一种钼基多酸/聚苯胺/氧化石墨烯三元复合材料及其制备方法和用途与流程

文档序号:11277717阅读:481来源:国知局
一种钼基多酸/聚苯胺/氧化石墨烯三元复合材料及其制备方法和用途与流程

本发明属于无机-有机复合材料技术领域,特别涉及一种钼基多酸/聚苯胺/氧化石墨烯三元复合材料及其制备方法和在电化学超级电容器上的应用。



背景技术:

多金属氧酸盐(polyoxometalates,简称poms)简称多酸,经过近两个世纪的发展,多酸研究取得了长足的发展和进步。合成方法上,多酸由最初发现时的无目的及不可控性合成向以构筑基元为策略的有序组装及可控合成发展,使得多酸合成进入了分子剪裁和组装阶段;从对稳定氧化态化合物的合成、研究,发展到了关于组装亚稳态和变价化合物的合成、研究及应用;从对单一简单结构的研究到以其作为基本单元的修饰化和拓展结构设计、研究及应用,从而突破了原本简单多酸结构的范畴,并发掘出了大量具有特殊结构和功能性质的多酸及多酸基化合物。多酸因其良好的性质与有机、生物及分析化学、材料科学和能源科学等交叉渗透,有效推动了其它衍生分支学科的发展。

近年来,由于石墨烯及其衍生物具有较大的比表面积、优异的电子传导能力、良好的机械强度以及热稳定性,其在光、电、磁、热等方面有着非常广阔的应用前景。其中,化学修饰石墨烯由于可调变种类多,其可广泛应用于产发射晶体管、生物探针、储能材料以及聚合物复合材料制备等方面。因此,作为化学修饰石墨烯中的重要一员,氧化石墨烯是一类潜在的优异的储能材料。

导电聚合物具有独特的共轭结构、灵活性、多样性、成本低和易加工等特点,使其在显示器、传感器、生物医药和电子器件等方面得到广发的应用。聚苯胺是一类最优应用前景和有发展潜能的导电聚合物,因为聚苯胺的高的导电性、独特的掺杂性能、原料易得和好的环境稳定性,使其在太阳能电池、超级电容器、电子变色期间和传感器方面有广发的应用。因此,聚苯胺导电聚合物一直是科学家关注和研究的热点。



技术实现要素:

本发明的目的是将钼基多酸、聚苯胺和氧化石墨烯通过原位合成和静电负载技术合成三元复合电极材料并且应用于电化学超级电容器电极材料。poms、pani和go组装的次序不同对其作为超级电容器的电极材料的性能有着很大的影响,制备的三元复合材料的次序对于作为超电容的电极材料的性能有了很大的提升,go/pani-pmo12在1a/g的电流密度下其比容量可以达到1071f/g。本发明采用了在go/pani阵列上静电负载多酸合成了三元复合材料并研究了其在电化学超级电容器的应用研究。

一种钼基多酸/聚苯胺/氧化石墨烯三元复合材料,钼基多酸与聚苯胺/氧化石墨烯阵列的质量比为0.3-0.6:1,聚苯胺阵列高度为50nm-100nm。

进一步的,所述钼基多酸为keggin型多酸,其分子式为h3+xpmo12-xvxo40,其中x=0,1,2,或3中的任意一个。

一种钼基多酸/聚苯胺/氧化石墨烯三元复合材料的制备方法,包括如下步骤:

1)原位合成法制备聚苯胺/氧化石墨烯阵列:将氧化石墨烯分散于hclo4溶液和乙醇的混合液中,加入苯胺单体后,在(-20)-(-5)℃下加入过硫酸铵诱导聚合,得到聚苯胺/氧化石墨烯阵列;

2)静电负载法组装钼基多酸/聚苯胺/氧化石墨烯三元复合材料:将步骤1)得到的聚苯胺/氧化石墨烯阵列分散于hcl溶液中,超声分散均匀后,加入钼基多酸,室温下搅拌24-60h,随后离心水洗除去游离多酸,得到钼基多酸/聚苯胺/氧化石墨烯三元复合材料。

进一步的,所述钼基多酸为keggin型多酸,其分子式为h3+xpmo12-xvxo40,其中x=0,1,2,或3中的任意一个。

进一步的,所述的钼基多酸与聚苯胺/氧化石墨烯阵列的质量比为0.30-0.60:1。

将上述钼基多酸/聚苯胺/氧化石墨烯三元复合材料用作电化学超级电容器电极材料的方法,将钼基多酸/聚苯胺/氧化石墨烯三元复合材料与导电剂炭黑、粘结剂pvdf以质量比85:10:5的比例混合均匀,涂覆于1×1cm2的碳纸集流体上,100℃干燥24h,得到超级电容器电极。

