Pfc转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置制造方法

文档序号:3880568阅读:137来源:国知局
Pfc转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置制造方法
【专利摘要】本发明公开一种PFC转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置。公开的PFC转换器的输出电压脉动补偿装置包括:第一开关元件,其一端连接于构成所述PFC转换器的输出端的两个输出端子中不与接地连接的输出端子;第二开关元件,其一端连接于所述第一开关元件的另一端,另一端与接地连接;补偿电感器,其一端连接于所述第一开关元件的另一端及所述第二开关元件的一端;以及补偿电容器,其一端连接于所述电感器的另一端,另一端与接地连接。
【专利说明】PFC转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置

【技术领域】
[0001]本发明的实施例涉及一种在不使用高容量的电解电容器的情况下,能够减少功率因数校正(PFC:Power Factor Correct1n)转换器的输出电压中发生的脉动电压的PFC转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置。

【背景技术】
[0002]通常,电动车辆(EV =Electric Vehicle)用电池充电装置以常规电源作为输入电源。所以,电动车辆用电池充电装置需能够在IlOVac或220Vac使用,需考虑功率因数校正。并且,为了能够给多种规格的电池充电,电动车辆用电池充电装置的输出应达到100V至500V这一较大范围。
[0003]为此如图1所示,通常使用两端结构的电动车辆用电池充电装置100,其包括执行功率因数校正(PFC:Power Factor Correct1n)的AC/DC转换器110、用于将随AC电压变化的电力转换为稳定的DC电力的高压链路电容器120以及使用用于充电控制的变压器的DC/DC转换器130。
[0004]图2为显示图1所示的现有的电动车辆用电池充电装置100的电力流向的示意图。
[0005]参考图2,现有的电动车辆用充电装置100在功率因数校正端执行电流控制,以推定输入侧的电流通过AC输入整流而被整流的电压,此时用到如图3所示的PFC转换器400。
[0006]这时,PFC转换器400的输出端发生波动功率(Fluctuating Power),为了过滤波动功率而使用高压的DC链路电容器。并且,为绝缘而使用变压器的DC/DC转换器利用AC/DC端形成的DC电压,通过电流控制来给电池充电。
[0007]但是,由于上述现有的电动车辆用充电装置100是两端结构,因此缺点是结构复杂。另外,现有的电动车辆用充电装置100为了过滤波动功率(Fluctuating Power),需使用数千uF以上的高容量且电力密度高的电解电容器,但是电解电容器的缺点是寿命随温度的升高而急剧缩短,所以不适用于电动车辆等要求较长寿命的应用领域。
[0008]为了解决此问题,可考虑用薄膜电容器代替电解电容器的方法,但是薄膜电容器与电解电容器相比,电力密度过低,因此设计成高容量时,不适合用在需要高电力密度的充电器上。


【发明内容】

[0009]技术问题
[0010]为解决上述的现有技术问题,本发明提供一种不使用高容量的电解电容器的情况下能够减少功率因数校正(PFC:Power Factor Correct1n)转换器的输出电压中发生的脉动电压的PFC转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置。
[0011]本领域所属技术人员可通过以下实施例导出本发明的其他目的。
[0012]技术方案
[0013]为达成上述目的,根据本发明的一个优选实施例,提供一种功率因数校正(PFC:Power Factor Correct1n)转换器的输出电压脉动补偿装置,是用于补偿设置于电动车辆用电池充电装置的功率因数校正转换器的输出电压中的脉动的装置,其特征在于,包括:第一开关元件,其一端连接于构成所述功率因数校正转换器的输出端的两个输出端子中不与接地连接的输出端子;第二开关元件,其一端连接于所述第一开关元件的另一端,另一端与接地连接;补偿电感器,其一端连接于所述第一开关元件的另一端及所述第二开关元件的一端;以及补偿电容器,其一端连接于所述电感器的另一端,另一端与接地连接。
[0014]并且,根据本发明的另一实施例,提供一种电动车辆用电池充电装置,其特征在于,包括:功率因数校正转换器部,其执行关于输入电压的功率因数校正;链路电容器,其并联连接于所述功率因数校正转换器的输出端;以及脉动补偿部,其并联连接于所述链路电容器,用于补偿所述链路电容器的两端电压中的脉动,其中,所述脉动补偿部包括:第一开关元件,其一端连接于所述链路电容器的一端;第二开关元件,其一端连接于所述第一开关元件的另一端,另一端与接地连接;补偿电感器,其一端连接于所述第一开关元件的另一端及所述第二开关元件的一端;以及补偿电容器,其一端连接于所述补偿电感器的另一端,另一端与接地连接。
[0015]技术效果
[0016]本发明的电动车辆用充电装置在不使用高容量的电解电容器的情况下能够减少功率因数校正(PFC:Power Factor Correct1n)转换器的输出电压中所发生的脉动电压。

