混合动力驱动装置的制作方法

文档序号:12506921阅读:188来源:国知局
混合动力驱动装置的制作方法

本发明涉及一种混合动力驱动装置,其具有通过燃烧的燃料来产生动力的发动机和作为电动机及发电机发挥功能的电动发电机。



背景技术:

以往,例如如专利文献1所示,存在如下的车辆用的混合动力驱动装置,其具有通过燃烧的燃料来产生动力的发动机、作为电动机及发电机发挥功能的电动发电机、能对从发动机和电动发电机输入的驱动力进行合成并输出的行星齿轮机构(行星齿轮)、以及能将来自行星齿轮机构的驱动力引起的旋转进行变速后向驱动轮侧输出的变速机构。专利文献1所述的混合动力驱动装置中,行星齿轮机构的太阳齿轮上联结有电动发电机的输出轴,齿圈上联结有发动机的输出轴,行星架上联结有无级变速机构的输入轴。并且,该混合动力驱动装置中,具有:能够对发动机的输出轴与齿圈的接合与不接合进行切换的第1离合器;以及能够对行星架与齿圈的接合与不接合进行切换的第2离合器。

该专利文献1所述的混合动力驱动装置中,在相对速度比较小的行星齿轮机构的齿圈与行星架之间、或太阳齿轮与行星架之间设置第2离合器。由此,第2离合器为不接合状态下的摩擦件的差动旋转(滑动速度)减小,因此能够将第2离合器中的摩擦损失抑制得少,相应地能够使混合动力驱动装置的动力传递效率提高。

但是,专利文献1所述的混合动力驱动装置中,由于第1离合器和第2离合器接合时行星齿轮机构的齿圈产生旋转,因此设置在该齿圈与壳体等固定侧的部件之间的制动器的摩擦件产生差动旋转(滑动速度)。但是,该专利文献1所述的混合动力驱动装置中,既然具有用于将齿圈相对于壳体等固定侧的部件固定的制动器,就不能根本消除该制动器产生的差动旋转(滑动速度),因此在该制动器上产生差动旋转导致的损失。尤其是,在第1离合器和第2离合器接合时,制动器因产生差动旋转而产生损失。因此,通过重新认识具有用于将行星齿轮机构的齿圈相对于壳体等固定侧的部件固定的制动器的专利文献1所述的混合动力驱动装置的结构,存在实现能够将损失抑制得更低而进一步提高动力传递效率的混合动力驱动装置的余地。

而且,在专利文献1所述的混合动力驱动装置中,利用电动机(电动发电机)的驱动力起步(装配有混合动力驱动装置的车辆的起步)时,是使用使电动机的转速从零上升的区域的起步。但是,一般而言,对于电动机的效率,与转速从零上升的区域的效率相比,其他区域的效率更佳。因此,在专利文献1所述的混合动力驱动装置中,通过改良其结构,能够进一步提高使用电动机的驱动力的行驶模式下的效率。

现有技术文献

专利文献

专利文献1:日本特开2013-32119号公报



技术实现要素:

发明所要解决的课题

本发明是鉴于上述问题点而完成的,其目的在于提供一种混合动力装置,该混合动力装置能够改善在以往结构的混合动力驱动装置中设在行星齿轮机构的齿圈与固定侧的部件之间的制动器产生的动力传递损失,并且,能够进一步提高使用电动机的驱动力的行驶模式下的效率。

用于解决课题的手段

为了解决上述课题,本发明的混合动力驱动装置具有:发动机10,其通过燃烧燃料来产生动力;第1电动发电机20-1和第2电动发电机20-2,它们作为电动机及发电机发挥功能;行星齿轮机构30,其具有太阳齿轮S、齿圈R和行星架C这三个要素;以及变速机构40,其将从第1旋转轴42和第2旋转轴44中的任意一方输入的旋转进行变速后输出到另一方,其中,所述第1旋转轴42与所述行星齿轮机构30联结,所述第2旋转轴44与驱动轮60、60侧相连,所述混合动力驱动装置的特征在于,关于所述行星齿轮机构30,所述第1电动发电机20-1的旋转轴21-1被联结到所述太阳齿轮S,所述第2电动发电机20-2的旋转轴21-2及所述发动机10的输出轴11被联结到所述齿圈R,所述变速机构40的所述第1旋转轴42被联结到所述行星架C,所述混合动力装置具有:第1离合器C1,其能够在所述发动机10的输出轴11与所述行星齿轮机构30的所述齿圈R之间对接合与不接合进行切换;以及第2离合器C2,其能够在所述行星齿轮机构30的所述行星架C与所述齿圈R之间对接合与不接合进行切换。

