场合。利用本发明的质子交换膜电导性高 的特点,可以有效降低全钒液流电池内阻,为发展新型质子交换膜制备提供普适性方法,为 进一步工业生产奠定基础。


图1是基于聚氨酯的互穿网络离子交换膜网络结构示意图;其中实线表示全氟磺 酸离子交换树脂分子,虚线表示聚氨酯交联聚合物。
具体实施例方式
以下通过实施例对本发明进行进一步说明,但本发明不仅限于以下实施例。
实施例1 : 将120g干磺酸树脂(数均分子量8万,交换容量1. 25mmol/g, H+型)在无水条件 下溶解于880g N, N-二甲基甲酰胺(DMF)中,得到磺酸溶液(铸膜液),加入无水甲苯_2, 4-二异氰酸酯4. 5g、无水三羟甲基丙烷(TMP)3. 5g(两者羟基-0H数与氰酸酯基-NC0数之 比为l : 1),充分溶解、搅拌均匀后,在无水条件下在光滑且水平的玻璃表面流涎,75t:下 蒸发溶剂10h成膜,从玻璃上剥离后得到离子交换膜,用氟气进行氟化得到膜厚50微米的 互穿网络结构的离子交换膜。
实施例2 : 将45g干磺酸树脂(数均分子量15万,交换容量2. 55mmol/g, Na+型)在无水条 件下溶解于880g N-甲基-2-吡咯烷酮(NMP)中,得到磺酸溶液(铸膜液),加入无水4, 4' -二苯基甲烷二异氰酸酯(MDI)无水季戊四醇共44g(两者羟基-0H数与氰酸酯基-NC0 数之比为l : 0.8),充分溶解、搅拌均匀后,在无水条件下在光滑且水平的哈氏合金平板表 面流涎,升温到15(TC蒸发溶剂lh成膜,从玻璃上剥离,得到膜厚20微米的互穿网络结构的 离子交换膜。
实施例3 : 将420g干磺酸树脂(数均分子量25万,交换容量1. 05mmol/g,Na+型)在无水条 件下溶解于880g N,N-二甲基乙酰胺(DMAc)中,得到磺酸溶液(铸膜液),加入无水三苯基 甲烷三异氰酸酯(TTI)、无水一縮二乙二醇共210g (两者羟基-OH数与氰酸酯基-NCO数之 比为l : 1.5),充分溶解、搅拌均匀后,在无水条件下在光滑且水平的玻璃表面流涎,10(TC 下蒸发溶剂2h成膜,从玻璃上剥离后得到离子交换膜,用氟气进行氟化得到膜厚150微米 的互穿网络结构的离子交换膜。
实施例4 : 将800g干磺酸树脂(数均分子量20万,交换容量2. 25mmol/g, Na+型)在无水条 件下溶解于880g二甲基亚砜(DMSO)中,得到磺酸溶液(铸膜液),加入异佛尔酮二异氰酸 酯(IPDI)444g、聚乙烯醇88g(两者羟基-0H数与氰酸酯基-NC0数之比为1 : 2),溶解、搅 拌均匀后,在光滑且水平的玻璃表面流涎,16(TC下蒸发溶剂20分钟成膜,从玻璃上剥离后 得到离子交换膜,用氟气进行氟化得到膜厚250微米的互穿网络结构的离子交换膜。
实施例5:
同实施例1,所不同的是铸膜液中溶剂用量是480g,所用平板为哈氏合金板。
实施例6 : 同实施例l,所不同的是铸膜液中溶剂为二甲基亚砜(DMSO)与N-甲基_2_吡咯烷 酮(NMP)的混合物(体积比1:1)。
实施例7 : 同实施例l,所不同的是铸膜液中无水甲苯_2,4- 二异氰酸酯用量为8. 5g。
实施例8 : 同实施例2,所不同的是铸膜液中二苯基甲烷二异氰酸酯(MDI)为4,4' _及2, 4' -二苯基甲烷二异氰酸酯的混合物(1 : 1)。
实施例9 : 同实施例2,所不同的是铸膜液中多元醇为三羟甲基丙烷(TMP)和三乙醇胺的混
合物(1:1)。
实施例10 : 同实施例2,所不同的是铸膜液在平板表面流涎后,升温到9(TC蒸发溶剂5分钟 后,再升温到175 °C , 15分钟,成膜。
实施例11 : 同实施例2,所不同的是铸膜液在平板表面流涎后,升温到8(TC蒸发溶剂10分钟 后,再升温到18(TC,15分钟,成膜。
实施例12 : 同实施例3,所不同的是两种干磺酸树脂(数均分子量分别为28万、20万,交换容 量1. 05mmol/g和2. 35mmol/g, Na+型)的混合物。
实施例13 : 实施例3,所不同的是多元醇为乙二醇和一縮二乙二醇的混合物(质量比2 : 1)。
实施例14 : 同实施例3,所不同的是多元异氰酸酯为六亚甲基二异氰酸酯(HDI)、异佛尔酮二 异氰酸酯(IPDI)、二 (二异氰酸酯甲基)环己烷(HXDI)的混合物(质量比1:1:1)。
实施例15 : 同实施例4,所不同的是异氰酸酯单体为全氟化六亚甲基二异氰酸酯(HDI)。
实施例16 : 同实施例4,所不同的是异氰酸酯单体为部分氟化异佛尔酮二异氰酸酯(IPDI)。
8
权利要求
