一类基于三苯胺-蒽结构空穴传输聚合物材料的开发及其在钙钛矿太阳能电池中的应用的制作方法

文档序号:16794260发布日期:2019-02-01 19:47阅读:301来源:国知局
一类基于三苯胺-蒽结构空穴传输聚合物材料的开发及其在钙钛矿太阳能电池中的应用的制作方法

本发明涉及钙钛矿太阳能电池领域,具体来说是一类基于三苯胺-蒽结构的空穴传输聚合物材料的开发及其在钙钛矿太阳能电池中的应用。



背景技术:

自太阳能电池被报道以来,一共经历了四个发展历程:第一代是以单晶硅、多晶硅为代表的硅基太阳能电池;第二代是以碲化镉(cdte)和铜铟镓硒(cigs)为代表的薄膜太阳能电池;第三代是以染料敏化(dssc)、有机(opv)及量子点为代表的太阳能电池;第四代是以钙钛矿为代表的新型太阳能电池。作为新一代技术,钙钛矿太阳能电池发展迅速,光电转化效率从2009年3.8%、2012年9.7%到现阶段超过22%。

作为功能层,空穴传输材料将光生激子分解产生的空穴载流子传输至电池正极。应用于钙钛矿太阳能电池两种明星空穴传输材料,一种是用于传统结构中的空穴传输材料spiro-ometad,其缺点是价格昂贵、导电性很低,通过引入li+提高空穴迁移率,而稳定性明显降低;另一种是用于反式结构中的pedot:pss,但是其功函与钙钛矿的功函不匹配,导致开路电压较较低,而且pedot:pss酸性易破坏上下功能层。因此开发高性能新型空穴传输材料有非常重要的意义。



技术实现要素:

解决的技术问题:针对已有空穴传输材料迁移率较低、能级不匹配等缺点,本发明设计了一类基于三苯胺-蒽结构的空穴传输聚合物材料,该材料具有良好的稳定性、较高载流子迁移率、能级与钙钛矿材料匹配等优点。

技术方案:一类基于三苯胺-蒽结构的空穴传输聚合物材料,所述材料的化学结构式为:其中n的值为1-100;三苯胺单元与萘单元之间的桥a为具有π共轭结构的化学单元,选自下列单元中的一种:

r1与r2为下列基团中的一种:

上面所述的a为r1为r2为空穴传输聚合物材料为tpa-ant,其结构式为:

其中n的值为1-100。

本发明提供上述聚合物材料tpa-ant的合成方法。

本发明提供上述聚合物材料tpa-ant作为空穴传输材料在钙钛矿太阳能电池中的应用。

有益效果:本发明提供的一类基于三苯胺-蒽结构的空穴传输聚合物材料,具有以下有益效果:

(1)本发明基于三苯胺-蒽结构的聚合物材料,其中三苯胺结构单元的最高占据分子轨道(homo)与钙钛矿材料的homo能级匹配;蒽单元具有较大分子平面,分子间易于堆积,具有较高载流子迁移率;两种协同效应使得三苯胺-蒽结构的聚合物材料具有与钙钛矿材料能级匹配、高载流子迁移率的优异性能;

(2)调控π共轭结构单元a,进而调控聚合物链的共轭程度、链间堆积与电子性能;侧链上引入多个柔性直链或支链,保证材料具有好的溶液加工性能;该类空穴传输聚合物材料在钙钛矿太阳能电池具有潜在而广泛的应用前景。

附图说明

结合如下附图及详细描述将会更清楚地理解本上述发明内容和其它特征及优点,其中:

图1是1-碘-4-正辛氧基苯(1)的核磁共振氢谱图;

图2是4-(正辛氧基苯)-n,n-二苯基苯胺(2)的核磁共振氢谱图;

图3是4-溴-n-(4-溴苯)-n-(4-正辛氧基苯基)苯胺(3)的核磁共振氢谱图;