此外,本发明的混合动力驱动装置具有:发动机10,其通过燃烧燃料来产生动力;第1电动发电机20-1和第2电动发电机20-2,它们作为电动机及发电机发挥功能;行星齿轮机构30,其具有太阳齿轮S、齿圈R和行星架C这三个要素;以及变速机构40,其将从第1旋转轴42和第2旋转轴44中的任意一方输入的旋转进行变速后输出到另一方,其中,所述第1旋转轴42与所述行星齿轮机构30联结,所述第2旋转轴44与驱动轮60、60侧相连,所述混合动力驱动装置的特征在于,关于所述行星齿轮机构30,所述第1电动发电机20-1的旋转轴21-1被联结到所述太阳齿轮S,所述第2电动发电机20-2的旋转轴21-2及所述发动机10的输出轴11被联结到所述齿圈R,所述变速机构40的所述第1旋转轴42被联结到所述行星架C,所述混合动力装置具有:第1离合器C1,其能够在所述发动机10的输出轴11与所述行星齿轮机构30的所述齿圈R之间对接合与不接合进行切换;以及第2离合器C2,其能够在所述行星齿轮机构30的所述行星架C与所述太阳齿轮S之间对接合与不接合进行切换。

根据本发明的混合动力驱动装置,除了作为电动机及发电机发挥功能的第1电动发电机之外,还具有第2电动发电机,在行星齿轮机构的太阳齿轮上联结第1电动发电机的旋转轴,在齿圈上联结第2电动发电机的旋转轴及发动机的输出轴,在行星架上联结变速机构的第1旋转轴。在此基础上,采用在发动机的输出轴与齿圈之间设置第1离合器、在行星架与太阳齿轮之间设置第2离合器的结构。由此,与专利文献1所述的以往结构的混合动力驱动装置比较,实现了省略设在齿圈与壳体等固定侧的部件之间的制动器的结构。因此,能够根本上消除该制动器产生的差动旋转(滑动速度)导致的动力传递的损失。因而,特别是,第1离合器与第2离合器接合时能够消除制动器产生的差动旋转导致的损失,因此能够将混合动力驱动装置的损失抑制得更低,从而实现动力传递效率的提高。

此外,根据本发明的混合动力驱动装置,通过采用在行星齿轮机构的齿圈上联结第2电动发电机的旋转轴的结构,齿圈成为能够始终旋转的状态。与此相对,在以往的混合动力驱动装置的结构中,齿圈为能被制动器固定的结构,因此在利用电动发电机的驱动力进行的车辆起步中,相对于成为使用该电动发电机的转速从零上升的区域的起步(装配有混合动力驱动装置的车辆的起步),根据本申请的上述结构,能够使用第1电动发电机和第2电动发电机的效率高的旋转域进行起步。因此,能够提高装配有混合动力驱动装置的车辆的起步中的动力传递效率。

此外,在本发明的上述的混合动力驱动装置中,可以在所述第1旋转轴42上或所述第2旋转轴44上还具有对接合与不接合进行切换的第3离合器C3、C3′。根据该结构,通过使该第3离合器不接合,能够切断从行星齿轮机构向驱动轮侧传递的动力。因此,通过使第3离合器成为不接合的状态,能够使用发动机的驱动力进行由电动发电机实现的发电,进行蓄电池的充电。

此外,在本发明的混合动力驱动装置中,所述变速机构40可以是带式的无级变速机构40,该带式的无级变速机构40具有:与所述第1旋转轴42相连的驱动带轮41;与所述第2旋转轴44相连的从动带轮43;以及绕在所述驱动带轮41与所述从动带轮43之间的带48。

在该情况下,能够将所述第3离合器C3设在所述变速机构40的所述第1旋转轴42上。根据该结构,通过使第3离合器不接合,能够限制从行星齿轮机构向带式的无级变速机构输入的驱动力(输入扭矩)。由此,不用进行向带式的无级变速机构输入扭矩的复杂的控制或估计,就能够实现带式的无级变速机构的滑动保障等功能保障。

