双模式机电混合动力系统及其控制的制作方法

文档序号:3913515阅读:196来源:国知局
专利名称:双模式机电混合动力系统及其控制的制作方法
技术领域
本发明介绍一种混合动力系统及其控制方法,着重介绍一种具有两种动力分流形式的机电混合动力分流系统及其控制方法。该混合动力系统可广泛应用于各种车辆和动力设备。
背景技术
概述动力系统,又称动力总成,包括动力源和传动系统。内燃机(发动机)为最常见的动力源。传动系统则进一步包括变速器、差速器和传动轴。动力系统的作用是向车辆的驱动轮提供所需的驱动动力。通常,发动机有一定的速度和扭矩范围,并在其中很小的范围内达到最佳的工作状态,这时或是油耗最小,或是有害排放最低,或是俩者皆然。然而,实际路况却千变万化,不但表现在驱动轮的转速上同时还表现在驱动轮所要求的驱动扭矩上。任何一个转速和扭矩的组合定义一种动力状态。不同的动力状态可以有相同的动力。可见,发动机的动力状态与驱动轮的动力状态有着不同变化范围和规律。因此,实现发动机与驱动轮动力状态之间的匹配是变速器的首要任务。
目前市场上的变速器主要有有级变速器和无级变速器两大类。有级变速器又分为手动和自动两种。它们大多数通过齿轮系或行星轮系不同齿轮之间的啮合组合来提供有限个离散的输出、输入速比。在相邻两个速比之间,驱动轮速度的调节则依靠发动机转速变化来实现。
无级变速器,无论是机械式,液压式,还是机电式的,都能在一定范围内提供无限个连续可选用的速比。从理论上说,驱动轮的速度变化完全可通过变速器来完成。这样,发动机可以尽可能地工作在最佳转速范围内。无级变速器与有级变速器相比,具有调速平稳,能充分利用发动机最大功率等诸多优点。因此,多年来无级变速器一直是各国工程师们研究的对象。目前推向市场的无级变速器有金属摩擦带式和球腔摩擦轮式两种,其中以带式较为普遍。
与理想要求的工作情况相比,现有的变速器无论是有级的或是无级的都不能完全满足发动机与驱动轮之间动力状态的匹配要求。这是因为现有的变速器只能完成动力的传输而不能实现动力的调节。变速器的输入与输出功率是相同的(不计变速器内耗)。因此,这样的变速器只能对输入、输出速比或输出、输入扭矩比进行单项调节,而不能同时对二者进行独立的调节。
近年来,电机混合动力系统的诞生和迅速发展为实现发动机与驱动轮之间动力和动力状态的完全匹配开拓了新的途径。在众多的动力总成设计方案中,最具代表性的有串联混合系统和并联混合系统两种。机电串联混合系统中,发动机-发电机-电动机-轴系-驱动轮组成一条串联的动力链,动力总成结构极为简单。其中,发电机-电动机组合可视为传统意义下的变速器。当与储能器,如电池,电容等联合使用时,该变速器又可作为能量调节装置,完成对速度和扭矩的独立调节。
机电并联系统有两条并行、独立的动力链。一条由传统的机械变速器组成,另一条由电池-电机系统组成。机械变速器负责完成对速度的调节,而电池-电机系统则完成对功率(动力)或扭矩的调节。为充分发挥整个系统的潜能,机械变速器还需采用无级变速的方式。
串联混合系统的优点在于结构简单,布局灵活。但由于全部动力通过电动机,因此电机的功率要求高,体积大,重量重。同时,由于能量传输过程经过两次机-电,电-机的转换,整个系统的效率较低。并联混合系统,只有部分动力通过电机系统,因此,对电机的功率要求相对较低。整体系统的效率较高。然而,此系统需两套独立的子系统,造价高。通常只用于弱混合系统。

发明内容
本发明所介绍的是一种以两种动力分流形式为主要工作模式的混合动力分流系统及其控制策略和方法。该系统由发动机、变速器和控制器等主要零部件组成。它采用动力分流原理,利用局部的动力变化控制总系统输出端的动力状态,实现对输出端转速和扭矩的独立调节。动力分流由变速器完成。它由机械传动装置和动力调节装置两部分组成。变速器至少提供两种工作模式,一种是基于输出动力分流的工作模式,一种是基于复合动力分流的工作模式。动力调节装置可有多种形式,即可以是电机-电动机组合,也可以是油泵-油马达组合或摩擦传动装置等等。混合动力系统通常还包括储能器,如电池,电容或气液压力罐等。
本说明书将以机电混合动力系统为例介绍一种实用的机电混合动力分流系统及其控制方法。机电混合动力系统采用电机-电动机组合作为变速器的动力调节装置。该动力调节装置相当于一个局部机电串联混合系统。由于动力分流系统仅将部分动力送经动力调节装置,因此,该系统有效地克服了串联混合系统的缺点,具较高的传动效率。本发明介绍的动力分流系统的另一个优点是其机械结构简单,对电机系统的扭矩和功率要求低,能够在较宽的范围内对速比(输出/输入)和动力进行连续和独立的调节。在控制方法上,具有稳定、可靠、易于实施的特点。它通过电机能够对发动机的转速实施有效的控制。
在速度调节方面,本文所介绍的混合动力系统可实现从倒退、停止到前进的不间断的无级变速。无需传统的摩擦离合器或液力耦合器等启动装置。当变速器的无级变速功能与发动机扭矩控制有效的配合时,可很好地控制发动机工作状态,大幅度的提高整车的燃油效率。
在动力(power)调节方面,本文所介绍的系统可通过储能器有效地调节、补充驱动轮所需的驱动动力从而更合理地调配发动机的动力,保持发动机的工作状态不受或少受路况的影响,使其可以始终工作在所设定的优良动力状态,提高整车的效率。此外,该混合动力系统还可以在制动时回收车辆的部分动能,返送回储能器中。所有这些举措都大幅度地提高整体车辆的燃油效率。
最后,本发明所介绍的混合动力分流系统在生产和制造方面都比目前的自动变速器简单。这将为低价格、高性能产品打下了良好的基础。


图1、是混合动力系统实施方案示意框2、是机电无级变速器第一实施方案的结构示意框3、是四分枝系统转速梯4、是电机电力比与变速器输出、输入速比的关系曲线图5、是混合动力系统控制流程框6、是驱动扭矩与动力踏板位置和车速的关系示意7、是动力系统及发动机工作参数设置流程框8、是发动机动力状态以及油耗等值线示意9、是发动机转速控制系统示意框10、是电机扭矩指令设置流程框11、是机电无级变速器第二实施方案结构示意12、是机电无级变速器第三实施方案结构示意13、是机电无级变速器第四实施方案结构示意图实施方式本发明可以有多种具体的实施方案或方式。其控制策略和方法不仅限于所介绍的实施方案。
