热传导片的制作方法

文档序号:17827607发布日期:2019-06-05 22:46阅读:181来源:国知局
热传导片的制作方法

本发明涉及热传导片。



背景技术:

热传导片主要配置在半导体包装之类的发热体与铝、铜等的放热体之间,具有将发热体发生的热快速转到放热体的功能。近年、随着半导体元件的高集成化和半导体包装中配线的高密度化,半导体包装的单位面积的发热量变大,与此相伴的是,与以往的热传导片相比,对于热传导率提高、能够促进更快速地热放散的热传导片的需求日益提高。

此外,为了与具有各种形状的半导体包装等的发热体密合,期望形状追随性好的热传导片(柔软的热传导片)。

专利文献1公开了将含有作为热传导性填料的氮化硼、和加成反应型液状聚硅氧烷的混合物加热·固化而得到的热传导片的技术。

现有技术文献

专利文献

专利文献1:日本特开平11-26661号公报



技术实现要素:

发明要解决的课题

专利文献1中记载的热传导片,askerc硬度为45以下,柔软性良好,但在将热传导片压缩引入到发热体和放热体之间后,残留应力不减少,因此具有恢复力强的倾向。

通常、热传导片当被配置在半导体包装等的发热体和放热体之间时,如果恢复力强,则在用于耐压弱的电子零件等的发热体的情况,有使发热体破损的危险。

即、要求:具有在引入到发热体和放热体之间时,使形状追随性良好的程度的柔软性,并且、为了防止在经过一定时间后电子零件等的发热体的破损,所以残留应力减少的热传导片。

本发明鉴于上述现有课题而完成,其目的是提供具有使形状追随性良好的程度的初始柔软性,并且在受到压力被压缩后、残留应力降低的热传导片。

解决课题的手段

本发明人为了实现上述目的而进行了深入研究,结果发现含有弹性体树脂和热传导性填料的热传导片,通过调整弹性体树脂和热传导性填料的体积比例、并且、控制弹性体树脂的粘度和拉膜长度,热传导片能够解决上述课题,从而完成本发明。

即、本发明涉及下述[1]~[9]。

[1].一种热传导片,初始askerc硬度为50以下,含有体积比例为30~70%的弹性体树脂和体积比例为30~70%的热传导性填料,所述弹性体树脂的25℃下的粘度为3000pa·s以下,并且所述弹性体树脂的拉膜长度为20mm以上。

[2].如上述[1]所述的热传导片,热传导率为5w/m·k以上。

[3].如上述[1]或[2]所述的热传导片,测定开始30秒钟后的askerc硬度为所述初始askerc硬度的一半以下。

[4].如上述[1]~[3]的任一项所述的热传导片,25%压缩强度为200kpa以下。

[5].如上述[1]~[4]的任一项所述的热传导片,50%压缩强度为1000kpa以下。

[6].如上述[1]~[5]的任一项所述的热传导片,凝胶率为20%以下。

[7].如上述[1]~[6]的任一项所述的热传导片,所述热传导性填料是选自氧化铝、氧化镁、氮化硼、滑石、氮化铝、石墨烯、氮化硼纳米管、碳纳米管和金刚石中的至少1种。

[8].如上述[1]~[7]的任一项所述的热传导片,所述热传导性填料的平均粒径为200μm以下,热传导率为8w/m·k以上。

[9].如上述[1]~[8]的任一项所述的热传导片,是含有所述弹性体树脂和热传导性填料的树脂层在面方向上层叠而成的层叠体,层叠的树脂层的1层的厚度为1000μm以下。

发明效果

本发明可以提供具有使形状追随性良好的程度的初始柔软性、并且在受到压力被压缩后、残留应力降低的热传导片。

附图说明

图1是由层叠体构成的热传导片的模式截面图。

图2是由层叠体构成的热传导片的使用状态中的模式截面图。

具体实施方式

[热传导片]

本发明的热传导片,初始askerc硬度为50以下,含有体积比例为30~70%的弹性体树脂和体积比例为30~70%的热传导性填料,所述弹性体树脂的25℃下的粘度为3000pa·s以下,并且所述弹性体树脂的拉膜长度为20mm以上。

(弹性体树脂)