图4是4-正辛氧基-n,n-双[4-(噻吩-2-)苯基)苯胺(4)的核磁共振氢谱图;

图5是单体m1的核磁共振氢谱图;

图6是聚合物材料tpa-ant的核磁共振氢谱图;

图7是聚合物材料tpa-ant的uv-vis吸收光谱图;

图8是聚合物材料tpa-ant的ups曲线图;

图9是聚合物材料tpa-ant的热分析tga图;

图10是tpa-ant薄膜中的添加剂m-mtdata化学结构式;

图11是在tpa-ant薄膜与pedot:pss薄膜上分别制备的钙钛矿薄膜的xrd衍射图;

图12是在tpa-ant(a)与pedot:pss(b)薄膜上分别制备的钙钛矿薄膜的sem图;

图13是掺杂20%m-mtdata的tpa-ant薄膜的空穴迁移率测试曲线;

图14是钙钛矿太阳能电池器件的结构示意图;

图15是聚合物材料tpa-ant作为空穴传输材料的钙钛矿太阳能电池器件的j-v曲线图。

优选实施方案的详细说明

下面对本发明的优选实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解。

实例1:

(1)单体m1的合成

1-碘-4-正辛氧基苯(1)的制备

4-碘苯酚(2.20g,0.10mol)、1-溴辛烷(19.00g,0.10mol)和dmf(体积:100ml)的混合物在n2的保护下加入k2co3(20.70g,150.00mmol)。反应物加热到150℃连续反应48小时,冷却至室温。反应物用氯仿萃取,柱层析法纯化(正己烷)得到产物(10.00g,30%)。1hnmr(400mhz,cdcl3):δ7.54(m,2h),6.67(m,2h),3.91(t,2h),1.77(m,2h),1.44(m,2h),1.31(m,8h),0.90(t,3h)。

4-(正辛氧基苯)-n,n-二苯基苯胺(2)的制备

1-碘-4-正辛氧基苯(1)(9.90g,30.00mmol),二苯胺(6.00g,36.00mmol),cucl(0.20g,2.00mmol),菲咯啉(0.26g,1.40mmol),koh(13.40g,24.00mmol)和甲苯(体积:60ml)混合物在130℃黑暗条件下反应36小时。冷却至室温后,混合物用氯仿萃取,柱层析法纯化(正己烷)法得到产物(6.70g,60%)。1hnmr(400mhz,cdcl3):δ7.21(m,4h),7.05(t,6h),6.94(t,2h),6.84(m,2h),3.94(t,2h),1.78(m,2h),1.47(m,2h),1.36(m,8h),0.90(t,3h)。

4-溴-n-(4-溴苯)-n-(4-正辛氧基苯基)苯胺(3)的制备

4-(正辛氧基苯)-n,n-二苯基苯胺(2)(3.00g,8.10mmol)溶于氯仿(体积:20ml)和醋酸(体积:20ml)中,加入nbs(2.91g,16.35mmol),溶液在0℃下搅拌2小时。然后在反应体系中加入硫酸,继续搅拌30分钟。反应物用氯仿萃取,柱层析法纯化(toluene∶hexane=1∶10)得到产物(3.08g,72%)。1hnmr(400mhz,cdcl3):δ7.30(m,4h),7.02(m,2h),6.89(m,4h),6.84(m,2h),3.94(t,2h),1.79(m,2h),1.47(m,2h),1.33(m,8h),0.90(t,3h)。