图1为本发明所介绍的混合动力系统的典型实施方案示意框图。它包括控制系统和执行装置两部分。执行装置由发动机(或内燃机,100),机电无级变速器(简称变速器,110),齿轮轴系(115),差速器(120),驱动轴(125),驱动轮(130)和电池组(160)等主要部件组成。发动机的输出端联接于变速器的输入轴(105)。变速器输出轴(135)通过齿轮轴系(115)与差速器(120)联接。这样,动力系统的动力由变速器(110),经齿轮轴系(115)、差速器(120)以及与之相联接的驱动轴(125)传送至驱动轮(130)。对于前桥驱动系统,差速器(120)以及齿轮轴系(115)通常整合在变速器(110)中。
控制系统包括整车动力系统控制器(系统控制器,150),发动机控制单元ECU(140),变速器控制单元TCU(变速器控制器,155),电池控制单元BCU(165)和制动器控制模块BCM(145)等主要单元和模块。动力系统控制器(150)通过控制区通讯网络(CAN)与各部件子控制单元,如发动机控制单元(140),变速器控制单元TCU(155),电池控制单元BCU(165)以及制动器控制模块BCM(145)等相联接,并通过它们对整车动力系统以及相关零部件或子系统实施控制。动力系统控制器可以与一个或若干个其它子控制单元或模块组成一个集中的控制单元或模块,也可以以单个的形式存在。各控制器,子控制单元以及控制模块(150,140,145,155,165)可包括一个或多个微处理器,存储器,数据管理器以及输出、输入接口。
动力系统控制器(150)根据动力踏板或油门(170),制动踏板(180),速区选择杆(190),工作模式选择钮,车速传感器以及其它传感器(200)所提供的信息,设定并控制发动机(100)的输出动力和动力状态,变速器(110)的工作模式和动力状态以及电池(160)的充电和放电过程。
机电无级变速器(110)是混合动力系统的核心部件。从机械结构上看,它由动力分流机构和动力输出选择机构组成,担负着动力及动力状态的匹配和调控作用。动力分流机构包括一个四分枝行星轮系。该行星轮系有四个同轴转动部件,具有两个自由度,给定其中任何两个部件的转速,即可确定其余转动部件的转速。动力输出选择机构包括两对常啮合齿轮,离合器和动力输出轴。
图2所示是机电无级变速器的第一种实施方案的结构示意框图。它由一个动力分流机构,一个动力输出选择机构和两台电机(EM1,EM2)组成。此外,该变速器还包括电机驱动及控制器或控制单元(CTL,图中未显示)。动力分流机构包括输入轴(SHFT1)和一个变异的Ravigneaux行星轮系(简称复合行星轮系PG)。该复合行星轮系(PG)由一个完全行星轮系(PG2)和一个非完全行星轮系(PG1)复合而成,具有四个同轴转动部件。这四个同轴转动部件与输入轴(SHFT1)以及两台电机(EM1,EM2)同心排列布置,构成第一旋转中心。动力输出选择机构包括两对常啮合齿轮(G1和g1以及G2和g2),两个离合器(CL1,CL2)和输出轴(SHFT2)。齿轮对的各从动齿轮(g1,g2),与输出轴(SHFT2)和离合器(CL1,CL2)同心排列布置,构成第二旋转中心。
每台电机由一个转子(RT1或RT2)、一个定子(ST1或ST2)和相应的转角或转速传感器(图中未显示)组成。每台电机通过电缆经各自的换流器(Inverter)与电池组(160)相连接,从而实现两台电机之间的电气联接。
复合行星轮系(PG)由第一圈轮(R1),第二圈轮(R2),一组长行星轮(PL),一组短行星轮(PS),行星轮架(CR)和一个太阳轮(S)构成。其中,第二圈轮(R2),长行星轮(PL),太阳轮(S)和行星轮架(CR)构成完全行星轮系(PG2);第一圈轮(R1),短行星轮(PS)和行星轮架(CR)构成非完全行星轮系(PG1)。长行星轮(PL)由行星轮架(CR)通过轴承支承并均匀地分布在行星轮系的旋转轴线周围。同样地,短行星轮(PS)亦由行星轮架(CR)通过轴承支承并均匀地分布在行星轮系的旋转轴线周围。每一个长行星轮与一个相应的短行星轮作外啮合。第一圈轮(R1)与每一个短行星轮(PS)作内啮合。第二圈轮(R2)与每一个长行星轮(PL)作内啮合。太阳轮(S)与每一个长行星轮(PL)作外啮合。如此构成的复合行星轮系有四个同轴转动件(S,R1,CR和R2),构成一个四分枝系统(Four-Branch System)。每一个分枝代表一个或一组转动体,具有一个相应的旋转角速度(转速)。太阳轮(S)为该四分枝系统的第一枝;第一圈轮(R1)构成四分枝系统的第二枝;行星轮架(CR)为四分枝系统的第三枝,第二圈轮(R2)构成四分枝系统的第四枝。如此构成的四分枝系统可表述为S-R1-CR-R2各分枝转速之间的关系可由图3所示的速度梯图来表示。
上述四分枝系统的各个分枝与电机(EM1,EM2)以及输入轴(SHFT1或简记为I)、输出轴(SHFT2或简记为0)之间作如下连接第一电机(EM1)通过与太阳轮(S)的连接,联于四分枝系统的第一枝S(EM1)。第二电机(EM2)通过与第二圈轮(R2)的连接,联于四分枝系统的第四枝R2(EM2)。输入轴(SHFT1或I)通过与行星轮架(CR)的连接,接入四分枝系统的第三枝CR(I)。输出轴(SHFT2或O)则通过常啮合齿轮对(G1,g1或G2,g2)以及相应的离合器(CL1或CL2)或者与第二圈轮(R2)相接,同第二电机(EM2)一起联入四分枝系统的第四枝R2(EM2,O),或者与第一圈轮(R1)相联,接入四分枝系统的第二枝R1(O)。