构成本发明的热传导片的弹性体树脂,在热传导片全体中占据的体积比例是30~70%。体积比例小于30%时,热传导片的柔软性不充分,体积比例大于70%时热传导性变差。

热传导片全体中弹性体树脂占据的体积比例优选为35~65%,更优选为40~60%,进一步优选为45~55%。弹性体树脂的体积比例,由于比重是已知的,所以可以通过质量算出。

弹性体树脂的25℃下的粘度为3000pa·s以下。大于3000pa·s时热传导片的柔软性变得不充分。弹性体树脂的25℃下的粘度,从进一步提高热传导片的柔软性的观点,优选为2000pa·s以下,更优选为1000pa·s以下,进一步优选为500pa·s以下,更进一步优选为200pa·s以下。并且,弹性体树脂的25℃下的粘度,从成型性的观点,优选为1pa·s以上,更优选为10pa·s以上。

再者,弹性体树脂的粘度可以通过实施例所述的方法测定。

本发明中,规定了弹性体树脂的拉膜长度。拉膜长度具体地通过实施例中所述的方法测定,将环沉没在由弹性体树脂构成的液体中,是在以一定速度将环拉起时测定在环上形成的液膜断开时的长度而得到的值,表示液膜的伸长率的指标。因此,拉膜长度是含有弹性体树脂的热传导片的伸长率的指标。

本发明的弹性体树脂的拉膜长度为20mm以上。拉膜长度小于20mm时,热传导片的柔软性差,此外,受到压力后的残留应力难以减少。通常可以认为,弹性体树脂的粘度低、拉膜长度小时,含有弹性体树脂的片的柔软性良好,但在本发明那样含有弹性体树脂且含有一定量的热传导性填料的热传导片的情况,如果拉膜长度过小,反而柔软性恶化。这推测是由于,在使用拉膜长度小的弹性体树脂时,热传导性填料彼此容易冲撞,这造成流动性降低,结果、柔软性变差。此外可以认为,在流动性降低时,受到压力后的残留应力也难以减少。像这样,在是含有弹性体树脂和热传导性填料的热传导片的情况,除了弹性体树脂的粘度,控制拉膜长度对于片的柔软性控制是重要的。

拉膜长度优选为25mm以上,更优选为30mm以上,而且优选为140mm以下,更优选为100mm以下,进一步优选为65mm以下。拉膜长度在该范围时,热传导片的柔软性进一步提高。

弹性体树脂的拉膜长度,如上述那样通常与弹性体树脂的粘度有关联。因此,可以通过弹性体树脂的分子量、作为构成单位的单体种类、以及如果是共聚物时共聚单体的组成比等来调整。

弹性体树脂的玻璃化转变温度优选为室温以下(例如25℃以下)。使用这样的弹性体树脂而成的热传导片,柔软性优异。

作为弹性体树脂的种类可以列举出例如丁腈橡胶、液状丁腈橡胶、乙烯-丙烯-二烯橡胶、液状乙烯-丙烯-二烯橡胶、乙丙橡胶、液状乙丙橡胶、天然橡胶、液状天然橡胶、聚丁二烯橡胶、液状聚丁二烯橡胶、聚异戊二烯橡胶、液状聚异戊二烯橡胶、苯乙烯-丁二烯嵌段共聚物、液状苯乙烯-丁二烯嵌段共聚物、氢化苯乙烯-丁二烯嵌段共聚物、液状氢化苯乙烯-丁二烯嵌段共聚物、氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物、液状氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物、氢化苯乙烯-异戊二烯嵌段共聚物、液状氢化苯乙烯-异戊二烯嵌段共聚物、氢化苯乙烯-异戊二烯-苯乙烯嵌段共聚物、液状氢化苯乙烯-异戊二烯-苯乙烯嵌段共聚物、聚硅氧烷、液状聚硅氧烷、丙烯酸系橡胶、液体丙烯酸系橡胶(再者,丙烯酸系橡胶指的是,含有丙烯酸酯和/或甲基丙烯酸酯的单体的聚合物)等。这些中,优选液状的弹性体树脂,优选为液状丁腈橡胶、液状乙烯-丙烯-二烯橡胶、液状聚异戊二烯橡胶、液状聚硅氧烷。此外,上述不是液状的弹性体为了得到柔软性,优选与液状的同类树脂混炼后使用。

(热传导性填料)