【专利附图】

【附图说明】
[0017]图1为显示现有的电动车辆用电池充电装置的简要构成的框图;
[0018]图2为显示图1所示的现有的电动车辆用电池充电装置的电力流向的示意图;
[0019]图3为说明图1所示的现有的电动车辆用电池充电装置的PFC转换器(AC/DC转换器)的构成的示意图;
[0020]图4为显示根据本发明的一个实施例的电动车辆用充电装置的简要构成的框图;
[0021]图5为显示根据本发明的一个实施例的电动车辆用充电装置的详细构成的电路图;
[0022]图6为说明根据本发明的一个实施例的电动车辆用电池充电装置中根据一个实施例的控制部的功能的示意图;
[0023]图7及图8为显示根据本发明的一个实施例的电动车辆用电池充电装置中与脉动补偿部邻接的电路的等价电路的示意图;
[0024]图9至图11为显示验证根据本发明的一个实施例的脉动补偿部的有效性的结果图形的不意图。

【具体实施方式】
[0025]本发明可进行多种变更,也可有多种实施例,在附图中示出特定实施例并进行详细说明。但是应当理解的是,这并非将本发明限定在特定的实施形态,而是包括本发明技术方案及技术范围内的所有变更、均等物以及代替物。在说明各个附图时,对类似的构成要素使用类似的附图标记。
[0026]在记载某种构成要素与其它构成要素“连接”的时候,虽然可理解为直接连接于其它构成要素,但应理解为中间还可能存在其它构成要素。相反,若记载某种构成要素与其它构成要素“直接连接”,则应理解为中间不存在其它构成要素。这里,“连接”的意思可以是“电连接”。
[0027]以下,参考附图详细说明根据本发明的实施例。
[0028]图4为显示根据本发明的一个实施例的电动车辆用充电装置的简要构成的框图,图5为显示根据本发明的一个实施例的电动车辆用充电装置的详细构成的电路图。
[0029]参考图4及图5,根据本发明的一个实施例的电动车辆用充电装置400可以包括整流部410、PFC转换器部420、DC/DC转换器部430、脉动补偿部440及控制部450。以下,对各个构成要素的功能做详细的说明。
[0030]整流部410对从外部输入的交流电压Vac (以下简称“输入电压”)进行半波整流或是全波整流。
[0031]这时,输入电压Vac的大小可以为90Vac以上且260Vac以下。例如,输入的交流电压可以是大小为IlOVac或220Vac的常规交流电压。
[0032]根据本发明的一个实施例,整流部410与外部电源连接,并且可以包括以全桥(Full Bridge)形态连接的四个二极管。
[0033]然后,整流部410的输出端依次连接输入电容器Cin及PFC转换器部420。
[0034]PFC转换器部420是接收经过整流的输入电压,并对接收到的电压执行功率因数校正(Power Factor Correct1n)的 AC/DC 转换器。
[0035]具体来讲,PFC转换器部420可以包括输入电感器Lin、第三开关元件M3及二极管D1 (第一开关元件M1及第二开关元件M2包含于以下说明的脉动补偿部440。)。
[0036]输入电感器Lin的一端连接于构成整流部410的输出端的两个输出端子中不与接地连接的输出端子,另一端连接于第三开关元件%的另一端及二极管D1的一端(输入端),第三开关元件M3的另一端与接地连接。并且二极管D1的另一端(输出端)用作构成PFC转换器部420的输出端的一个输出端子,构成输出端的另一个输出端子与接地连接。
[0037]根据本发明的一个实施例,第三开关元件M3可按照预定的周期闭合/断开。作为一个例子,可基于输入电感器Lin的电流Ip输入电容器Cin两端的电压Vin以及下述的链路电容器C1两端的电压控制第三开关元件M3。这时,对第三开关元件M3的闭合/断开控制可以由以下说明的控制部450执行。
[0038]然后,PFC转换器部420的输出端依次连接链路电容器C1及DC/DC转换器部430。
[0039]链路电容器C1的功能是将随AC电压变化的电力转换为稳定的DC电力。这种链路电容器C1的一端及另一端分别与构成PFC转换器部420的输出端的两个输出端子连接。并且DC/DC转换器430把PFC转换器部420输出的电压进行DC/DC转换后,用此给电动车辆用电池460充电。