当输出轴(SHFT2)通过第二对输出齿轮(G2,g2)与第二圈轮(R2)相联时,第一离合器(CL1)分离,第二离合器(CL2)啮合。此时,变速器工作在输出动力分流状态,称为输出动力分流模式,或第一工作模式。当变速器工作在输出动力分流模式时,第一圈轮(R1)所在的第二分枝处于空载状态。四分枝系统蜕变为一个三分枝系统(S-CR-R2)。该三分枝系统(S-CR-R2)与电机(EM1,EM2)和输入轴(I)、输出轴(O)的连接关系可以简洁地表述如下S(EM1)-CR(I)-R2(EM2,O)式中每一项代表行星轮系各同轴转动件中的一个部件,同时也表示相应的分枝系统的一个分枝。每个分枝后括号内的符号表示与该分枝相连接的零部件。
当输出轴(SHFT2)通过第一对输出齿轮(G1,g1)与第一圈轮(R1)相联时,第一离合器(CL1)啮合,第二离合器(CL2)分离。此时,变速器工作在复合动力分流状态,称为复合动力分流模式,或第二工作模式。当变速器工作在复合动力分流模式时,四分枝系统的各个分枝均工作在载荷状态。该四分枝系统(S-R1-CR-R2)与电机(EM1,EM2)和输入轴(I)、输出轴(O)的连接关系可以简洁地表述如下S(EM1)-R1(O)-CR(I)-R2(EM2)上述行星轮系为动力分流机构,起着动力分配、疏导和合成的作用。行星轮系(PG)通过动力输出选择机构与输出轴(SHFT2)实施不同的连接方式,确定了变速器不同的动力分流形式和工作模式。所有这些工作模式都有一个共同的特点它们将发动机输出动力分成两条独特的通路来传输。一条为由两个电机串联所构成的电力链;另一条为由齿轮及轴系等机械零部件所构成的机械动力链,简称为机械链。变速器输出端的动力状态以及输出、输入端的速比可以通过这两条动力传输链的动力分配比例来调节。定义电机电力与发动机输出动力之比PEM1/Peng或PEM2/Peng为电机的电力分配比,简称电机电力比;电池输出或输入电力与发动机输出动力之比δ=Pbat/Peng为电池电力比;变速器输出轴(SHFT2)转速与输入轴(SHFT1)转速之比为变速器速比SR。不同分流形式对应着不同的电机电力比与变速器速比之间的函数关系。
图2所示的动力分流系统(机电无级变速器)可提供三个速比节点,其中包括一个自然速比节点(变速器速比为零的节点)和两个非自然速比节点。速比节点亦称速度节点。在速比节点处,至少有一个电机的转速为零。因此,速比节点也是某一个电机的零功率点。非自然速比节点按其大小的递增顺序依次定义为第一和第二速比节点。自然速比节点将整个速区分为前行区和逆行区,而第一速比节点又将前行区划分为低速比区和高速比区。
低速比区低速比区位于自然速比节点和第一速比节点之间(0≤SR≤SR1)。车辆速度较低,但时常却要求较高的驱动扭矩。变速器采用输出动力分流的工作模式。此时,变速器第一离合器(CL1)分离,第二离合器(CL2)啮合。输出动力由第二圈轮(R2)以及与之相联的第二电机(EM2)经第二对常啮合齿轮(G2,g2),传送至输出轴(SHFT2)。
在稳态条件下,如果变速器与储能器无净能量交换,即δ=0,各电机电力比与变速器速比SR的关系可由下列方程式表述PEM1Peng=1-K(1+K)KG2·SRPEM2Peng=-1+K(1+K)KG2·SRSR≤SRswitch---[1]]]>式中K为复合行星轮系PG的特征齿数比,称为第一特征参数,定义为第二圈轮(R2)的齿数NR2与太阳轮(S)齿数Ns之比;KG2为第二对常啮合齿轮的主动轮(G2)齿数NG2与从动轮(g2)齿数Ng2之比。
K=NR2NS;]]>KG2=NG2Ng2---[2]]]>SRswitch为工作模式切换节点,即低速比区和高速比区的衔接点。
由电力分配比例方程[1]可解算出输出动力分流模式下的非自然速比节点,即第一速比节点的位置,SR1=(1+KK)KG2---[3]]]>高速比区高速比区为位于第一速比节点SR1以上的区域(SR>SR1)。通常车速较高,驱动扭矩要求较低。此区变速器采用复合动力分流的工作模式。第一离合器(CL1)啮合,第二离合器(CL2)分离。输出动力由第一圈轮(R1)经第一对常啮合齿轮(G1,g1),传送至输出轴(SHFT2)。
在稳态条件下,如果变速器与储能器无净能量交换(δ=0),各电机电力比与变速器速比SR的关系可由下列方程式表述
PEM1Peng=Kβ(1+K)KG1·SR+(1+β)(K-β)KG1β(1+K)·1SR-K(β+2)-ββ(1+K)PEM2Peng=-Kβ(1+K)KG1·SR-(1+β)(K-β)KG1β(1+K)·1SR+K(β+2)-ββ(1+K)SR≤SRswitch---[4]]]>式中β为复合行星轮系(PG)的第二特征参数,定义为第二圈轮齿数NR2与第一圈轮齿数NR1之比,KG1为第一对常啮合齿轮的主动轮(G1)齿数NG1与从动轮(g1)齿数Ng1之比。
β=NR2NR1;]]>KG1=NG1Ng1---[5]]]>由电力分配比例方程式[4],可解算出复合动力分流工作模式第一、第二速比节点的位置SR1,SR2SR1=(K-βK)KG1;]]>SR2=(1+β)KG1---[6]]]>第一速比节点SR1和第二速比节点SR2之间的距离称为复合动力分流工作模式的速比跨距,以SR2与SR1的商来表示,φ=SR2SR1]]>它反映变速器速比的有效范围,决定两速比节点之间电机电力比的极值。
PEM1_maxPeng=[φ(1+δ)-1]2φ-1---[7]]]>PEM2_minPeng=-[φ-1+δ]2φ-1---[8]]]>为保证变速器正常工作,电机的额定功率应不小于发动机输出功率与电机电力比极值的乘积,即|PEM1|≥[φ(1+δ)-1]2φ-1·Peng---[9]]]>|PEM2|≥[φ-1+δ]2φ-1·Peng---[10]]]>
低速比区和高速比区的衔接点SRswitch通常选取在第一速比节点上或附近。
为了使输出动力分流工作模式的非自然速比节点(亦称第一速比节点)与复合动力分流工作模式的第一速比节点重合,从而成为低速比区和高速比区的衔接点(SRswitch=SR1),第一对常啮合齿轮(G1,g1)的齿数比KG1与第二对常啮合齿轮(G2,g2)的齿数比KG2之间应满足如下条件KG1KG2=K+1K-β---[11]]]>此时,在衔接点上,变速器的第一对常啮合齿轮的从动齿轮g1与第二对常啮合齿轮的从动齿轮g2转速同步。这极大地便利和简化了离合器的切换过程,有利于保证切换过程的平稳性和切换过程中无动力冲击。离合器(CL1,CL2)可采用结构简单的啮合式离合器或其它非摩擦式离合器。