构成本发明的热传导片的热传导性填料,在热传导片全体中占据的体积比例为30~70%。体积比例小于30%时热传导片的热传导性不充分,在大于70%时柔软性变差。

热传导片全体中热传导性填料占据的体积比例优选为35~65%,更优选为40~60%,进一步优选为45~55%。热传导性填料的体积比例,由于比重为已知,所以可以可以通过质量算出。

热传导性填料的热传导率,从提高热传导性的观点,优选为8w/m·k以上,更优选为20w/m·k以上。

热传导性填料的形状,没有特殊限定,可以使用例如球状填料、破碎填料、板状填料等,其中从提高热传导片的热传导性的观点优选使用板状填料。在板状填料的情况中,将构成表面的各面中、面积为最大的面设为xy平面,将构成xy或者yz平面的边的最小尺寸定义为厚度,这种情况下优选具有xy平面的长度方向尺寸/厚度>2.0的形状。

板状填料的厚度,从提高热传导率的观点,优选为0.05~500μm、更优选为0.25~250μm。

热传导性填料的通过光散射法测定的平均粒径,优选为0.1μm以上、更优选为0.5μm以上、进一步优选为1μm以上,而且优选为200μm以下,更优选为150μm以下,进一步优选为100μm以下。再者,板状填料中的粒径取所述xy平面的长度方向的尺寸。

作为热传导性填料的材质,可以列举出例如碳化物、氮化物、氧化物、氢氧化物、金属、碳系材料等。

作为碳化物,可以列举出例如碳化硅、碳化硼、碳化铝、碳化钛、碳化钨等。

作为氮化物,可以列举出例如氮化硅、氮化硼、氮化硼纳米管、氮化铝、氮化镓、氮化铬、氮化钨、氮化镁、氮化钼、氮化锂等。

作为氧化物,可以列举出例如氧化铁、氧化硅(二氧化硅)、氧化铝(氧化铝)(含有氧化铝的水和物(勃姆石等)。)、氧化镁、氧化钛、氧化铈、氧化锆等。此外,作为氧化物,可以列举出钛酸钡等的过渡金属氧化物等,以及掺杂了金属离子的例如氧化铟锡、氧化锑锡等。

作为氢氧化物,以列举出例如氢氧化铝、氢氧化钙、氢氧化镁等。

作为金属,可以列举出例如铜、金、镍、锡、铁、或它们的合金。

作为碳系材料,可以列举出例如炭黑、石墨、金刚石、石墨烯、富勒烯、碳纳米管、碳纳米纤维、纳米突、碳微线圈、碳纳米线圈等。

作为上述以外的热传导性填料,可以列举出作为硅酸盐矿物的滑石。

这些热传导性填料,可以单独使用或2类以上合并使用。热传导性填料,从热传导性的观方面出发,优选氧化铝、氧化镁、氮化硼、滑石、氮化铝、石墨烯、氮化硼纳米管、碳纳米管、金刚石中的任一种,更优选为氮化硼、石墨烯中的至少一种。进而,在要求电绝缘性的用途中,更优选氮化硼。

(其它添加剂)

本发明的热传导片中根据需要可以配合抗氧化剂、热稳定剂、着色剂、阻燃剂、防静电剂、所述热传导性填料以外的填充剂、分解温度调整剂等在热传导片中通常使用的添加剂。

(层叠体)

本发明的热传导片既可以是含有弹性体树脂和热传导性填料的单层,也可以是含有弹性体树脂和热传导性填料的树脂层层叠而成的层叠体。从热传导性良好的观点优选为层叠体。以下、通过图1、2来说明层叠体的一例实施方式。

图1、2中,为了明确表明板状的热传导性填料6的存在,省略了表示树脂的截面的晕滃。此外,各图中的各填料,与上下相邻的填料重叠,但在本发明中填料彼此的重叠并不是必须的。

如图1所示,热传导片1具有多个树脂层2层叠在一起的结构。相对于多个树脂层2的层叠面垂直的面是片的面5。如图2所示,热传导片1中,片的面5与发热体3、放热体4相接触而配置。此外,热传导片1在发热体3和放热体4等的2个构件间中以被压缩的状态配置。再者,发热体3是例如半导体包装等,放热体4是例如铝、铜等的金属等。