或者,能够将所述第3离合器C3设在所述变速机构40的第2旋转轴44上。根据该结构,通过使第3离合器不接合,保持利用从行星齿轮机构传递的动力使无级变速机构旋转的状态,能够切断从无级变速机构到驱动轮的动力传递。由此,不必以使切断向驱动轮进行的动力传递时的无级变速机构的比率(带轮比率)恢复至下次重新开始向驱动轮传递动力时的比率为条件来进行无级变速机构的控制。即,在使第3离合器不接合而切断向驱动轮进行的动力传递的期间,也能够变更无级变速机构的比率,因此下次重新开始向驱动轮传递动力时的比率即使是上坡行驶时或减速再生时的低速侧比率,也能够将切断向驱动轮进行的动力传递前的无级变速机构的比率设定成在此时的行驶中为最佳的比率。因此,能够进行减速能量的再生等而不会对车辆的驾驶性能产生影响。

此外,在下次重新开始向驱动轮传递动力时,作为用于将无级变速机构的比率恢复至低速侧比率的单元,不必利用电动发电机补偿低速行驶时的扭矩。因此,考虑这一点,不必确保电动发电机的输出富余,因此能够实现电动发电机的低输出化及小型化。

另外,上面的标号作为本发明的一个例子表示后述实施方式中的结构要素的标号。

发明的效果

根据本发明的混合动力驱动装置,能够改善以往结构的混合动力驱动装置中设在行星齿轮机构的齿圈与固定侧的部件之间的制动器产生的动力传递损失,能够进一步提高使用了电动发电机的驱动力的行驶模式下的效率。

附图说明

图1是示出本发明的第1实施方式的混合动力驱动装置的结构的概略图。

图2是示出行星齿轮机构的各要素的速度关系的共线图。

图3是用于说明混合动力驱动装置的行驶模式与离合器及制动器的动作状态之间的关系的图(列表)。

图4是示出各行驶模式下的行星齿轮机构的各要素的速度关系的共线图。

图5是示出本发明的第2实施方式的混合动力驱动装置的结构的概略图。

图6是示出本发明的第3实施方式的混合动力驱动装置的结构的概略图。

具体实施方式

以下参照附图,详细地说明本发明的实施方式。

[第1实施方式]

图1是示出本发明的第1实施方式的混合动力驱动装置的结构的概略图。此外,图2是示出混合动力驱动装置具有的行星齿轮机构的各要素的速度关系的共线图(速度线图)。图1所示的混合动力驱动装置1构成为具有:通过燃烧的燃料来产生动力的发动机10;作为电动机及发电机发挥功能的第1电动发电机(MOT1)20-1和第2电动发电机(MOT2)20-2;具有太阳齿轮S、齿圈R和行星架C这三个要素的单小齿轮型行星齿轮机构(行星齿轮)30;以及具有绕在驱动带轮41与从动带轮43之间的带48的带式无级变速机构40。

行星齿轮机构30的太阳齿轮S上联结有第1电动发电机20-1的输出轴(旋转轴)21-1,行星架C上联结有无级变速机构40的与驱动带轮41相连的输入轴(第1旋转轴)42。此外,齿圈R经由第1离合器C1与发动机10的输出轴11联结,且经由第2离合器C2也与无级变速机构40的输入轴42联结。而且,齿圈R与第2电动发电机(MOT2)20-2的输出轴(旋转轴)21-2联结。

并且,在无级变速机构40的与从动带轮43相连的输出轴(第2旋转轴)44上,设有与计数器齿轮47啮合的输出齿轮45。计数器齿轮47与差动装置(差动装置)50的齿圈51啮合。差动装置50将来自计数器齿轮47的驱动力分配至左右的驱动轮60、60。并且,在无级变速机构40的输出轴44上(从动带轮43与输出齿轮45之间)设有第3离合器C3。