以变速器速比SR为横坐标,电机电力比为纵坐标,根据电机电力分配比例的方程式[1]和[4]可绘出如图4所示的电机电力比与速比的关系曲线。图中曲线表示了在变速器与储能器无纯电力交换条件下(δ=0),电机电力比与变速器速比的关系。在曲线上可看到第一和第二速比节点。在这些节点上,至少某一个电机电力比为零。此时,该电机处于零功率状态。
逆行区逆行区可延用前行区中低速比区的驱动方式,采用输出动力分流的工作模式。为了限制电力链中的电机电力分配比,避免动力回流或动力内循还,逆行区还可采用纯电力驱动的传动方式。
空挡和泊车图2所示的变速器第一实施方案还可提供包括空挡在内的其他工作状态。显然,当两个离合器均处于分离状态时,变速器处于空挡状态。泊车则可通过啮合式离合器或泊车棘轮锁定输出轴(图中未显示)来完成。
发动机点火启动此外,变速器还可用于发动机的点火启动。发动机的点火启动可由第一电机(EM1)单独完成或由两台电机(EM1,EM2)配合共同完成。
并联机电混合驱动当两个离合器同时啮合时,变速器可提供传统意义下的纯机械传动,同时,亦可提供并联机电混合驱动的工作方式。
可见,本发明所介绍的混合动力系统可提供包括机电混合动力驱动,纯电力驱动和纯机械传动在内的多种驱动方式和功能。在机电混合动力驱动工作状态中,两台电机之间所传递的动力(电力)不需保持平衡。一个电机转换产生的电能可能会多于或少于另一个电机转换消耗的电能。能量的差额由储能器(电池)补充或容纳。两台电机相互配合,共同承担动力系统的速度调节功能和动力调节功能。
图5为混合动力系统控制流程图,动力系统控制流程包括若干个主要环节。在混合动力系统的运行过程中,控制系统按照预定的时间间隔重复执行此流程,保证发动机和变速器工作在既定的工作状态。一些主要环节可进一步细分为多个子环节。这些环节的执行和实施可由一个或若干个控制单元,控制模块或控制器以及相应的执行装置或机构协同完成。
每一个控制循环开始,动力系统控制器执行控制流程的第一个环节(S1000),接受各相关传感器传送的信号,其中包括速区选择和驱动方式信号,车速(Vveh,或驱动轴转速ωveh)信号、动力踏板位置(PPSacc)信号以及制动踏板位置(PPSbrk)信号,并将这些信号进行转换、处理或运算,为系统决策提供依据。
在第二环节(S2000)中,动力系统控制器根据第一环节所提供的信息确定车辆所需的驱动扭矩(Tveh)和驱动动力(Pveh)。驱动扭矩与动力踏板位置,制动踏板和车速的关系可以以函数或图表的形式给出,如图6所示。驱动轴扭矩与转速的乘积即为驱动动力。驱动扭矩以函数形式表述可写为,Tveh=Cacc·PPSacc-Cbrk·PPSbrk-Ccst[12]其中Cacc,Cbrk,Ccst为系统参数。Cacc由最大许可扭矩确定。当车速较低时,它可取为常数。当车速较高时,它为变数,随车速的增加而减小。这是因为最大许可扭矩受最大许可动力(功率)的限制,随车速的增加而减小。Cbrk由极限扭矩确定,Ccst可取为常数或与车速有关的变量。所需驱动动力Pveh可写为,Pveh=Tveh·VvehRw---[13]]]>其中Rw为驱动轮的有效半径。当驱动动力为负值时,车辆将减速,部分或全部动能将以制动能量的形式通过电机回收(Regnerative Braking),返送到储能器中。
控制流程的第二个环节(S2000),还进一步确定动力系统的总动力要求Psys。总动力包括驱动动力Pveh、机械分动动力(POWER-TAKE-OFF)以及其它非机械动力要求,如空调、照明、仪表和视听设备等。计算动力系统总动力要求时应考虑并计入动力传输过程中各环节的能量(动力)损耗。
系统动力控制流程的第三个环节(S3000)调配、协调动力系统各动力资源,设置系统各组成部分的工作参数。动力系统控制器根据系统总动力要求Psys以及动力总成各部件当前的工作状态对各动力资源(发动机,储能器)进行合理的调配并制定相应的工作参数,使系统达到希望的工作状态。这个工作状态通常以最佳油耗,最佳排放,最佳加速性能或最佳综合指标为目的。在这个环节中,系统控制器向各下属执行机构和下属控制器或控制单元,如发动机ECU,变速器TCU,电池BCU以及制动器BCM等发出工作指令。这些指令包括,但不仅限于燃油喷射器开启或关闭状态指令,发动机启动运行或关闭指令,发动机设定转速ωeng_set,发动机设定扭矩Teng_set,变速器设定输出扭矩Ttrans_req,以及制动力或制动扭矩指令Tbrk_set。
储能器(电池)和其相应的控制单元根据动力调配环节中的设定目标值输出或输入动力,监控充、放电电流,电压,温度和包括储能状态(SOC),能量转换效率等在内的其它一些反映工作情况的参数。同时,储能器将这些信息反馈到系统控制器中为实时控制提供依据。此外,储能器能量传输和控制装置(电路)还对最大许可输入、输出动力加以限制,以保证系统安全、可靠地工作。
系统动力控制流程的第四个环节(S4000)设定电机工作扭矩。系统控制器根据以上环节提供的参数,通过变速器控制器确定变速器的工作模式,控制离合器的切换以及啮合、分离状态并进一步通过电机控制单元设定和控制电机的工作扭矩,以实现对发动机转速的控制。
此外,系统控制器对决策结果进行必要认证或修正,确保各参数均在安全许用的范围内,系统能够平稳地运行。
系统动力控制流程的最后一个主要环节(S5000)根据以上各环节设定的控制参数,通过发动机控制器ECU和变速器控制器TCU以及电机控制单元,对发动机和两台电机实施控制。此外,系统动力控制器还监控储能器的能量传输以及工作状态;监控制动器的执行过程。
系统工作参数设置环节(S3000)所包含的内容较多,其中包括驱动方式(状态)选择,发动机动力确定和发动机工作状态设置等。它可进一步划分为如图7示若干子环节。
