具有包含二氧化钛和/或碳的表面涂层的基于电熔氧化铝的磨料颗粒的制作方法

文档序号:13765260阅读:396来源:国知局
具有包含二氧化钛和/或碳的表面涂层的基于电熔氧化铝的磨料颗粒的制作方法

磨料颗粒以松散或粘合的形式使用,特别是用于加工表面。当粘合时,磨料颗粒以砂带、砂纸、砂轮或其他粘合磨料的形式使用,其中,所述表面的加工效率不仅取决于磨料颗粒本身的特性,在很大程度上还取决于在各磨料中的磨料颗粒整合的类型和稳定性。因此在磨料颗粒和粘合剂相之间的边界表面是特别重要的。所述边界表面决定了使磨料颗粒打破结合所需的力。磨料颗粒越硬越稳定时,对结合和在边界表面处的粘附力的要求越大,这是因为由于研磨其将更容易使磨料颗粒打破结合。

大部分的磨料颗粒,特别是通过熔融工艺生产的那些磨料颗粒,具有相对平滑的表面,这对于其在磨料中的整合(主要基于粘附)具有不利影响。为了解决此问题,在过去已经提出了分别用于粗糙化或扩大表面从而改善整合的多种方法。

U.S.2,527,044 A描述了一种熔融氧化铝磨料颗粒,其提供有细颗粒状金属氧化物颗粒(例如氧化铁)的涂层,以便改善在树脂粘合磨料中的嵌入。所述金属氧化物颗粒通过玻璃状粘合剂粘附至磨料颗粒的表面。

U.S.2,541,658描述了一种具有磷酸盐粘合剂和氧化铁颜料的磨料颗粒的涂层。

EP 0 014 236 A1描述了含有二氧化钛的基于氧化铝的的磨料颗粒的处理,其中将一层陶瓷物质熔融到磨料颗粒上。因此,磨料颗粒中所含二氧化钛的氧化与磨料颗粒结构的转化同时发生。

对应于根据EP 0 080 604 B1的具有研磨活性细颗粒的涂料,通过玻璃熔块将细颗粒状颗粒与研磨活性物质一起涂布至磨料颗粒表面。

DE102 57 554 B4中描述了包含水性粘合剂的涂层和具有AxByOz的一般组成的复合细颗粒状氧化物的磨料颗粒。

在通过借助于粘合剂涂布粘附至研磨剂颗粒表面的细颗粒而发生磨料颗粒表面扩大的情况下,上述方法的缺点在于,结合的稳定性在研磨操作期间由于高应力和强加热而降低,并且磨料颗粒从磨料结合中脱出。

EP 0 346 832公开了一种在没有额外粘合剂的情况下涂布有高分散性亲水性金属氧化物的涂布碳化硅磨料颗粒。因此,所述高分散性亲水性金属氧化物优选在干燥状态下与磨料颗粒混合,并随后粘附至其表面。尽管在此情况下放弃粘合剂,但是,由于所述颗粒仅因物理粘附而粘附在所述表面上,在此还可以观察到在研磨操作期间磨料中的结合稳定性降低,且磨料颗粒从结合中脱出。

EP 0 652 918描述了一种包含金属氧化物涂层的磨料颗粒,其中,α-氧化铝磨料颗粒的前体涂布有包含金属醇盐的涂料组合物,其中,对涂布的颗粒进行温度处理,从而获得自发结合到所述颗粒表面的金属氧化物涂层。使用在干燥和焙烧后通过溶胶-凝胶方法由勃姆石分散液获得的并利用包含金属醇盐的溶液处理的生坯作为基础颗粒。对以此方式处理的生坯进行400℃~1000℃的温度处理,其中发生金属醇盐到金属氧化物的转化,该金属氧化物自发结合至基础颗粒的表面。随后,在1200℃~1650℃的温度下烧结经涂布的基础颗粒,从而获得α-氧化铝磨料颗粒。此方法的缺点在于其非常复杂,而且局限于通过溶胶-凝胶方法获得的磨料颗粒。

因此,对于与现有技术相比具有优势的涂料仍然存在需求,特别是对于通过熔融工艺生产的磨料颗粒。

因此,本发明的目的在于提供一种包含扩大的表面的基于电熔氧化铝的涂布磨料颗粒,该颗粒即使对于强机械和热应力也可良好和永久地整合在磨料中,因此其不具有现有技术的上述缺点。