即,在图1所示的混合动力驱动装置1的行星齿轮机构30中,联结有第1电动发电机20-1的输出轴21-1的太阳齿轮S和联结有发动机10的输出轴11及第2电动发电机20-2的输出轴21-2的齿圈R成为输入部件,与无级变速机构40的输入轴42联结的行星架C成为输出部件。并且,能够利用第1离合器C1对发动机10的输出轴11与齿圈R的接合与不接合进行切换,能够利用第2离合器C2对行星架C与齿圈R的接合与不接合进行切换。而且,能够利用第3离合器C3切换从无级变速机构40到驱动轮60、60侧的驱动力传递的有无。另外,上述第1至第3离合器C1~C3省略了详细的图示,能够使用由油压致动器进行摩擦接合的结构的单板式或者多板式的油压摩擦离合器。另外,也可以使用电磁离合器等。

图3是示出图1所示的混合动力驱动装置1的行驶模式与第1至第3离合器C1~C3的动作状态、以及与第1电动发电机(MOT1)20-1和第2电动发电机(MOT2)20-2的动作状态之间的关系的图(列表)。此外,图4是示出混合动力驱动装置1的各行驶模式下的行星齿轮机构30的各要素的速度关系的共线图(速度线图)。图3中,●记号表示各离合器的接合状态,×记号表示不接合(释放)状态。在混合动力驱动装置1中,图3的列表所示的各行驶模式与第1至第3离合器C1~C3的动作状态(接合/不接合状态)和第1电动发电机(MOT1)20-1及第2电动发电机(MOT2)20-2的动作状态对应地成立。即,变速挡为“S”挡或“D”挡时,“电动机行驶模式(前进减速)”、“电动机行驶模式(前进直接联结)”、“并联HV模式(直接联结模式)”、“动力分配模式”、“发动机行驶模式”、“再生制动模式”中的任意模式成立,变速挡为“N”挡或“P”挡时,“空挡”或“充电/发动机起动模式”中的任意模式成立,变速挡为“R”挡时,“电动机行驶模式(后退)”成立。另外,为“S”挡或“D”挡及“R”挡时,在任何行驶模式下,都预先将第3离合器C3设为接合状态,另一方面为“N”挡或“P”挡时,在任何行驶模式下,都预先将第3离合器C3设为不接合(释放)状态。以下对各行驶模式详细地进行说明。

“电动机行驶模式(前进减速)”下,在接通(旋转)第2电动发电机(MOT2)20-2并释放第1离合器C1及第2离合器C2的状态下,驱动第1电动发电机(MOT1)20-1正转。由此,结合第1电动发电机20-1的驱动力与第2电动发电机20-2的驱动力而得的驱动力经由行星齿轮机构30及无级变速机构40向驱动轮60、60侧传递,利用第1电动发电机20-1及第2电动发电机20-2的驱动力使车辆进行前进行驶。并且,在该“电动机行驶模式(前进减速)”下,如图4的(a)的共线图所示,输入到太阳齿轮S的第1电动发电机20-1的输出轴21-1的旋转被减速并从行星架C向无级变速机构40输出。由此,在本实施方式的混合动力驱动装置1中,构成为通过行星齿轮机构30将第1电动发电机20-1的输出轴21-1的旋转减速并输出,从而不使第1电动发电机20-1大型化就能够在该“电动机行驶模式(前进减速)”下,特别是在车辆起步时得到大的扭矩。

此外,在该“电动机行驶模式(前进减速)”下,若第1电动发电机20-1为规定转速N1(N1>0)时行星架C的转速成为0,自此提高第1电动发电机20-1的转速,则行星架C的转速逐渐提高。因此,通过使第1电动发电机20-1的转速从上述的规定转速N1上升,能够使车辆起步。由此,在利用第1电动发电机20-1及第2电动发电机20-2的驱动力进行的车辆起步中,不使用第1电动发电机20-1或第2电动发电机20-2的转速从0上升的区域就能够使车辆起步。因此,车辆能够使用第1电动发电机20-1和第2电动发电机20-2的效率高的旋转区域来起步。