子环节(S3100)读入反映系统工作状态的相关参数和传感器信号,其中包括车速,系统总动力要求,车辆当前的驱动方式,发动机持续运行或关闭的时间,发动机温度,电池充电状态SOC,电池充、放电极限电压、电流或功率,电池效率和电机效率等等。
子环节(S3200)确定系统驱动方式。系统控制器根据车速Vveh,动力要求Psys和电池充电状态SOC,依照既定的控制策略,设定驱动方式和发动机工作状态。当车速或驱动动力要求小于预定值时,动力系统控制器将根据电池充电状态SOC在如下两种驱动方式和发动机工作状态中选择一种,以提高系统效率,降低有害排放。
1、当SOC大于最低域值SOCLL时,采用纯电力驱动,发动机关闭。
2、当SOC小于最低域值SOCLL时,以发动机为主动力源,采用机电混合动力的驱动方式。
子环节(S3300)确定发动机输出动力。系统控制器根据系统总动力要求Psys以及动力总成各部件当前的工作状态,效率和限制条件,在许可的参数变化范围内对各动力资源进行合理的调配。这是一个系统总效益指数ηsys的最优化过程。发动机最佳输出动力的选取就是在给定系统工作状态和动力要求的条件下,使系统总效益指数ηsys达到最大值。
maxηsys=ηsys(ηeng,μelc,Psys,Peng) [14]
系统总效益指数ηsys包含了发动机燃油效率ηeng,电机效率ηEM,电机驱动器及控制器效率ηinv,电池效率ηbat,充电状态SOC,电池输出、输入动力Pbat,发动机输出动力Peng以及系统总动力要求Psys等参数。它综合反映了包括电池充电状态SOC,电压、电流等在内的一些参数极值约束条件下系统的总效益。
ηsys=1-(1+αm)(1ηeng-1)PengPsys-(1+αE)(1μelc-1)(1-PengPsys);(Peng≤Psys)1-(1+αm)(1ηeng-1)PengPsys+(1+αE)(1-μelc)(1-PengPsys);(Peng≥Psys)---[15]]]>式中αm,αE分别为机械链和电力链的功耗折算系数。μelc代表了电气部件的综合效益指数。它是电池能量交换效率ηbat,驱动器效率ηinv,充电状态SOC以及充、放电功率Pbat的函数。一些相关参数,如SOC等,的极限值约束条件可以用罚函数或惩罚因子的形式包含在综合效益指数中。这样,在总效益指数的优化过程中,系统工作参数的约束条件和极限值自然得到了满足或保障。
μelc=μelc(ηbat,ηinv,SOC,Pbat) [16]为加快运行速度,实用中可将最优化计算的结果以图表的形式存入相关控制器的可读存储器中,供决策时查取。
子环节(S3400)设置发动机的动力状态。发动机每一组转速和扭矩的组合(ωeng,Teng)代表一种动力状态(图8),以Peng(ωeng,Teng)表示。即使在相同的动力要求下,不同的动力状态对应着不同的燃油效率。
发动机动力状态的设置是指在给定发动机动力要求Peng的条件下,选择发动机的转速和扭矩的组合,使其运行在希望的工作状态下,以保证油耗、排放最低或综合指标最佳。图8所示的是发动机在各动力状态下的油耗等值线图。图中细实线表示油耗等值线。细虚线为动力等值线。粗实线为目标动力状态线(设定动力状态线),代表希望的工作状态。粗虚线代表极限扭矩线。当希望的工作状态是以油耗最低为目的时,目标动力状态线与每一条动力等值线的交点(Pm)应取在该动力等值线上的最低油耗点(λm)。目标动力状态线可以以发动机动力要求为自变量,发动机转速和扭矩为因变量预先存入动力系统控制器的可读内存中。在执行过程中,系统控制器只需根据发动机的动力要求分别读出或插值计算出发动机的转速和扭矩。
当发动机的动力状态设定后,动力系统控制器立即操控下属子控制单元执行相应的控制程序以控制发动机的速度和扭矩,保证发动机尽可能地工作在设定的动力状态。发动机的速度控制是通过调控变速器电机的扭矩来实现的,其具体步骤将在子环节(S4100)至(S4500)中描述。发动机的扭矩控制则主要由发动机控制器(ECU)通过调整、控制进气量,空气与燃油的混合比例,进、排气门的开度、相角,电喷或点火时间等来实现。
子环节(S3500)设定变速器输出扭矩和制动器要求的制动力或制动扭矩。变速器的输出扭矩可根据车辆所需的驱动扭矩,传动比,传动效率和扭矩限制条件来确定。制动器的制动扭矩可根据总制动扭矩要求和系统所能够容纳的最大回收动力以及车速来确定。制动器的控制系统(BCM)根据设定的目标制动动力或扭矩生成相应的工作指令并监控各车轮制动执行装置产生相应的制动扭矩。
发动机转速的控制是通过电机扭矩控制来实现的。发动机,电机,齿轮轴系,速度传感器以及电机的驱动和控制电路组成一个闭环控制系统。图9为该闭环控制系统的示意框图,其控制部分包括直馈和反馈两部分。电机工作扭矩的设置由变速器控制单元TCU完成,其流程如图10所示。它包括(S4100)至(S4500)的若干个子环节。
首先,子环节(S4100)输入相关的系统工况参数。其中包括发动机设定转速ωeng_set和实际转速ωeng,发动机设定扭矩Teng_set或根据实测参数估算的参考扭矩Teng_est(统称发动机参考扭矩,以Teng_set表示),以及变速器的设定输出扭矩Ttrans_req。
然后,子环节(S4200)根据发动机转速和变速输出轴转速计算变速器速比,确定变速器工作模式和各离合器相应的工作状态,产生与之相应的变速器控制信号。
子环节(S4300)根据变速器设定输出扭矩(Ttrans_req)和输入扭矩(发动机参考扭矩,Teng_set)计算各电机扭矩的稳态值(TBEM1,TBEM2),向系统提供直馈信息。电机稳态扭矩又称为基本扭矩或直馈扭矩。
