混合动力车辆和混合动力车辆中的降挡策略的制作方法与工艺

文档序号:13015006阅读:159来源:国知局
技术领域本公开涉及一种混合动力车辆和混合动力车辆中变速器降挡的方法。

背景技术:
当混合动力车辆正以电动模式运行并拟定变速器降挡时,当降挡之后闭合分离离合器以启动发动机时可能发生的能量损耗会比当降挡之前闭合分离离合器以启动发动机时可能发生的能量损耗大。此外,在电动模式中,降挡之后的扭矩需求可能会比正在给混合动力车辆供电的电机的扭矩容量大。

技术实现要素:
提供一种混合动力车辆中变速器降挡的方法。所述方法包括:响应于预期的降挡,在降挡之后至变速器的输入的预测转速将在预先确定转速范围之外的情况下,闭合被配置为选择性地连接发动机和电机的分离离合器,启动发动机,并在启动发动机之后使变速器降挡。提供一种混合动力车辆中变速器降挡的方法。所述方法包括:响应于预期的降挡,在降挡之后电机的扭矩容量将比预测的扭矩需求少的情况下,闭合被设置为选择性地连接发动机和电机的分离离合器,启动发动机,并在启动发动机之后使变速器降挡。根据本公开的一个实施例,其中,所述预测的扭矩需求是基于降挡之后变速器的期望的输出扭矩的。根据本公开的一个实施例,其中,所述变速器的期望输出扭矩是基于变速器的当前期望输出扭矩和驾驶员改变变速器的当前期望输出扭矩的需求。根据本公开的一个实施例,其中,所述预测的扭矩需求是基于降挡之后至变速器的输入的所需扭矩。根据本公开的一个实施例,其中,所述输入的所需扭矩是基于所述输入的当前所需扭矩和驾驶员改变所述输入的当前所需的输入扭矩的需求的。根据本公开的一个实施例,其中,所述预测的扭矩需求是变矩器的预测的所需泵轮扭矩。根据本公开的一个实施例,其中,所述预测的所需泵轮扭矩还是基于降挡之后变矩器旁通离合器上的期望滑动的。根据本公开的一个实施例,其中,所述预测的扭矩需求为预测的所需起步离合器扭矩。提供一种车辆。所述车辆包括发动机、电机、被配置为选择性地连接发动机和电机的分离离合器和被配置为将功率从发动机和电机传递到变速器的变速器输入。所述车辆还包括控制器,该控制器被配置为,响应于预期的变速器降挡,在降挡之后变速器输入的预测转速将在预先确定的转速范围之外的情况下或在降挡之后电机的扭矩容量将比预测的所需扭矩少的情况下,在降挡之前闭合分离离合器并启动发动机。根据本公开的一个实施例,其中,变速器输入为变矩器,变速器输入的预测转速为变矩器的预测泵轮转速,并且预测的所需扭矩为变矩器的预测的所需泵轮扭矩。根据本公开的一个实施例,其中,所述预测泵轮转速还是基于降挡之后变矩器旁通离合器上的期望滑动的。根据本公开的一个实施例,其中,所述变速器输入为起步离合器并且预测的所需扭矩为预测的所需起步离合器扭矩。根据本公开的一个实施例,其中,所述变速器输入的预测转速是基于当前车辆速度和驾驶员改变当前车辆速度的需求的。根据本公开的一个实施例,其中,预测的所需扭矩是基于变速器的当前期望输出扭矩和驾驶员改变变速器的期望输出扭矩的需求的。附图说明图1是混合动力电动车辆的示例性动力传动系统的示意图;图2是混合动力电动车辆的替代示例性动力传动系统的示意图;以及图3是示出混合动力车辆中变速器降挡方法的流程图。具体实施方式下文描述本公开的实施例。然而,应理解公开的实施例仅为示例,其它实施例可以采用各种形式和替代形式。附图不一定按比例绘制;一些特征会被夸大或最小化,以显示特定部件的细节。所以,下文公开的具体结构和功能细节不应被解释为限制,而仅作为教导本领域技术人员以多种形式使用本发明的代表性基础。本领域技术人员应理解,参考任一附图示出和描述的各种特征可以与一个或更多个其它附图中示出的特征组合以产生未明确示出或描述的实施例。示出的组合特征提供用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的各种组合和变型对于特定应用或实施会是令人满意的。参考图1,示出了根据本公开实施例的混合动力电动车辆(HEV)10的示意图。