该目的通过具有包含二氧化钛和/或碳的表面涂层的基于电熔氧化铝的磨料颗粒解决,其中,通过温度处理在磨料颗粒表面形成的二氧化钛和/或碳颗粒的化合物紧密连接至磨料颗粒的表面。由此,通过反应性烧结在磨料颗粒表面和平均粒径为10nm~10μm的二氧化钛和/或碳化合物之间形成没有额外粘合剂的直接紧密结合。

当研究改善基于电熔氧化铝的磨料颗粒的表面结构的可能性时,发现在没有额外粘合剂的情况下于磨料颗粒表面和平均粒径为10nm~10μm的二氧化钛化合物之间形成直接紧密结合(对应于具有细颗粒状反应性二氧化钛的涂层和随后的温度处理)的情况下,获得磨料颗粒。

特别适合用于所述涂层的基材为由Evonik提供的名为Aeroxide TiO2P25的热解二氧化钛,其平均一次粒径为21nm。然后进一步的测试显示了在相应适配的反应条件下还可以成功使用明显更粗糙的TiO2颗粒,其中一次颗粒的平均粒径优选为10nm~1μm,更优选为10nm~100nm。

利用对涂布的磨料颗粒的光学分析,发现结合在所述表面上的颗粒的分布相对不均匀,并且特别是在边缘、凹陷和裂缝处可见到二氧化钛化合物的集中。由此也可见在磨料颗粒表面形成的二氧化钛化合物的粒径相对较粗且不均匀,这最可能是由于在温度处理过程中发生不规则的晶体生长。

由于涂料颗粒在磨料颗粒表面上的颗粒边缘和裂缝处的这些集中,还使用单独的涂布颗粒进行稳定性分析,从而证明了与未涂布的磨料颗粒相比,用二氧化钛涂布并烧结的磨料颗粒的颗粒韧度增加。

通过在球磨机中研磨,经由微粒分解测定磨料颗粒的颗粒韧度,其中,在填充有12个钢球(直径15mm,重量330g~332g)的球磨机中以188转/分钟将10g金刚砂(具有相应的粒度号)研磨一段预定的时间。随后将研磨过的磨料颗粒在筛分机(Haver EML 200)中通过比底筛(其针对相应的粒度号定义)细2级的相应细筛筛分5分钟,并对细组分进行称量。MKZ值遵照下式:

在测试的环境中,随后还使用二氧化钛与碳的混合物,以便可能通过同时形成减少的二氧化钛化合物而进一步改善个体颗粒的物理性质。出乎意料地,由此发现了不仅当用碳部分替换二氧化钛,而且在用碳完全替换二氧化钛时,都获得了一方面包括优异的稳定性值且另一方面展现良好的研磨效率的涂布磨料颗粒。

在800℃~1400℃的温度下使用不同的涂布和未涂布的磨料颗粒进行烧结测试,由此发现,随着烧结温度的增加,颗粒韧度一般增加。此外发现,对于各涂料,对应于特征温度,涂布有二氧化钛和/或碳的基于电熔氧化铝的全部颗粒的颗粒韧度与未涂布的颗粒相比都不成比例地增加。此特征温度在所有的情况下都分别超过800℃,大多数超过1000℃和1250℃,从而在超过800℃、优选超过1000℃、更优选超过1250℃的温度烧结二氧化钛和/或碳颗粒。

基于未处理的颗粒的重量,表面涂层的重量百分比优选为0.01重量%~5重量%,从而本发明的优选实施方式包含1重量%~2重量%的表面涂层。从而,表面涂层的层厚度优选小于10μm。

还发现,在使用二氧化钛和碳的混合物时,烧结前的TiO2与碳的比例应当有利地为10:1~1:10。

通过微粒分解,在下表1中表征了一些针对基于电熔氧化铝的磨料颗粒选择的涂料。

根据FEPA的粒度号F46的由Imerys Fused Minerals提供的名为SCT SK的单晶氧化铝用于本测试。使用平均粒径为10nm~50nm的高分散性二氧化钛和平均粒径也为10nm~50nm的炭黑作为涂料用基材,其中,在本分析的环境中使用由Evonik提供的Aeroxide TiO2P25和由IMCD Deutschland GmbH&Co.KG提供的炭黑Raven PFEB,其粒径分别为21nm和24nm。在空气的存在下分别于1200℃和1350℃进行烧结。