[0040]然后,脉动补偿部440以PFC转换器部420为基准,与DC/DC转换器部430并联连接,以补偿PFC转换器部420的输出电压(即链路电容器C1的两端电压)中的脉动电压。为此,脉动补偿部440包括两个开关元件MpM2、补偿电感器L。以及补偿电容器C2。脉动补偿部440所包括的各个元件的连接关系说明如下。
[0041]首先,两个开关元件乂12互相串联连接。具体地,第一开关元件M1的一端连接于构成PFC转换器420的输出端的两个输出端子中不与接地连接的输出端子,另一端连接于第二开关元件M2的一端。并且,第二开关元件M2的另一端与接地连接。
[0042]然后,补偿电感器L。以及补偿电容器C2互相串联连接,二者连接在第一开关元件M1和第二开关元件M2连接的点与接地之间。即,补偿电感器L。的一端与第一开关元件M1的另一端以及第二开关元件M2的一端连接,另一端与补偿电容器C2的一端连接,补偿电容器C2的另一端与接地连接。
[0043]控制部450控制第一开关元件M1、第二开关元件M2以及第三开关元件M3的闭合/断开。
[0044]尤其根据本发明的一个实施例,控制部450可利用从PFC转换器420的输出端测定的第一电压V1(即链路电容器仏的两端电压)以及从补偿电容器的两端所测定的第二电压V2,根据比例积分(P〗:Proport1nal-1ntegral)控制方式及脉冲宽度调制(PWM:PulseWidth Modulat1n)控制方式控制脉动补偿部440所包括的第一开关元件M1及第二开关元件M2的闭合/断开。为此,如图4及图5所示,控制部450可以包括脉动提取部451、放大部452、合算部453、PI控制部454及PWM控制部455。以下参考图6说明控制部450的各构成要素的功能。
[0045]首先,脉动提取部451提取包含在第一电压V1 ( S卩,链路电容器C1的两端电压)中的脉动电压Va。具体地,脉动提取部450通过感测连接有链路电容器C1的PFC转换器420的输出端来测定第一电压V1,从测定出的第一电压V1中减去预先设定的PFC转换器420的输出端的DC成分值〈'>,便可提取到脉动电压Va。
[0046]然后,放大部452将提取到的脉动电压Va放大K倍。并且,合算部453合算放大的脉动电压KVa和关于第二电压V2的基准电压V2—Mf,以生成命令电压Vc (Command Voltage)。
[0047]然后,PI控制部454利用命令电压Vc和从补偿电容器C2的两端感测得到的第二电压V2,输出用于PI控制的控制值(PI控制值)。其中,PI控制值是用于控制使得第二电压%推定命令电压Vc的信号,PI控制的原理是本领域所属技术人员公知的常识,因此对此部分省略说明。
[0048]最后,PWM控制部455利用PI控制值生成PWM控制值。作为一个例子,PWM控制部455可通过比较从外部输入的三角波或者正弦波形态的参考信号与PI控制值来生成PWM控制值。PWM控制的原理也是本领域所属技术人员的公知常识,因此省略这部分的详细说明。
[0049]PWM控制值用于控制第一开关元件M1及第二开关元件M2的开/关。具体地,可以控制使得第一开关元件M1闭合期间第二开关元件M2断开,第一开关元件M1断开期间第二开关元件M2闭合。
[0050]经过如上控制,脉动补偿部440的输出电流的一个周期平均可如图6的最下面显示的波形。即,在链路电容器C1充电期间闭合第二开关元件M2,使得大于负载电流的剩余电流流向脉动补偿部440,以抑制向链路电容器C1充电,在链路电容器C1放电期间闭合第一开关元件M1,使得电流流向链路电容器C1,以抑制链路电容器C1放电。
[0051]通过图7及图8所示的等效电路能够进一步明确上述工作原理。
[0052]图7及图8为显示根据本发明的一个实施例的电动车辆用电池充电装置400中与脉动补偿部450邻接的电路的等效电路的不意图。
[0053]首先参照图7,流过链路电容器C1的电流Ia如以下数学式I所示,对应于PFC转换器420的输出电流I1减去流向负载的电流I2及流向脉动补偿部450的电流I3的值。
[0054]数学式1:
YYψY
[0055]= I J — !2 — (.!
[0056]这里,当把脉动补偿部450的输入输出增益设为M时,上述数学式I可以变形为数学式2。
[0057]数学式2:
F T T Λ FT
[0058]i ζ,? I λ 2 圖誦 ill I ^
[0059]一方面,流向链路电容器C1的电流与PFC转换器420的输出端的电压V1中的脉动电压^或AV1,具有如数学式3所示的关系。
[0060]数学式3:

(ΙΛ Vi
(:i 〗"/
[0062]并且,补偿电容器C2的两端的电压V2的变化量AV2与脉动补偿部450的输出电流I4具有如数学式4所示的关系:
[0063]数学式4:


?m Jk -WF- yp-


'MV.faxfui V *y
_ 4 =
[0065]这里,由于控制使得利用补偿电容器C2两端的电压V2的变化量AV2推定KAV1,因此上述数学式4可以用如下数学式5表示:
[0066]数学式5:
?ΚΔ F1
[0067]Jjr1..1 j g
[0068]利用上述数学式I至数学式5可以导出如下数学式6,若用等效电路表示则如图7所示。
[0069]数学式6:


(ΙΔ I71
[。_ I1 — L} = {MKC) + C1)—-^
Λmm-*.JL.[0071 ] 即,使用脉动补偿部450时,连接于PFC转换器部420的输出端的链路电容器C1的容量有效地从C1增加到MKC2。
[0072]例如,当链路电容器C1的容量为llOuF,补偿电容器C2的容量为220uF,脉动补偿部450的平均电压为220V,K为15时,脉动补偿部450的增益M为0.5,因此有效容量为0.5xl5x220uF+110uF = 1760uF。换句话说,即使使用330uF的链路电容器C1也能够获得与使用1760uF的链路电容器C1相同的脉动电压。
[0073]因此,本发明即使不使用高容量的电解电容器,而是使用低容量的薄膜电容器也能够实现减少PFC转换器部420的输出电压中发生的脉动电压的效果。
[0074]图9至图11为显示验证根据本发明的一个实施例的脉动补偿部450的有效性的实验结果图形的示意图。
[0075]图5及图7的电路使用的输出功率为3300W(输出电压=400V),使用的链路电容器C1、补偿电容器C2及脉动补偿部450的放大增益K的值分别为110uF、220uF及15。
[0076]由图9可知如上述说明,脉动补偿部450的输出电流向抑制链路电容器C1的两端电压V1中发生的脉动的方向很好地工作。
[0077]图10及图11为比较有无脉动补偿部450时PFC转换器部420的输出端的电SV1的波形。
[0078]图10中,将不包含脉动补偿部450时的链路电容器C1的容量和包含脉动补偿部450时的链路电容器C1与补偿电容器C2的容量之和均设定为330uF。并且,在图11中将不包含脉动补偿部时的链路电容器C1的容量设定为1760uF,包含脉动补偿部450时的链路电容器C1与补偿电容器C2的容量之和设定为330uF。
[0079]由图10可知,没有脉动补偿部450时,PFC转换器部420的输出端的电压V1从365V变化至432V ( S卩,发生67V的脉动电压,图10 (a)),而使用脉动补偿部460时,PFC转换器部420的输出端的电压V1从391V变化至407V(即,发生16V的脉动电压),脉动电压减少。
[0080]并且,由图11可知使用脉动补偿部450时,即使只使用总容量为330uF的电容器也可实现与使用1760uF的链路电容器C1相同的脉动减少效果。
[0081]如上所述,本发明通过具体的构成要素等特定事项及限定的实施例及附图进行了说明,但这是为了帮助理解本发明的整体技术方案而提供的。本发明并非由上述实施例所限定,本领域的普通技术人员可以从上述记载的内容进行多种修改及变形。因此,本发明的技术方案不得限定于上述说明的实施例,与本发明的技术方案以及与技术方案范围均等或等价变形的所有实施方式都属于本发明的技术方案。
【权利要求】
1.一种功率因数校正转换器的输出电压脉动补偿装置,是用于补偿设置于电动车辆用电池充电装置的功率因数校正转换器的输出电压中的脉动的装置,其特征在于,包括: 第一开关元件,其一端连接于构成所述功率因数校正转换器的输出端的两个输出端子中不与接地连接的输出端子; 第二开关元件,其一端连接于所述第一开关元件的另一端,另一端与接地连接; 补偿电感器,其一端连接于所述第一开关元件的另一端及所述第二开关元件的一端;以及 补偿电容器,其一端连接于所述电感器的另一端,另一端与接地连接。