TBEM1TBEM2=CK11CK12CK21CK22·Teng_setTtrans_req---[17]]]>式中CK11,CK12,CK21,CK22为扭矩折算常数,与行星轮系的结构以及齿轮系的特征参数K,β,KG1,KG2有关。其中,CK12还与变速器所采用动力分流形式即工作模式有关。对于图2所示的实施方案,当采用输出动力分流的工作模式时(低速比区),CK11=11+K;]]>CK12=0;[18]CK21=K1+K;]]>CK22=KG2当采用复合动力分流的工作模式时(高速比区),CK11=11+K;]]>CK12=(1+β1+K)KG1;]]>[19]CK21=K1+K;]]>CK22=KG2
图2所示的变速器在速区切换时,变速器各转动部件转速连续,无间断。由等式[17]至[19]还可进一步看出,速区切换时,第二电机EM2的直馈扭矩或基本扭矩TBEM2亦保持连续,无间跳。
子环节(S4400)将速度传感器提供的发动机转速信号(ωeng)与发动机设定转速值(ωeng_set)进行比较得出转速误差信号(Δωeng)。根据转速误差,依照相关的控制理论计算出电机扭矩修正值(TFEM1,TFEM2),作为系统的反馈信息。电机扭矩的修正值又称为修正扭矩,动态扭矩或反馈扭矩。
TFEM1TFEM2=f1(Δωeng)f2(Δωeng)---[20]]]>式中fj(Δωeng)为速差反馈函数。下角标分别为j=1,2,表示不同的速差反馈函数。速差反馈函数可统一写成如下形式fj(Δωeng)=GPj·Δωeng+GIj·∫Δωengdt+GDj·d(Δωeng)dt,(j=1,2)---[21]]]>Δωeng=ωeng_set-ωeng, [22]其中GPj,GIj,GDj(j=1,2)为PID增益常数,可根据变速器不同的工作模式选取不同的数值。
子环节(S4500)计算电机的总扭矩,即工作扭矩。电机的总扭矩为稳态扭矩与动态扭矩之合。
TEM1TEM2=TBEM1TBEM2+TFEM1TFEM2---[23]]]>变速器控制单元TCU将电机工作扭矩指令下达至相应的电机控制器并通过它和相应的电力电子驱动电路对电机的扭矩实施调控。
可见,发动机转速的控制是通过对两台电机扭矩控制协同完成。其特点是电机扭矩指令由稳态扭矩(TBEM1,TNEM2)和动态扭矩(TFEM1,TFEM2)组成。稳态扭矩(TBEM1,TBEM2)为发动机参考扭矩Teng_set和变速器输出扭矩Ttrans_req的线性组合。组合系数为动力分流行星轮系和动力传输齿轮轴系特征参数的函数。其中,一个组合系数与变速器工作模式有关,而其余的组合系数则与变速器的工作模式无关。动态扭矩包含发动机转速误差反馈函数。
电机扭矩控制的实施由相应的电力电子驱动电路和控制电路实现,在子控制环节(S5000B。S5000C)中完成。系统控制器按预定时间间隔反复执行此子控制循环。电机扭矩的具体控制方式以及相应的电力电子驱动电路根据电机不同的构造有相应的变化。以同步永磁电机为例,电机扭矩控制可通过相关理论转换为电压控制,并以脉宽调制方法(PWM)实现。
至此,我们以图2所示的动力分流系统作为变速器的具体实施方案,介绍了图1所示的混合动力系统的控制策略和具体的控制方法。事实上,上述混合动力分流系统的控制策略和方法,还适用于变速器的其它实施方案。图11为变速器的第二种实施方案。它代表了功能相同,结构相似的另一种动力分流系统。同样,该系统由一个动力分流机构,一个动力输出选择机构和两台电机(EM1,EM2)及其控制器组成。动力分流机构由一个四分枝复合行星轮系组成,同时还包括动力输入轴(SHFT1)。所述复合行星轮系由一个完全行星轮系(PG2)和一个非完全行星轮系(PG1)复合而成。其中,完全行星轮系(PG2)包括太阳轮(S),长行星轮(PL),圈轮(R2)和行星轮架(CR);非完全行星轮系(PG1)包括短行星轮(PS),圈轮(R1)和行星轮架(CR)。完全星轮系(PG2)中的每一个长行星轮(PL)与非完全行星轮系(PG1)中相应的一个短行星轮(PS)作外啮合,构成行星轮对,由行星轮架(CR)支承。动力输出选择机构包括两对常啮合齿轮(G1,g1;G2,g2),两个离合器(CL1,CL2)和输出轴(SHFT2)。
图11所示的第二种实施方案根据离合器(CL1,CL2)不同的啮合状态能够提供输出动力分流和复合动力分流两种不同的工作模式。
当第二离合器(CL2)啮合,第一离合器(CL1)分离时,变速器工作在输出动力分流状态下。动力由第二对常啮合齿轮(G2,g2)传输至输出轴(SHFT2)。相应地,复合行星轮系各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可采用前面介绍的方法表述如下S(EM1,O)-R1(I)-R2(EM2)当第一离合器(CL1)啮合,第二离合器(CL2)分离时,变速器工作在复合动力分流状态下。动力由第一对常啮合齿轮(G1,g1)传输至输出轴(SHFT2)。相应地,复合行星轮系各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可简洁地表述如下S(EM1)-R1(I)-CR(O)-R2(EM2)就控制策略和方法而言,本发明所介绍的动力控制策略和方法完全适用。
图12为变速器的第三种实施方案。同样,它由一个动力分流机构,一个动力输出选择机构,两台电机(EM1,EM2)和电机驱动及控制器组成。动力分流机构包括输入轴(SHFT1)和一个四分枝复合行星轮系。该复合行星轮系由完全行星轮系(PG1)和非完全行星轮系(PG2)复合而成。其中,完全行星轮系(PG1)包括太阳轮(S1),长行星轮(PL),圈轮(R)和行星轮架(CR);非完全行星轮系(PG2)包括太阳轮(S2),短行星轮(PS)和行星轮架(CR)。完全星轮系(PG1)中的每一个长行星轮(PL)与非完全行星轮系(PG2)中相应的一个短行星轮(PS)作外啮合,构成行星轮对,由行星轮架(CR)支承。动力输出选择机构包括两对常啮合齿轮(G1,g1;G2,g2),两个离合器(CL1,CL2)和输出轴(SHFT2)。
图12所示的第三种实施方案可根据离合器(CL1,CL2)不同的啮合状态提供输出动力分流和复合动力分流两种不同的工作模式。