在“电动机行驶模式(前进直接联结)”中,接合第2离合器C2并释放第1离合器C1、且断开(停止)第2电动发电机20-2的状态下,驱动第1电动发电机20-1正转。由此,第1电动发电机20-1的驱动力经由行星齿轮机构30及无级变速机构40被传递至驱动轮60、60侧,仅利用第1电动发电机20-1的驱动力使车辆前进行驶。并且,在该“电动机行驶模式(前进直接联结)”下,利用第2离合器C2的接合,使得行星齿轮机构30的齿圈R、行星架C和太阳齿轮S这三个要素一体地旋转。因此,如图4的(b)的速度线图所示,输入到太阳齿轮S的第1电动发电机20-1的输出轴21-1的旋转等速地从行星架C向无级变速机构40输出。由此,本实施方式的混合动力驱动装置1中,通过第2离合器C2的接合,作为行星齿轮机构30的结构要素的太阳齿轮S、行星架C和齿圈R一体地旋转,因此在该“电动机行驶模式(前进直接联结)”下,利用第1电动发电机20-1进行减速再生时能够实现大能量的高效再生。

在“并联HV模式(直接联结模式)”中,接合第1离合器C1及第2离合器C2并断开(停止)第2电动发电机20-2的状态下,使第1电动发电机20-1作为电动机或发电机来进行动作。在该“并联HV模式(直接联结模式)”下,如图4的(c)的共线图所示,通过第2离合器C2的接合,行星齿轮机构30的齿圈R、行星架C和太阳齿轮S这三个要素一体地旋转。并且,使第1电动发电机20-1作为电动机进行动作的情况下,通过驱动第1电动发电机20-1正转,由行星齿轮机构30合成的第1电动发电机20-1的驱动力和发动机10的驱动力经由无级变速机构40传递至驱动轮60、60,从而车辆进行前进行驶。另一方面,使第1电动发电机20-1作为发电机进行动作的情况下,输入到齿圈R的发动机10的输出轴11的旋转等速地从行星架C向无级变速机构40输出,由此车辆进行前进行驶,此时利用从与齿圈R一体地旋转的太阳齿轮S传递至第1电动发电机20-1的输出轴21-1的驱动力,来进行利用第1电动发电机20-1的发电。

在“动力分配模式”下,接合第1离合器C1、释放第2离合器C2并接通(旋转)第2电动发电机20-2的状态下,对第1电动发电机20-1进行反转驱动。由此,由行星齿轮机构30合成的第1电动发电机20-1的驱动力与发动机10的驱动力及第2电动发电机20-2的驱动力经由无级变速机构40被传递至驱动轮60、60,车辆利用第1电动发电机20-1的驱动力与发动机10的驱动力及第2电动发电机20-2的驱动力这两者进行前进行驶。在该“动力分配模式”下,如图4的(d)的共线图所示,相对于发动机10的输出轴11的旋转及第2电动发电机20-2的输出轴21-2的旋转减速后的旋转从行星架C向无级变速机构40输出。即,在该图中的虚线的共线图所示的状态下,与发动机10的输出轴11及第2电动发电机20-2的输出轴21-2联结的齿圈R以转速N2(N2>0)正转,与无级变速器40的输入轴42联结的行星架C的旋转为零,车辆处于停止状态。此时,与第1电动发电机20-1联结的太阳齿轮S被驱动反转,第1电动发电机20-1进行发电。若基于该状态,控制第2电动发电机20-2,使其转速上升,则如实线的共线图所示,齿圈R的转速从转速N2逐渐上升。由此,行星架C的旋转从0逐渐上升。由此,车辆即使没有起步装置,也能够从速度为零的状态开始平缓地起步。

这样,在利用第1电动发电机20-1及第2电动发电机20-2的驱动力进行的车辆起步中,不使用第1电动发电机20-1或第2电动发电机20-2的转速从0上升的区域就能够使车辆起步。因此,车辆能够使用第1电动发电机20-1和第2电动发电机20-2的效率高的旋转区域来起步。

在“发动机行驶模式”下,接合第1离合器C1及第2离合器C2并断开(停止)第2电动发电机20-2的状态下,使第1电动发电机20-1不动作。由此,发动机10的驱动力经由行星齿轮机构30及无级变速机构40被传递至驱动轮60、60侧,仅利用发动机10的驱动力使车辆进行前进行驶。在该“发动机行驶模式”下,通过第2离合器C2的接合,行星齿轮机构30的齿圈R、行星架C和太阳齿轮S这三个要素一体地旋转。因此,如图4的(e)的共线图所示,输入到齿圈R的发动机10的输出轴11的旋转等速地从行星架C向无级变速机构40输出。在本实施方式的混合动力驱动装置1中,通过第2离合器C2的接合,作为行星齿轮机构30的结构要素的太阳齿轮S、行星架C和齿圈R一体地旋转,因此在该“发动机行驶模式”下,能够有效传递发动机10的输出。