2.根据权利要求1所述的功率因数校正转换器的输出电压脉动补偿装置,其特征在于,所述功率因数校正转换器的输出电压脉动补偿装置还包括: 控制部,其利用在所述功率因数校正转换器的输出端测量的第一电压及在所述补偿电容器的两端测量的第二电压,控制所述第一开关元件的闭合/断开及所述第二开关元件的闭合/断开。
3.根据权利要求2所述的功率因数校正转换器的输出电压脉动补偿装置,其特征在于,所述控制部包括: 脉动提取部,其用于提取所述第一电压中的脉动电压; 放大部,其用于放大提取到的所述脉动电压; 合算部,其合算被放大的所述脉动电压与关于所述第二电压的基准电压,以生成命令电压; 比例积分控制部,其利用所述命令电压和所述第二电压生成比例积分控制值;以及 脉冲宽度调制控制部,其利用所述比例积分控制值生成脉冲宽度调制控制值。
4.根据权利要求3所述的功率因数校正转换器的输出电压脉动补偿装置,其特征在于: 根据所述脉冲宽度调制控制值控制所述第一开关元件的闭合/断开及所述第二开关元件的闭合/断开,其中所述第一开关元件闭合期间所述第二开关元件断开,所述第一开关元件断开期间所述第二开关元件闭合。
5.一种电动车辆用电池充电装置,其特征在于,包括: 功率因数校正转换器,其执行关于输入电压的功率因数校正; 链路电容器,其并联连接于所述功率因数校正转换器的输出端;以及脉动补偿部,其并联连接于所述链路电容器,用于补偿所述链路电容器的两端电压中的脉动, 其中,所述脉动补偿部包括: 第一开关元件,其一端连接于所述链路电容器的一端; 第二开关元件,其一端连接于所述第一开关元件的另一端,另一端与接地连接; 补偿电感器,其一端连接于所述第一开关元件的另一端及所述第二开关元件的一端;以及 补偿电容器,其一端连接于所述补偿电感器的另一端,另一端与接地连接。
6.根据权利要求5所述的电动车辆用电池充电装置,其特征在于,所述脉动补偿部还包括: 控制部,其利用在所述链路电容器的两端测量的第一电压及在所述补偿电容器的两端测量的第二电压,控制所述第一开关元件的闭合/断开及所述第二开关元件的闭合/断开。
7.根据权利要求6所述的电动车辆用电池充电装置,其特征在于,所述控制部包括: 脉动提取部,其用于提取所述第一电压中的脉动电压; 放大部,其用于放大提取到的所述脉动电压; 合算部,其合算被放大的所述脉动电压与关于所述第二电压的基准电压,以生成命令电压; 比例积分控制部,其利用所述命令电压和所述第二电压生成比例积分控制值;以及 脉冲宽度调制控制部,其利用所述比例积分控制值利用脉冲宽度调制控制值。
8.根据权利要求7所述的电动车辆用电池充电装置,其特征在于: 根据所述脉冲宽度调制控制值控制所述第一开关元件的闭合/断开,其中所述第一开关元件闭合期间所述第二开关元件断开,所述第一开关元件断开期间所述第二开关元件闭口 ο
9.根据权利要求5所述的电动车辆用电池充电装置,其特征在于,所述电动车辆用电池充电装置还包括: 整流部,其用于整流所述输入电压, 所述功率因数校正转换器包括: 输入电感器,其一端连接于构成所述整流部的输出端的两个输出端子中不与接地连接的输出端子; 第三开关元件,其一端连接于所述输入电感器的另一端,另一端与接地连接; 二极管,其一端连接于所述输入电感器的另一端及所述第三开关元件的一端。
【文档编号】B60L11/18GK104272570SQ201380018309
【公开日】2015年1月7日 申请日期:2013年10月30日 优先权日:2012年11月1日
【发明者】李埈荣, 俞光敏, 金元溶 申请人:明知大学产学协力团
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1