当第二离合器(CL2)啮合,第一离合器(CL1)分离时,变速器工作在输出动力分流状态下。动力经动力分流机构由第二对常啮合齿轮(G2,g2)传输至输出轴(SHFT2)。此时,复合行星轮系各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可简洁地表述如下S1(EM1,O)-CR(I)-S2(EM2)当第一离合器(CL1)啮合,第二离合器(CL2)分离时,变速器工作在复合动力分流状态下。动力经动力分流机构,由第一对常啮合齿轮(G1,g1)传输至输出轴(SHFT2)。相应地,复合行星轮系的各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可表述如下S1(EM1)-CR(I)-R(O)-S2(EM2)同样,本发明所介绍的动力控制策略和方法对于图12所示的实施方案完全适用。
图13为变速器的第四种实施方案。此方案与图12所示的第三方案相差甚微。变速器由动力分流机构,动力输出选择机构,电机(EM1,EM2)及其控制器组成。动力分流机构包括输入轴(SHFT1)和一个四分枝复合行星轮系。该复合行星轮系由一个完全行星轮系(PG1)和一个非完全行星轮系(PG2)复合而成。其中,完全行星轮系(PG1)包括太阳轮(S1),长行星轮(PL),圈轮(R)和行星轮架(CR);非完全行星轮系(PG2)包括太阳轮(S2),短行星轮(PS)和行星轮架(CR)。完全星轮系(PG1)中的每一个长行星轮(PL)与非完全行星轮系(PG2)中相应的一个短行星轮(PS)作外啮合,构成行星轮对,由行星轮架(CR)支承。动力输出选择机构包括两对常啮合齿轮(G1,g1;G2,g2),两个离合器(CL1,CL2)和输出轴(SHFT2)。
图13所示的第四种实施方案同样可根据离合器(CL1,CL2)不同的啮合状态提供输出动力分流和复合动力分流两种不同的工作模式。
当第二离合器(CL2)啮合,第一离合器(CL1)分离时,变速器工作在输出动力分流状态下。动力经动力分流机构由第二对常啮合齿轮(G2,g2)传输至输出轴(SHFT2)。此时,复合行星轮系的各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可简洁地表述如下S1(EM1)-R(I)-S2(EM2,O)当第一离合器(CL1)啮合,第二离合器(CL2)分离时,变速器工作在复合动力分流状态下。动力经动力分流机构由第一对常啮合齿轮(G1,g1)传输至输出轴(SHFT2)。相应地,复合行星轮系的各分枝(各同轴转动部件)与电机(EM1,EM2)以及输入(I)、输出(O)轴的连接方式可表述如下
S1(EM1)-CR(O)-R(I)-S2(EM2)本发明所介绍的动力控制策略和方法同样完全适用于图13所示的第四实施方案。
综上所述,这些方案的共同点是变速器由动力分流机构,动力输出选择机构和电机系统组成。动力分流机构包括一个四分枝复合行星轮系。该复合行星轮系由两个行星轮系复合而成。其中,一个行星轮系的行星轮与另一个行星轮系的行星轮构成行星轮对,由公共行星轮架支承。动力分流机构的各同轴转动部件与电机具有相同的旋转中心。动力输出选择机构由一个简单的齿轮轴系组成,它包括输出轴,两对常啮合齿轮和两个离合器。其中,输出轴,离合器和常啮合齿轮对的从动轮具有相同的旋转中心。动力输出选择机构可提供两个不同的速比。这两个速比之间的比例关系仅与复合行星轮系特征参数有关。本发明所介绍的动力控制策略和方法适用于所有以这些实施方案为基础构架的混合动力系统。
可见,本发明介绍的动力控制策略和方法有广泛适用性。它可全部或部分应用于由发动机和变速器等所组成的,基于动力分流原理的混合动力系统。其中变速器可以采用不同的动力分流机构和动力分流方式,包括输出动力分流、复合动力分流或输出分流-复合分流组合成的动力分流方式等。
最后需要说明的是,本发明所述变速器的各个实施方案中,电机可以直接连接于行四分枝复合行星轮系第一分枝和第四分枝,如文中所介绍的那样。此外,电机还可通过中介齿轮或减速器间接地连接于与行星轮系第一和第四分枝。这样不但可以平衡、调整电机的工作区域,还可调整系统的整体结构布局。
权利要求
1.一种至少具有两种工作模式,向驱动轴提供动力的混合动力系统,包括发动机,变速器和动力控制系统。动力控制系统至少包括变速器控制器和发动机控制器。其特征是变速器至少包括一个动力分流机构,一个动力输出选择机构,第一、第二两台电机和相应的电机驱动、控制器。所述动力分流机构包括一个复合行星轮系,该复合行星轮系由第一、第二两个行星轮系组成。所述动力输出选择机构包括一个齿轮轴系,它至少提供两个不同的速比,这些速比之间的比例关系由复合行星轮系的特征参数唯一确定。动力控制系统至少提供如下功能 (1)设置系统总动力要求,(2)调配系统动力资源,(3)设置发动机输出动力和动力状态(发动机转速和扭矩)。
2.根据权利要求1所述的混合动力系统,其特征是所述动力控制系统直接或通过子控制单元间接设置各电机的工作扭矩指令,并通过电机驱动和控制器控制、调节电机的工作扭矩以实现对发动机转速的控制,同时,动力控制系统还直接或通过发动机控制器间接控制发动机扭矩。
3.根据权利要求1所述的混合动力系统,其特征是组成复合行星轮系的第一、第二两个行星轮系中至少有一个是非完全行星轮系;所述非完全行星轮系包含不多于两个同轴转动件。
4.根据权利要求3所述的混合动力系统,其特征是第一行星轮系的行星轮架与第二行星轮系的行星轮架构成一个公共的行星轮架。第一行星轮系的行星轮与第二行星轮系的行星轮构成行星轮对,由公共行星轮架支承。每对行星轮作外啮合。每一对行星轮中,至少有一个为长行星轮,一个为短行星轮;长行星轮除与短行星轮啮合外,还与太阳轮和圈轮啮合;短行星轮除与长行星轮啮合外,仅与圈轮或太阳轮两者中的一个啮合。