4-正辛氧基-n,n-双[4-(噻吩-2-)苯基)苯胺(4)的制备

4-溴-n-(4-溴苯)-n-(4-正辛氧基苯基)苯胺(3)(3.00g,5.65mmol)和2-三丁基锡噻吩(5.41ml,17.04mmol)溶解在无水甲苯(体积:16ml)和dmf(体积:4ml)。在n2保护下,在反应物中加入四(三苯基膦)钯,加热至100℃回流过夜。反应物用氯仿萃取,柱层析法纯化(dcm∶hexane=1∶4)得到产物(0.61g,50%)。1hnmr(400mhz,cdcl3):δ7.47(d,4h),7.22(s,4h),7.05(m,8h),6.87(d,2h),3.96(t,2h),1.79(m,2h),1.47(m,2h),1.34(m,8h),0.90(t,3h)。

m1的制备

4-正辛氧基-n,n-双[4-(噻吩-2-)苯基)苯胺(4)(1.35g,2.51mmol)溶解在dmf中冷却至-20℃,加入nbs(0.98g,5.52mmol)。反应物温度升至室温,搅拌过夜。反应物用氯仿萃取,柱层析法纯化(dcm∶hexane=1∶8)得到产物(1.50g,85%)。1hnmr(400mhz,cdcl3):δ7.36(d,4h),7.02(m,6h),7.00(d,2h),6.94(s,2h),6.87(d,2h),3.96(t,4h),1.79(m,2h),1.46(m,2h),1.32(m,8h),0.89(t,3h)。

(2)单体m2的合成

2,6-二溴-9,10-蒽醌(5)

2,6-二氨基-9,10-蒽醌(5g,20.99mmol)、亚硝酸特丁酯(6.20ml,52.00mmol)、溴化铜(11.72g,52.50mmol)与乙腈(300ml)加到反应瓶中,在65℃反应2小时。加入20%盐酸进行淬灭,沉淀过滤,用二氯甲烷与盐水进行洗涤。用1,4-二氧六环进行重结晶,得到产物(2.44g,30%)。1hnmr(400mhz,cdcl3):δ8.44(d,2h),8.17(d,2h),7.94(dd,2h)。

5,5′-[9,10-(2,6-二溴蒽)]-双十二烷基噻吩(6)

在三颈圆底烧瓶中,把2-十二烷基噻吩(11.06g,44.00mmol)溶解在无水thf(100ml),用n2置换空气。将体系降到0℃,缓慢加入n-buli(1.6minhexane,27.50ml,44.00mmol)。溶液自然升高到室温,搅拌30分钟后开始加热到50℃。两小时后,加入2,6-二溴-9,10-蒽醌(5)(4.00g,11.00mmol),在50℃搅拌1.5小时。混合物降温到0℃,加入sncl2·2h2o(22.40g,99.00mmol)的盐酸溶液(10%,50ml),搅拌1.5小时。反应结束后,将混合物倒入冰水中,用乙醚进行萃取。除去溶剂,粗品用柱层析法(淋洗液:正己烷)、重结晶法纯化,得到黄色针状纯品(5.02g,58%)。1hnmr(400mhz,cdcl3):δ8.07(d,2h),7.79(d,2h),7.45(dd,2h),6.97(m,4h),2.96(t,4h),1.82(m,4h),1.48(m,4h),1.34(m,32h),0.88(t,6h)。

m2的制备

5,5′-[9,10-(2,6-二溴蒽)]-双十二烷基噻吩(6)(1.00g,1.12mmol)、联硼酸频哪醇酯(1.21g,4.78mmol)、pd(pddf)cl2(0.04g,0.06mmol)、碳酸钾(0.74g,5.38mmol)与1,4-二氧六环(80ml)加入到圆底烧瓶中,n2保护下,80℃下搅拌过夜。冷却至室温,将混合物倒入水中,用二氯甲烷萃取。除去溶剂,粗品用柱层析法(淋洗液:正己烷)进行提纯,得到产品m2(0.78g,70%)。1hnmr(400mhz,cdcl3):δ8.49(s,2h),7.91(dd,2h),7.71(dd,1.2hz,2h),7.00(dd,4h),2.99(t,4h),1.83(m,4h),1.48(m,4h),1.31(m,56h),0.89(t,6h)。