在“再生制动模式”下,接合第2离合器C2并释放第1离合器C1、且断开(停止)第2电动发电机20-2的状态下,使第1电动发电机20-1作为发电机动作,由此利用第1电动发电机20-1进行再生制动。在该“再生制动模式”下,通过第2离合器C2的接合,行星齿轮机构30的齿圈R、行星架C和太阳齿轮S这三个要素一体地旋转。因此,如图4的(f)的共线图所示,输入到行星架C的无级变速机构40的输入轴42的旋转等速地从太阳齿轮S向第1电动发电机20-1的输出轴21-1输出。并且,在本实施方式的混合动力驱动装置1中,利用第1离合器C1,能够使传递来自发动机10的驱动力的动力传递路径相对于第1电动发电机20-1与驱动轮60、60之间的动力传递路径分离。由此,在减速再生时能够消除输入到行星齿轮机构30的发动机10的牵引扭矩,因此能够高效地利用第1电动发电机20-1进行能量再生。

在“空挡”下,如上所述,释放第3离合器C3的基础上,进而释放第1、第2离合器C1、C2,且断开(停止)第2电动发电机20-2。由此,发动机10的输出轴11与行星齿轮机构30之间、及发动机10的输出轴11与无级变速机构40的输入轴42之间的动力传递路径、及从无级变速机构40到驱动轮60、60侧的动力传递路径成为被切断的状态。

在“充电/发动机起动模式”下,释放第3离合器C3的基础上,进而接合第1离合器C1和第2离合器C2且断开(停止)第2电动发电机20-2的状态下,使第1电动发电机20-1作为电动机进行动作,由此通过起动发动机10、使第1电动发电机20-1作为发电机进行动作,利用发动机10的驱动力进行发电(充电)。并且,起动发动机10的情况下,通过行星齿轮机构30将第1电动发电机20-1的输出轴21-1的旋转传递至发动机10的输出轴11。而且,利用第1电动发电机20-1进行发电的情况下,通过利用行星齿轮机构30将发动机10的输出轴11的旋转传递至第1电动发电机20-1的输出轴21-1,驱动第1电动发电机20-1旋转而进行发电,对与第1电动发电机20-1相连的蓄电器(未图示)进行充电。在该“充电/发动机起动模式”下,通过第2离合器C2的接合,行星齿轮机构30的齿圈R、行星架C和太阳齿轮S这三个要素一体地旋转。因此,如图4的(g)的共线图所示,输入到太阳齿轮S、行星架C和齿圈R中的任一要素的旋转等速地被输出至其他要素。

并且,在本实施方式的混合动力驱动装置1中,通过在无级变速机构40的输出轴44上设置第3离合器C3,使该第3离合器不接合,由此能够切断从无级变速机构40向驱动轮60、60侧传递的动力。因此,如上所述,先使第3离合器C3不接合,使用发动机10的驱动力进行由第1电动发电机20-1实现的发电,能够进行蓄电池的充电。

在“电动机行驶模式(后退)”下,接通(旋转)第2电动发电机(MOT2)20-2并释放第1离合器C1及第2离合器C2的状态下,使第1电动发电机20-1进行反转驱动。由此,利用第1电动发电机20-1的驱动力使车辆后退。并且,在该“电动机行驶模式(后退)”下,如图4的(h)的共线图所示,输入到太阳齿轮S的第1电动发电机20-1的输出轴21-1的旋转(逆旋转)被减速并从行星架C向无级变速机构40输出。

此外,在该“电动机行驶模式(后退)”下,若第1电动发电机20-1为规定转速N3(N3<0)时行星架C的转速成为0,自此使第1电动发电机20-1的转速上升(使反转驱动的旋转上升),则行星架C的转速(逆旋转的转速)逐渐提高。因此,通过使第1电动发电机20-1的转速从上述的规定转速N3沿反转方向上升,能够使车辆起步(向后起步)。

这样,利用第1电动发电机20-1及第2电动发电机20-2的驱动力进行的车辆的向后起步中,也不使用第1电动发电机20-1或第2电动发电机20-2的转速从0上升的区域就能使车辆起步。因此,车辆能够使用第1电动发电机20-1和第2电动发电机20-2的效率高的旋转区域来起步。