5.根据权利要求1所述的混合动力系统,其特征是复合行星轮系构成一个四分枝系统,具有四个同轴转动部件;这四个同轴转动部件构成第一个旋转中心,形成第一个旋转轴线。齿轮轴系包括从动齿轮,离合器和动力输出轴;从动齿轮通过各自相应的离合器分别与动力输出轴耦合,实现第一、第二种工作模式;从动齿轮,离合器和输出轴同心共轴,构成第二个旋转中心,形成第二个旋转轴线。
6.根据权利要求1所述的混合动力系统,其特征是变速器提供至少两个速比节点和两种不同动力分流形式的工作模式;第一和第二工作模式的切换点为第一速比节点SRswitch=SR1。在第一和第二工作模式的切换点,输出轴转速连续,电机转速连续。同时,至少一台电机的稳态扭矩(直馈扭矩)连续,无间断。
7.根据权利要求2所述的混合动力系统,其特征是电机工作扭矩包括直馈扭矩(稳态扭矩)和反馈扭矩(动态扭矩)两部分。直馈扭矩是变速器输出扭矩(驱动扭矩)与发动机输出(参考)扭矩的线性组合。组合系数为复合行星轮系和齿轮轴系特征参数的函数,其中,至少一个组合系数随变速器工作模式的变化而变化,其余的组合系数与变速器工作模式无关。反馈扭矩是发动机转速误差的函数。
8.根据权利要求6所述的混合动力系统,其特点是混合动力系统还包括储能器;储能器向电机输出或接受电机输入的能量;电机的额定功率不小于电机电力比的极值与发动机输出功率的乘积PEM_ref,即|PEM1|≥PEM_ref=[φ(1+δ)-1]2φ-1·Peng]]>|PEM2|≥PEM_ref=[φ-1+δ]2φ-1·Peng]]>式中φ=SR2SR1]]>δ=PbatPeng]]>其中SR1,SR2分别为变速器第一和第二速比节点,SR2>SR1;Pbat为储能器输入或输出动力,Peng为变速器输入轴输入动力。
9.根据权利要求1所述的混合动力系统,其特点是混合动力系统还包括储能器。动力控制系统以优化系统总体综合效益指数为目标调配系统动力资源,设置发动机和储能器的动力。系统总体综合效益指数包含了发动机燃油效率,电机效率,电机驱动控制器效率以及电池效率和其它零部件的效率,是电池充电状态SOC,电池输出、出入动力和发动机输出动力等工作参数的函数。同时,效益指数还以罚函数或惩罚因子的形式包含了系统工作参数的极限值和约束条件,从而使系统工作参数的约束条件在效益指数的优化过程中自然得以实施并得到保障。
10.根据权利要求1所述的混合动力系统,其特点是动力分流机构至少包括一个动力输入轴和一个复合行星轮系;构成动力输出选择机构的齿轮轴系至少包括两个离合器和一个动力输出轴。所述复合行星轮系构成一个四分枝系统,具有四个同轴转动部件;该四分枝系统的第一和第四分枝分别与两台电机作固定(不可切换)连接;四分枝系统的第二枝或第三枝与输入轴作固定连接。变速器的动力输出轴则根据工作模式,通过离合器分别与四分枝系统的第一和第三分枝或者第二和第四分枝作可切换式的连接。至少一个离合器是啮合式离合器或非摩擦式离合器。所述四分枝复合行星轮系与第一和第二电机(EM1,EM2),输入轴(I),输出轴(O)可有如下任何一种结构布置和连接方式S(EM1)-CR(I)-R2(EM2,O)S(EM1)-R1(O)-CR(I)-R2(EM2)S(EM1,O)-R1(I)-R2(EM2)S(EM1)-R1(I)-CR(O)-R2(EM2)S1(EM1,O)-CR(I)-S2(EM2)S1(EM1)-CR(I)-R(O)-S2(EM2)S1(EM1)-R(I)-S2(EM2,O)S1(EM1)-CR(O)-R(I)-S2(EM2)式中每一项代表四分枝系统的一个分枝,各分枝以“-”号分开。S1、S2分别表示第一、第二太阳轮,S为太阳轮;R1、R2分别表示第一、第二圈轮,R为圈轮;CR表示公共行星轮架。每项后面括号内的符号(EM1,EM2,I或O)代表与该分枝相连接的零部件。该零部件可以是第一电机(EM1)、第二电机(EM2)、输入轴(I)或者是输出轴(O)。
11.根据权利要求9所述的混合动力系统,其特点是系统总体综合效益指数为ηsys=1-(1+αm)(1ηeng-1)PengPsys-(1+αE)(1μelc-1)(1-PengPsys);(Peng≤Psys)1-(1+αm)(1ηeng-1)PengPsys+(1+αE)(1-μelc)(1-PengPsys);(Peng≥Psys)]]>式中αm,αE分别为机械链和电力链能量消耗折算系数,ηeng为发动机效率,Peng为发动机输出功率(动力),Psys为系统总动力要求。μelc代表了电气部分的综合效益指数;μelc=μelc(ηbat,ηinv,SOC,Pbat)它是电池能量交换效率ηbat,驱动器效率ηinv,充电状态SOC以及充、放电功率Pbat的函数。一些相关参数,如SOC等,的极限值及约束条件以罚函数或惩罚因子的形式包含在综合效益指数中。
全文摘要
本发明介绍一种机电混合动力系统及其动力控制策略和方法。该混合动力系统包括发动机(内燃机)、变速器,储能器和控制器等主要零部件。所述变速器是一个由动力传输装置和动力调节装置构成的动力分流系统。动力调节装置包括两台电机,构成一个局部机电串联系统。该变速器利用调节流经局部串联系统的动力来调控整个动力系统输出端的速度和扭矩组合,即所谓的动力状态。变速器有不少于两种工作模式,至少可提供输出动力分流和复合动力分流两种不同的动力分流形式。控制器包括若干子控制器或控制模块。所述控制器根据动力系统工作情况,调配发动机的输出动力和储能器的输入、输出能量,设定发动机的动力状态(扭矩和转速)。控制器还进一步设定变速器的工作模式,并根据发动机设定转速和实际工作转速的误差信号,通过设置和控制电机工作扭矩来实现对发动机转速的控制。同时,控制器还通过发动机控制器调控发动机的工作扭矩。
文档编号B60W10/10GK101092110SQ20061008680
公开日2007年12月26日 申请日期2006年6月19日 优先权日2006年6月19日
发明者艾晓志, 艾晓林, 薛蕊, 薛忠和 申请人:艾晓林
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1