热传导片1的厚度(即、面5和面5之间的距离)没有特殊限定,可以是例如0.1~30mm的范围。

树脂层2的1层的厚度(树脂层宽)没有特殊限定,优选是1000μm以下、更优选是500μm以下、进一步优选是100μm以下,而且优选是0.1μm以上、更优选是0.5μm以上、进一步优选是1μm以上。通过这样调整厚度,可以提高热传导性。

树脂层2是含有热传导性填料6的热传导性树脂层7。热传导性树脂层7是具有在弹性体树脂8中分散热传导性的热传导性填料6的结构的树脂层2。

对于热传导性填料的种类,没有特殊限定,如图1、2所示、优选使用板状填料,优选板状填料的长轴相对于片的面为45°以上的角度,更优选为50°以上、进一步优选为60°以上、更进一步优选为70°以上、再进一步优选为80°以上大致垂直取向。在板状填料为这样的取向的情况,热传导片的热传导率提高。这可以认为也许是在热传导片内、形成了从发热体向放热体方向的热传导路径的缘故。

对于求出上述角度的方法没有特殊限定,可以沿着热传导性树脂层7中上述板状填料6的最多取向方向、通常是与成型时的树脂流动方向平行的方向制作厚度方向的中央部分的薄膜切片,通过扫描电镜(sem)对该薄膜切片观察而求出。在扫描电镜(sem)观察中以3000倍的倍率观察热传导性板状填料,测定观察的板状填料的长轴与热传导性树脂层7中构成“片的面”的面所成的角度,从而求出上述角度。本说明书中的45°、50°、60°、70°、80°以上的角度指的是,上述那样测定的值的平均值为该角度以上,并不否定有取向角度小于80°的板状填料6存在。再者,在所成角度大于90°的情况,以该补角作为测定值。

热传导性树脂层7的厚度,热传导性树脂层7中含有的热传导性板状填料6的厚度的优选是1~1000倍、更优选是1~500倍、进一步优选是1~50倍、更进一步优选是1~10倍、再进一步优选是1~3倍、更进一步优选是1~2倍。通过使热传导性树脂层7的宽度为上述范围,能够使热传导性板状填料6以其长轴相对于所述片的面成为80°以上的角度的方式取向。再者热传导性树脂层7的宽度,只要是在上述范围内就可以,可以不是均等的。

(热传导片的物性)

本发明的热传导片的初始的askerc硬度为50以下。初始的askerc硬度大于50时,柔软性变差,相对于发热体的形状追随性降低。再者,初始的askerc硬度是在对热传导片开始测定askerc硬度时的硬度的测定值。热传导片的初始的askerc硬度优选是45以下,更优选是40以下,而且优选是10以上。

本发明的热传导片的经过30秒后的askerc硬度优选是30以下,更优选是20以下。此外,热传导片的经过30秒后的askerc硬度优选是初始的askerc硬度的一半以下。通过采用这样的值,在对热传导片施加一定的压力后的残留应力减少,能够抑制作为发热体的电子零件等的破损。再者,经过30秒后的askerc硬度是askerc硬度的测定开始后过了30秒时的askerc硬度,具体可以通过实施例所述的方法测定。askerc硬度可以通过控制热传导性填料等的填充剂的含量、弹性体树脂的柔软性、填充剂和弹性体树脂的亲和性等来调节。

热传导片的热传导率从片的放热性的观点优选为5w/m·k以上,更优选为6w/m·k以上,进一步优选为7w/m·k以上。此外,热传导片的热传导率通常为100w/m·k以下。

热传导片的凝胶率优选为20%以下,更优选为10%以下,进一步优选为5%以下,更进一步优选为0%。通过降低热传导片的凝胶率,能够降低相对于初始的askerc硬度、经过30秒后的askerc硬度(经过30秒后的askerc硬度/初始的askerc硬度)。凝胶率可以通过实施例所述的方法测定。凝胶率可以如后文所述那样,通过控制例如弹性体树脂的交联的有无、交联的程度来调整,使用未交联的弹性体树脂可以降低凝胶率,所以优选。

热传导片的25%压缩强度,从使柔软性良好的观点、和使压缩后的残留应力减少的观点,优选为200kpa以下、更优选为190kpa以下。热传导片的50%压缩强度从同样的观点出发优选为1000kpa以下、更优选为800kpa以下、进一步优选为700kpa以下。