如以上所说明那样,在本实施方式的混合动力驱动装置1中,具有:通过燃烧燃料产生动力的发动机10;作为电动机及发电机发挥功能的第1电动发电机20-1及第2电动发电机20-2;具有太阳齿轮S、齿圈R和行星架C这三个要素的行星齿轮机构30;以及能够将来自行星齿轮机构30的驱动力引起的旋转进行变速后输出到驱动轮60、60侧的无级变速机构40。并且,行星齿轮机构30的太阳齿轮S上联结有第1电动发电机20-1的输出轴21-1,齿圈R上联结有发动机10的输出轴11及第2电动发电机20-2的输出轴21-2,行星架C上联结有无级变速机构40的输入轴42。并且,具有:能够对发动机10的输出轴11和齿圈R之间的接合与不接合进行切换的第1离合器C1;能够对行星架C和齿圈R之间的接合与不接合进行切换的第2离合器C2;以及设在无级变速机构40的输出轴44上的第3离合器C3。

根据本实施方式的混合动力驱动装置1,除了作为电动机及发电机发挥功能的第1电动发电机20-1之外,还具有第2电动发电机20-2,在行星齿轮机构30的太阳齿轮S上联结第1电动发电机20-1的输出轴(旋转轴)21-1,在齿圈R上联结第2电动发电机20-2的输出轴(旋转轴)21-2及发动机10的输出轴11,在行星架C上联结无级变速机构40的输入轴42。在此基础上,采用在发动机10的输出轴11与齿圈R之间设置第1离合器C1、在行星架C与太阳齿轮S之间设置第2离合器C2的结构。由此,与专利文献1所述的以往结构的混合动力驱动装置比较,实现了省略设在齿圈与壳体等固定侧的部件之间的制动器的结构。因此,能够根本上消除该制动器产生的差动旋转(滑动速度)导致的动力传递的损失。因而,特别是,第1离合器与第2离合器接合时能够消除制动器产生的差动旋转导致的损失,因此能够将混合动力驱动装置的损失抑制得更低,从而实现动力传递效率的提高。

而且,根据本发明的混合动力驱动装置1,通过采用在行星齿轮机构30的齿圈R上联结第2电动发电机20-2的输出轴21-2的结构,齿圈R成为能够始终旋转的状态。与此相对,在以往的混合动力驱动装置的结构中,齿圈为能被制动器固定的结构,因此在利用电动发电机的驱动力进行的车辆起步中,相对于成为使用该电动发电机的转速从0上升的区域的起步(装配有混合动力驱动装置的车辆的起步),根据本申请的上述结构,能够使用第1电动发电机20-1和第2电动发电机20-2的效率高的旋转域进行车辆的起步。因此,能够提高装配有混合动力驱动装置1的车辆的起步中的动力传递效率。

此外,通过具有能够对发动机10的输出轴11与齿圈R之间的接合与不接合进行切换的第1离合器C1,能够利用该第1离合器C1切断从发动机10向行星齿轮机构30进行的驱动力输入。由此,能够使传递来自发动机10的驱动力的动力传递路径相对于第1电动发电机20-1与驱动轮60、60之间的动力传递路径分离。因此,在车辆减速时通过第1电动发电机20-1进行减速再生时,由于能够切断输入到行星齿轮机构30的发动机10的驱动力,因此能够利用第1电动发电机20-1进行减速能量的高效再生。

此外,根据本实施方式的混合动力驱动装置1,通过接合设在行星齿轮机构30的行星架C与齿圈R之间的第2离合器C2,行星齿轮机构30的三个要素(齿圈R、太阳齿轮S和行星架C)一体地旋转。由此,能够将在行星齿轮机构30中的机械的动力传递损失抑制得少。因此,能够更高效地传递来自发动机10及第1电动发电机20-1的动力,并且能更高效地利用第1电动发电机20-1进行减速能量的再生。

而且,根据本实施方式的混合动力驱动装置1,通过在无级变速机构40的输出轴44上设置第3离合器C3,使该第3离合器C3不接合(释放),由此能够切断从行星齿轮机构30向驱动轮60、60侧传递的动力。因此,通过使得第3离合器C3为不接合的状态,使用发动机10的驱动力进行由第1电动发电机20-1实现的发电,能够进行蓄电池的充电。