一种基于聚氨酯的互穿网络离子交换膜,其特征在于是由全氟磺酸离子交换树脂分子与一种聚氨酯交联聚合物组成互穿网络结构,所述的全氟磺酸型离子交换树脂的化学结构如结构式1所示结构式1其中x、y、z分别为1~10000的整数;且x/(x+y+z)=40%~85%,y/(x+y+z)=10%~50%,z/(x+y+z)=0.01%~10%,均为摩尔比;其中,m为0、1或2,n为1-6的整数;Rf为-F、-CF3、-CF2CF3、-CF2CF2CF3或-CF(CF3)2;根据m、n取值及结构中单体比例的不同,所形成的全氟磺酸离子交换树脂交换容量在0.8-2.6mmol/g;X为H+或Na+;所述的全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万;所述的一种聚氨酯交联聚合物是指由多元异氰酸酯与多元醇聚合而生成的交联聚氨酯聚合物。F200910255611XC00011.tif
2. 制备权利要求1所述的一种基于聚氨酯的互穿网络离子交换膜的方法,包括如下步骤(1) 将全氟磺酸型离子交换树脂溶解于有机溶剂中,然后在无水条件下加入无水多元 异氰酸酯与无水多元醇,搅均溶液待用;(2) 使用流延法把步骤(1)得到的溶液在水平且平滑的玻璃板或哈氏合金钢板表面流 延成薄膜;(3) 把步骤(2)得到的薄膜加热到一定温度,一段时间后从平板表面剥离得到互穿网 络结构的磺酸离子交换膜;
3. 制备权利要求2所述的一种基于聚氨酯的互穿网络离子交换膜的方法,其特征在于 在步骤(3)之后加如下步骤(4) 把步骤(3)得到的离子交换膜,用氟气进行氟化得到本发明的互穿网络结构离子 交换膜。
4. 如权利要求2所述的制备方法,其特征在于步骤(1)中所述的有机溶剂为N,N-二 甲基甲酰胺(DMF) 、 N, N- 二甲基乙酰胺(DMAc) 、二甲基亚砜(DMS0)或N_甲基-2-吡咯烷 酮(NMP)中的一种或多种溶剂的混合溶剂。
5. 如权利要求2所述的制备方法,其特征在于步骤(1)中所述的全氟磺酸离子交换 树脂为干树脂,数均分子量为6万到30万,为H+型或Na+型,交换容量为0. 8_2. 60mmol/g, 在溶液中的浓度用重量百分数表示时为5% 50%,与步骤(1)中所述的多元异氰酸酯和 多元醇总质量比为1 : 1 15 : 1。
6. 如权利要求2所述的制备方法,其特征在于步骤(1)中所述的多元异氰酸酯,选自 甲苯二异氰酸酯(TDI,包括甲苯-2, 4- 二异氰酸酯和甲苯_2, 6- 二异氰酸酯)、二苯基甲烷 二异氰酸酯(MDI,包括4,4'-、2,4'-、2,2'-、三种异构体)、三苯基甲烷三异氰酸酯(TTI)、六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、二 (二异氰酸酯甲基)环己烷 (HXDI)或上述多元异氰酸酯的部分氟化及全氟化物中的一种或几种的混合物。
7. 如权利要求2所述的制备方法,其特征在于步骤(1)中所述的多元醇选自乙二醇、 一縮二乙二醇、丙三醇、三羟甲基丙烷(TMP)、季戊四醇、三乙醇胺、聚乙烯醇中的一种或者几种交联剂的混合物,所述多元醇加入量与多元异氰酸酯加入量之功能官能团数量比(羟 基-0H数与氰酸酯基-NC0数之比)为1 : 0.8 1 : 2。
8. 如权利要求2所述的制备方法,其特征在于步骤(2)中所得到的薄膜,膜厚在15 250微米之间;干燥后可从所述平板表面剥离。
9. 如权利要求2所述的制备方法,其特征在于步骤(3)中所述的加热温度为5(TC 18(TC,加热时间的长度在10分钟到12个小时,其中升温过程包括梯度升温。
全文摘要
本发明涉及一种基于聚氨酯的互穿网络离子交换膜及其制备方法。它采用极性有机溶剂将全氟磺酸树脂和无水多元异氰酸酯与无水多元醇溶解;使用流延法在平滑的固体表面流延成膜;然后升温使多元异氰酸酯与无水多元醇发生聚合反应,所述聚合反应的产物和全氟磺酸分子链形成高分子互穿网络结构的离子交换膜。本制膜方法能够得到质子交换性良好的离子交换膜材料,克服现有熔融模压过程无法制备均质交联离子交换膜的缺点,具有工艺过程简单,易于工业放大等优点。
文档编号C08G18/32GK101794889SQ20091025561
公开日2010年8月4日 申请日期2009年12月9日 优先权日2009年12月9日
发明者刘小宁, 张恒, 张永明, 王学军 申请人:山东东岳高分子材料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1