[热传导片的制造方法]

本发明的热传导片的制造方法,没有特殊限定,可以将热传导性填料、弹性体树脂、和根据需要添加的添加剂供给挤出机熔融混炼,从挤出机挤出片状而成型热传导片。

(层叠体的制造方法)

由本发明的层叠体形成的热传导片的制造方法,没有特殊限定,可以使用以下说明的、含有混炼工序、层叠工序、以及根据需要而含有的切割工序的方法来制造。

<混炼工序>

将热传导性填料和弹性体树脂和混炼而制作热传导性树脂组合物。

所述的混炼优选是将例如、热传导性填料和弹性体树脂通过plastomill等双螺杆混炼机、双轴挤出机等在加热下混炼,通过这样,能够得到热传导性填料均匀分散在弹性体中的热传导性树脂组合物。

接下来,对该热传导性树脂组合物进行压制而得到片状的树脂层(热传导性树脂层)。

<层叠工序>

层叠工序中,将所述混炼工序得到的树脂层层叠而制作n层结构的层叠体。作为层叠方法,可以使用例如以下方法:将由混炼工序制作的树脂层分割成xi份,然后进行层叠,制作xi层结构的层叠体,然后根据需要进行热压,之后,进一步根据需要反复进行分割、层叠和所述的热压,从而制作出宽度为dμm的n层结构的层叠体。

在热传导性填料为板状的情况,优选层叠工序后的层叠体的宽(dμm)、所述热传导性填料的厚度(dμm)满足:0.02≤d/(d/n)≤1。

在像这样进行多次成型的情况,可以使各次中的成型压比1次成型的情况小,所以能够避免由于成型而造成的层叠结构的破坏等的现象。

作为其它层叠方法可以使用例如以下方法:使用具有多层形成模块的挤出机调制所述多层形成模块,通过共挤出成型得到所述n层结构且所述厚度dμm的层叠体。

具体地向第1挤出机和第2挤出机这两者中导入由所述混炼工序得到的热传导性树脂组合物,将热传导性树脂组合物从第1挤出机和第2挤出机同时挤出。从第1挤出机和第2挤出机挤出的热传导性树脂组合物被送入进料模块。在进料模块中,从第1挤出机和上述第2挤出机挤出的热传导性树脂组合物被合流。通过这样,能够得到热传导性树脂组合物层叠而成的2层体。接下来,将所述的2层体移送给多层形成模块,沿着与挤出方向平行的方向、并且与层叠面垂直的多个面将2层体分割成多个,然后层叠,制作n层结构的厚度dμm的层叠体。此时每一层的厚度(d/n)可以通过调整多层形成模块来形成所希望的值。

(切割工序)

将所述层叠工序得到的层叠体根据需要层叠成所希望的高度,施加压力压合在一起后,沿着与层叠方向平行的方向切割,制作热传导片。

(其它工序)

在上述各工序间、或与各工序一起也可以设置将弹性体树脂交联的工序。交联可以列举出照射例如电子线、α线、β线、γ线等电离性放射线的方法。但是,在弹性体树脂的交联程度大时热传导片的压缩后的残留应力难以降低,容易发生作为发热体的电子零件等的破损,所以电离性放射线的照射量优选调整到5mrad以下、更优选不使弹性体树脂交联。