将制备好的超级电容器电极置于1mol/l的h2so4溶液中,采用三电极体系进行检测,参比电极为银/氯化银电极,辅助电极为铂片电极,测试其储能性能。

本发明首次将钼基多酸与氧化石墨烯/聚苯胺阵列结合,实现了钼基多酸在分子尺度上的均匀分散,所制得的三元复合材料可在微米级别可控。聚苯胺阵列通过原位生长的方式在氧化石墨烯表面聚合,毛刺状网络结构,利用质子掺杂技术,可以在保持聚苯胺呈导电的em态,其本身带正电荷,从而实现了多酸阴离子的固定化。通过调节钼基多酸的种类,可制备一系列钒掺杂的多酸/聚苯胺/氧化石墨烯三元复合材料。由于聚苯胺/氧化石墨烯阵列中存在多孔结构,在保证多酸均匀分散的同时能极大的提高材料与电解液的接触,对于提高材料的比电容十分有帮助。借助于聚苯胺/氧化石墨烯阵列的分散作用,钼基多酸可以在分子层面与电解液接触并发生氧化还原反应,从而提高材料的赝电容。该类材料兼具双层电容和赝电容行为,可以作为电极材料,在新型的电化学超级电容器中具有很广泛的应用前景。

附图说明

图1是本发明实施例1、2、3、4得到的钼基多酸与氧化石墨烯/聚苯胺阵列质量比分别为0.49、0.36、0.42、0.40的钼基多酸/聚苯胺/氧化石墨烯三元复合材料和氧化石墨烯/聚苯胺阵列的循环伏安(cv)图;曲线由外向内依次为100、50、20、10、5mvs-1

图2为恒电流充放电图谱,其中,a为氧化石墨烯/聚苯胺阵列曲线;b、c、d、e分别为实施例1、2、3、4中制备的钼基多酸/聚苯胺/氧化石墨烯三元复合材料曲线;曲线自左向右依次为10、5、2.5、2、1.5、1ag-1

图3为不同材料的比容量图,其中,a为氧化石墨烯/聚苯胺阵列曲线;b、c、d、e分别为实施例1、2、3、4中制备的钼基多酸/聚苯胺/氧化石墨烯三元复合材料曲线。

图4为实施例1制备的钼基多酸/聚苯胺/氧化石墨烯三元复合材料与氧化石墨烯/聚苯胺阵列、h3pmo12o40钼基多酸的红外对比图。

具体实施方式

下面通过具体实施例对本发明进行说明,但本发明并不局限于此。

实施例1

1、合成氧化石墨烯/聚苯胺(go/pani)阵列:将300mg的氧化石墨烯(go)分散于1mol/l的hclo4溶液500ml和乙醇500ml的混合液中,加入2g的苯胺(aniline)单体,在-10℃下加入诱发剂过硫酸铵(aps)0.5g诱导聚合,得到氧化石墨烯/聚苯胺(go/pani)阵列;称取30mg得到的go/pani阵列产物分散于0.1mol/l的hcl溶液中,配制质量分数为1%的溶液中,超声半小时分散均匀;

2、称取1gh3pmo12o40加入步骤1得到的go/pani阵列分散液中,室温25℃下搅拌48h,随后离心水洗除去游离多酸,得到pmo12/聚苯胺/氧化石墨烯三元复合材料(go/pani/pom),多酸与氧化石墨烯/聚苯胺阵列质量比为0.49。

实施例2

按与实施例1相同的方法制备氧化石墨烯/聚苯胺阵列,不同之处在于加入的多酸种类为h4pmo11vo40。获得多酸与氧化石墨烯/聚苯胺阵列质量比为36.18%的三元复合材料。

实施例3

按与实施例1相同的方法制备氧化石墨烯/聚苯胺阵列,不同之处在于加入的多酸种类为h5pmo10v2o40。获得多酸与氧化石墨烯/聚苯胺阵列质量比为42.45%的三元复合材料。

实施例4

按与实施例1相同的方法制备氧化石墨烯/聚苯胺阵列,不同之处在于加入的多酸种类为h6pmo9v3o40。获得多酸与氧化石墨烯/聚苯胺阵列质量比为39.87%的三元复合材料。

应用实施例1

1.取实施例1中的pmo12/聚苯胺/氧化石墨烯三元复合材料样品,将其与导电剂炭黑、粘结剂pvdf以质量比85:10:5的比例混合均匀,涂覆于1×1cm2的碳纸集流体上,100℃干燥24h,制备好超级电容器电极;

2.将制备好的上述电极置于1mol/l的h2so4溶液中,采用三电极体系进行测试,参比电极为银/氯化银电极,辅助电极为铂片电极,其比容量见图3e。

应用实施例2

1.取实施例2中的pmo11v/聚苯胺/氧化石墨烯三元复合材料样品,将其与导电剂炭黑、粘结剂pvdf以质量比85:10:5的比例混合均匀,涂覆于1×1cm2的碳纸集流体上,100℃干燥24h,制备好超级电容器电极;

2.将制备好的上述电极置于1mol/l的h2so4溶液中,采用三电极体系进行测试,参比电极为银/氯化银电极,辅助电极为铂片电极,其比容量见图3d。

本发明采用原位合成方法制备氧化石墨烯/聚苯胺阵列,将其分散于水中后向其中加入钼基多酸,通过静电组装制备钼基多酸/聚苯胺/氧化石墨烯三元复合材料。本发明实现了多酸导电聚合物以及氧化石墨烯多元材料的有序组装,拓展了多酸基复合材料的电化学应用领域。所制得的三元复合材料在纳米级别可控,同时利用氧化石墨烯/聚苯胺阵列上的聚苯胺与多酸的静电作用,实现了多酸的固载化。通过调节多酸的种类,可以得到一系列不同的三元复合材料,作为电极材料,应用于电化学超级电容器中。

可以理解的是,以上是为了阐述本发明的原理和可实施性的示例,本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1