表1

由于称量筛过物(=磨损)以测定MKZ值,这对于上表意味着,颗粒韧度越高,MKZ值越小。

研磨测试

还为了确定MKZ值对研磨实践的正面影响,在1350℃处理的实施例1~10的情况下进行额外的研磨测试。

出于此目的,生产尺寸为125mm×1.2mm×22.23mm的薄切割砂轮,然后用其切割不同的工件,其中,最初进行3次预切以调节砂轮,随后利用每个砂轮进行总计24次切割。研磨效率通过砂轮直径的减少(砂轮磨损)来测定,其中,通过砂轮磨损和切割面积测定所谓的G比作为研磨效率的大小。不同工件和材料的研磨结果汇总在表2~表4中。

表2

在上表2中汇总的研磨测试系列的情况下,对尺寸为30mm×30mm×3mm的建筑钢ST37角钢切割总共24次,随后测定切割砂轮的磨损。

相比于包含未涂布的参比颗粒的切割砂轮(实施例1),包含涂布磨料颗粒的所有切割砂轮都显示出更低的磨损和因此更好的研磨效率。尽管在仅涂布有TiO2的研磨颗粒的情况下以2重量%的TiO2(实施例4)达到了最佳结果,然而鉴于0.5重量%的TiO2(实施例2)和1.0重量%的TiO2(实施例3)的结果,不能推导出研磨力随着涂布部分增加而增大的明显趋势。包含仅涂布有碳的磨料颗粒的切割砂轮(实施例5~7)的磨损显著超过前述切割砂轮。因此,涂布有0.5重量%的碳的磨料颗粒的结果并不比未涂布的参比颗粒的结果好得多。在将0.25重量%的碳和0.75重量%的TiO2的混合物用于磨料颗粒的涂层(实施例8)的情况下,切割砂轮的结果出乎意料地好。

在切割厚度为2mm且直径为20mm的不锈钢管(V2A)的情况下的测试系列汇总在下表3中。通常,通过砂轮磨损来测定研磨效率。总体而言,全部研磨结果都相当地劣于建筑钢的情况。总体而言,包含仅涂布有碳的磨料颗粒的切割砂轮(实施例5~7)的结果最差。包含涂布有0.25重量%的碳和0.75重量%的TiO2的混合物的磨料颗粒的切割砂轮(实施例8)连同包含仅涂布有1重量%和2重量%的TiO2的磨料颗粒的砂轮一起再次显示出非常好的结果。

表3

在下表4中汇总的最后的测试系列中加工了20mm灰口铸铁(GG25)棒。

总体而言,在此材料的情况下,再次实现了与包含未涂布的磨料颗粒的切割砂轮相比更高的研磨力增加。由实施例4(2%的TiO2)和实施例8(0.25%的碳,0.75%的TiO2)再次获得最佳结果。在此测试系列的情况下,实施例2~4的结果似乎确认了研磨效率随着TiO2含量的增加而增加。然而,此趋势并不是那么明显,在实际应用情况下昂贵原料热解TiO2的加倍使用在经济上是否合理是值得怀疑的。

表4

随附的用扫描电子显微镜采集的图像为对应于使用不同涂料颗粒的或多或少的非常明显的研磨力增加提供了貌似合理的解释。

图1由此显示了放大2,000倍的涂布有2重量%的TiO2的磨料颗粒的表面,在其上可以见到相对较粗的、大多细长的TiO2晶体和钛酸铝晶体,其中一些颗粒达到超过10μm的纵向扩展。在这一点上,必须指出,没有对化合物的化学和结晶组成进行详细研究。然而,总体而言,平均粒径为0.01μm~10μm,优选为1μm~10μm。使用平均粒径为10nm~50nm的热解TiO2作为基材,由此在温度处理期间也必然发生强烈的不规则晶体生长。所述表面本身由于与其紧密连接的颗粒而显著增加,其中,预期相应涂布的磨料颗粒在磨料的粘合剂基质中优异整合,这通过研磨测试而确认。此外在图1中可以观察到具有包含TiO2的颗粒的表面涂层是相对致密的,其对于在所述表面上包含较少TiO2的涂布磨料颗粒也显示良好研磨效率的事实提供了解释。

图2显示了放大2.000倍的涂布有1重量%的碳的磨料颗粒的表面。与TiO2晶体相反,含碳颗粒显示出非晶结构,其中在此情况下还存在一些直径超过10μm的簇。不能最终明确烧结熔合的颗粒究竟是碳化物、碳氧化物还是Al、C、O和N体系中的其它混合晶体。此处的平均粒径也为0.01μm~10μm。含碳颗粒的非晶圆形揭示了相应处理的磨料颗粒在粘合剂基质中的整合将不如在表面上具有含TiO2的颗粒的磨料颗粒(其形成角和棱,由此使磨料颗粒锚固在粘合剂基质中)一样紧密。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1