此外,在本实施方式的混合动力驱动装置1中,将第3离合器C3设在无级变速机构40的输出轴44上。根据该结构,通过使第3离合器C3不接合,保持利用从行星齿轮机构30传递的动力使无级变速机构40旋转的状态,而能够切断从无级变速机构40到驱动轮60的、60动力传递。由此,不必以使切断向驱动轮60、60进行的动力传递时的无级变速机构40的比率(带轮比率)恢复至下次重新开始向驱动轮传递动力时的比率为条件来进行无级变速机构40的控制。即,在使第3离合器C3不接合并切断向驱动轮60、60进行的动力传递的期间,也能够变更无级变速机构40的比率,因此下次重新开始向驱动轮60、60传递动力时的比率即使是上坡行驶时或减速再生时的低速侧速比,也能够将切断向驱动轮60、60进行的动力传递前的无级变速机构40的比率设定成在此时的行驶中为最佳的比率。因此,能够进行减速能量的再生等而不对车辆的驾驶性能产生影响。

此外,在下次重新开始向驱动轮60、60传递动力时,为了将无级变速机构40的比率恢复至低速侧比率,不必利用第1电动发电机20-1补偿低速行驶时的扭矩。因此,考虑这一点,不必确保第1电动发电机20-1的输出富余,因此能够实现第1电动发电机20-1的低输出化及小型化。

(第2实施方式)

接下来,对本发明的第2实施方式进行说明。并且,在第2实施方式的说明和对应的附图中,对与第1实施方式相同或相当的结构部分标记相同的标号,并在以下内容中省略该部分的详细说明。另外,对于在以下说明的事项之外的事项,与第1实施方式相同。

图5是示出本发明的第2实施方式的混合动力驱动装置1-2的结构的概略图。在该图所示的混合动力驱动装置1-2中,图1所示的第1实施方式的混合动力驱动装置1中,代替设在行星齿轮机构30的齿圈R与行星架C之间(发动机10的输出轴11与无级变速机构40的输入轴42之间)的第2离合器C2,而具有在行星齿轮机构30的太阳齿轮S与行星架C之间(第1电动发电机20-1的输出轴21-1与无级变速机构40的输入轴42之间)设置的其他的第2离合器C2′。其他结构与第1实施方式的混合动力驱动装置1相同。即,本实施方式的混合动力驱动装置1-2中,在行星齿轮机构30的太阳齿轮S上联结有第1电动发电机20-1的输出轴21-1,在齿圈R上联结有发动机10的输出轴11,在行星架C上联结有无级变速机构40的输入轴42。并且,在发动机10的输出轴11与行星齿轮机构30的齿圈R之间设置第1离合器C1,在行星齿轮机构30的行星架C与太阳齿轮S之间设置第2离合器C2′,进而在无级变速机构40的与从动带轮43相连的输出轴44上(从动带轮43与输出齿轮45之间)设置第3离合器C3。

(第3实施方式)

接下来,对本发明的第3实施方式进行说明。图6是示出本发明的第3实施方式的混合动力驱动装置的结构的概略图。在该图所示的第3实施方式的混合动力驱动装置1-3中,代替图1所示的第1实施方式的混合动力驱动装置1中设在无级变速机构40的与从动带轮43相连的输出轴(第2旋转轴)44上的第3离合器C3,而具有设在无级变速机构40的与驱动带轮41相连的输入轴(第1旋转轴)42上的其他的第3离合器C3′。其他结构与第1实施方式的混合动力驱动装置1相同。

本实施方式的混合动力驱动装置1-3中,通过将第3离合器C3设在无级变速机构40的输入轴42上,使该第3离合器C3不接合,从而能够限制向带式的无级变速机构40输入的驱动力(输入扭矩)。由此,不用进行针对带式的无级变速机构40的输入扭矩的复杂的控制或估计,就能够实现带式的无级变速机构40的滑动保障等功能保障。

以上,说明了本发明的实施方式,但本发明不限于上述实施方式,能够在权利要求、说明书和附图所记载的技术思想的范围内进行各种变形。例如,本发明的混合动力驱动装置具有的变速机构不限于上述实施方式所示的带式的无级变速机构40,也可以是其他结构的变速机构。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1