(3)聚合物tpa-ant的合成

装有m1(0.33g,0.47mmol)、m2(0.44g,0.47mmol)和pd2(dba)3(0.03g,0.03mmol)的反应瓶放置于微波反应管中,持续通入氮气30分钟后,将无氧的水(体积:5ml)和无水thf(体积:15ml)注入试管中。试管加热至60℃连续反应3天。置于索氏提取器中,粗产物依次使用甲醇、丙酮、乙酸乙酯、正己烷、二氯甲烷和氯仿进行提纯,得到聚合物tpa-ant(0.50g,84%)。1hnmr(400mhz,c2d2cl4):δ7.54(br,2h),7.38(br,2h),7.06(br,2h),6.87(br,4h),6.57(br,14h),6.27(br,2h),3.35(br,2h),2.39(br,4h),0.95(br,58h),0.26(br,9h)。

(4)材料的性能与表征

表1tpa-ant聚合物材料的物理性能

1吸收是在氯苯溶液中测试;2ups测试结果得到最高占据分子轨道(homo);3最低未占据分子轨道(lumo)是从homo与能级差计算得到;4禁带宽度(eg)是从吸收光谱计算得到。

由表1可知tpa-ant的mn为13400g/mol,pdi是1.87。

图7为tpa-ant的uv-vis吸收光谱,最大吸收峰为406nm。

图8是tpa-ant的ups曲线,tpa-ant的homo能级为-5.24ev,根据图7所得到的禁带宽度为2.97ev,tpa-ant的lumo能级为-2.27ev。

图9是tpa-ant的热分析tga,图中tpa-ant的分解温度为420℃,是失去5%左右质量对应的温度。

图11是掺杂20%m-mtdata的tpa-ant薄膜与pedot:pss薄膜上分别制备钙钛矿薄膜的xrd图,在tpa-ant薄膜上的钙钛矿薄膜在14°(110)、28°(220)与32°(310)具有较强的衍射峰,说明晶粒大,缺陷少。这也可以从图12的钙钛矿薄膜的sem得到证实。

图13是掺杂20%m-mtdata的tpa-ant薄膜的迁移率测试曲线,其空穴载流子迁移率为5.86x10-3cm2v-1s-1,高于spiro-ometad的迁移率2x10-4cm2v-1s-1

(5)器件性能的表征

(a)器件制备

图14是钙钛矿太阳能电池ito/htm/perovskite/pc61bm/c60/bcp/al的结构示意图。ito基片清洗后臭氧处理15分钟,接着在基片上旋涂含有20wt%m-mtdata的tpa-ant的1,2-二氯苯溶液,转速为4500rpm,时间为30秒,100℃的条件下退火20分钟;转移到手套箱中,将1m的碘化铅(pbl2)溶液旋涂到ito/htm上,转速为3000rpm,时间为40秒;立刻旋涂一层甲基碘化铵,转速为3000rpm,时间为40秒;紧接着在100℃的条件下退火5分钟;然后将2wt%pc61bm的1,2-二氯苯溶液旋涂到钙钛矿层上,转速为6000rpm,时间为30秒;最后将c60(20nm)、bcp(8nm)缓冲层以及al(100nm)电极蒸镀上去。对照电池的结构为ito/pedot:pss/perovskite/pc61bm/c60/bcp/al。

(b)器件的表征

图15是tpa-ant作为空穴传输材料的钙钛矿太阳能电池器件的j-v曲线图。在am1.5太阳辐照光模拟光源下,电池显示短路电流(jsc)和开路电压(voc)都有提高,最大光电转换效率为14.52%,与pedot:pss空穴传输材料构建的对照电池转化效率11.38%相比,提高27.6%。

综上所述,聚合物材料tpa-ant具有高稳定性、好的溶解性、高载流子迁移率、homo能级与钙钛矿匹配等优点,显著提高钙钛矿太阳能电池转化效率。展示出基于三苯胺-蒽结构的一类空穴传输聚合物材料,在钙钛矿太阳能电池领域具有潜在而广泛的应用前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1