实施例

通过实施例进一步具体说明本发明,但本发明不受这些例子任何限定。

以下的实施例和比较例中使用的材料如下。

(1)弹性体树脂

(i)液状丁腈橡胶1jsr株式会社制、商品名「n231l」

(ii)丁腈橡胶2

下述(a)7.2体积%和下述(b)40.8体积%的混合物

(a)丁腈橡胶jsr株式会社制、商品名「n280」

(b)液体丁腈橡胶jsr株式会社制、商品名「n231l」

(iii)丁腈橡胶3

下述(a)38体积%和下述(b)10体积%的混合物

(a)丁腈橡胶jsr株式会社制、商品名「n280」

(b)液体丁腈橡胶jsr株式会社制、商品名「n231l」

(iv)液状异戊二烯橡胶1株式会社クラレ制、商品名「lir-30」

(v)液状异戊二烯橡胶2株式会社クラレ制、商品名「kl-10」

(vi)液状聚硅氧烷東レダウコーニング株式会社制、商品名「se1720cv」

(vii)液状epdm(液状乙烯-丙烯-二烯橡胶)三井化学株式会社制、商品名「px-068」

(viii)丁腈橡胶4

下述(a)14.4体积%和下述(b)33.6体积%的混合物

(a)丁腈橡胶jsr株式会社制、商品名「n280」

(b)液体丁腈橡胶jsr株式会社制、商品名「n231l」

(vx)液状异戊二烯橡胶3

液状异戊二烯橡胶1(株式会社クラレ制、商品名「lir-30」)14.4体积%和液状异戊二烯橡胶2(株式会社クラレ制、商品名「kl-10」)33.6体积%的混合物

(2)热传导性填料

(i)氮化硼デンカ社制、商品名「sgp」

形状:板状填料

长边方向热传导率:250w/m·k

厚度:1μm

(ii)石墨烯ブリヂストンケービージー社制、商品名「wgnp」

形状:板状填料

长边方向热传导率:1000w/m·k

厚度:2μm

各种物性、评价方法如下。

<粘度>

对弹性体树脂50g使用25℃、b型粘度计(东洋产业社制)测定。

<热传导率>

将25mm见方的热传导片夹在陶瓷加热器和水冷式放热板之间加热。经过20分后测定陶瓷加热器的温度t1和水冷式放热板的温度t2,将陶瓷加热器的施加电力w、热传导片的厚度t、热传导片的面积s代入下述式,算出热传导率λ。

λ=t×w/{s×(t1-t2)}

<askerc硬度>

(初始askerc硬度)

将25mm见方的热传导片层叠成厚度10mm以上,使用asker橡胶硬度计c型(高分子计器株式会社制)测定。

(经过30秒后的askerc硬度)

在askerc硬度的测定开始30秒过后,测定askerc硬度。

askerc硬度的测定在25℃下进行。

<压缩强度>

依照jisk6767-7.2.3(jis2009)测定。以试样尺寸2mm×20mm×20mm进行测定。

<拉膜长度>

在100φ深度50mm的容器中放入弹性体树脂直至40mm的高度,将60φ的环从弹性体树脂表面沉入深度2mm,以2mm/s的速度拉起环,由提拉时形成的膜发生破裂的位置与表面之间的距离算出拉膜长度。再者,测定在温度25℃、相对湿度80%下进行。

<凝胶率>

热传导片的凝胶率测定如下。

秤量热传导片ag,将其浸渍在120℃的二甲苯中24小时,使用200目的金属网过滤不溶解部分,将金属网上的残渣真空干燥并测定干燥残渣的重量(bg),由热传导片的重量和填料配合比例算出热传导片内的填料重量(cg),并代入下述式算出。

凝胶率(重量%)=((b-c)/a)×100

实施例1

将由液状丁腈橡胶1(jsr株式会社制、n231l)48体积%和氮化硼52体积%形成的混合物熔融混炼,然后压制,得到厚度0.5mm、宽度80mm、进深80mm的片状的树脂层。接下来作为层叠工序,将得到的树脂层分成16等份,重叠起来,得到总厚度8mm、宽度20mm、进深20mm的由16层构成的层叠体。接下来与层叠方向平行地切割,得到厚度2mm、宽度8mm、进深20mm的热传导片。该情况下、构成层叠体的树脂层的1层的厚度为0.5mm(500μm)。对该热传导片从截面方向(厚度方向)测定热性能、硬度、压缩强度。

实施例2~8、比较例1~2

除了将配合变为表1记载的那样以外,与实施例1同样地得到树脂发泡片。评价结果如表1所示。

表1

作为本发明的热传导片的实施例1~8,初始的askerc硬度为50以下,柔软性良好,并且经过30秒后的askerc硬度为初始的一半以下,所以可以知道,在施加压力后、残留应力减少。

与此相对,比较例1是使用了粘度高于本发明规定的值的高弹性体树脂的例子,可知初始的askerc硬度高、柔软性差。比较例2是使用拉膜长度低于本发明规定的值的低弹性体树脂的例子,初始的askerc硬度低,但经过30秒后的askerc硬度与初始相比几乎没有变化,可知道残留应力没有减少。

附图符号说明

1热传导片

2树脂层

3发热体

4放热体

5片的面

6热传导性板状填料

7热传导性树脂层

8弹性体树脂

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1