图1示出了组件之间的代表性关系。组件在该车辆内的物理布局(physicalplacement)和方位可改变。HEV10包括动力传动系统12。动力传动系统12包括驱动传动装置16的发动机14,传动装置16可被称为模块化混合动力传动装置(MHT,modularhybridtransmission)。如下面将进一步详细地描述的,传动装置16包括电机(诸如连接到关联的牵引电池20的电动马达/发电机(M/G)18)、变矩器22以及多阶梯传动比自动变速器(multiplestep-ratioautomatictransmission)或齿轮箱24。发动机14和M/G18都是用于HEV10的驱动源。发动机14通常代表可包括内燃发动机(诸如汽油、柴油或天然气驱动的发动机)或燃料电池的动力源。当发动机14和M/G18之间的分离离合器26至少部分接合时,发动机14产生提供至M/G18的发动机功率和对应的发动机扭矩。M/G18可由多种类型的电机中的任何一种实现。例如,M/G18可以为永磁同步马达。如下面将描述的,电力电子装置(powerelectronics)56将由电池20提供的直流(DC)电调节成满足M/G18的需要。例如,电力电子装置可以给M/G18提供三相交流电(AC)。当分离离合器26至少部分接合时,功率可以从发动机14流向M/G18或者从M/G18流向发动机14。例如,分离离合器26可接合,并且M/G18可作为发电机运转,以将由曲轴28和M/G轴30提供的旋转能转换成将要被储存在电池20中的电能。分离离合器26也可分离,以使发动机14与动力传动系统12的其余部分隔离,使得M/G18可用作HEV10的唯一驱动源。轴30延伸穿过M/G18。M/G18持续可驱动地连接至轴30,而发动机14仅在分离离合器26至少部分接合时才可驱动地连接至轴30。M/G18经由轴30连接至变矩器22。因此,当分离离合器26至少部分地接合时,变矩器22连接至发动机14。变矩器22包括固定至M/G轴30的泵轮、定子以及固定至变速器输入轴32的涡轮。从而,变矩器22在轴30和变速器输入轴32之间提供液力耦合。变矩器22被配置为从发动机14和M/G18传递功率到变速器24(或齿轮箱)。在变矩器22内部,当泵轮旋转得比涡轮快时,变矩器22将功率从泵轮传递至涡轮。泵轮上的功率由τiωi表示,其中τi是泵轮扭矩而ωi是泵轮转速。涡轮上的功率由τtωt表示,其中τt是涡轮扭矩而ωt是涡轮转速。涡轮扭矩和泵轮扭矩的大小通常取决于相对转速。当泵轮转速与涡轮转速之比足够高时,涡轮扭矩是泵轮扭矩的倍数。还可提供在接合时摩擦地或机械地连接变矩器22的泵轮和涡轮的变矩器旁通离合器34(也被称为锁止离合器),从而允许更高效的功率传递。变矩器旁通离合器34可作为起步离合器运转,以提供平稳的车辆起步。可替代地或者组合地,对于不包括变矩器22或变矩器旁通离合器34的应用,可以在M/G18和齿轮箱24之间提供类似于分离离合器26的起步离合器。在一些应用中,分离离合器26通常称为上游离合器,而变矩器旁通离合器34通常称为下游离合器。齿轮箱24可包括通过摩擦元件(诸如离合器和制动器(未示出))的选择性接合而选择性地置于不同传动比以建立期望的多个离散或阶梯传动比的齿轮组(未示出)。可通过连接和分离齿轮组的特定元件以控制变速器输出轴36和变速器输入轴32之间的传动比的换挡计划来控制摩擦元件。齿轮箱24基于多个车辆和环境工况通过关联的控制器(诸如动力传动系控制单元(PCU)50)从一个传动比自动换挡至另一个传动比。齿轮箱24随后将动力传动系统输出功率和扭矩提供至输出轴36。动力传动系统输出的功率和扭矩也可以被称为变速器输出的功率和扭矩。动力传动系统输出的功率由τoutωout表示,其中τout是动力传动系统的输出扭矩并且ωout是动力传动系统的输出转速。应理解,与变矩器22一起使用的液压控制的齿轮箱24仅是齿轮箱或变速器布置的一个示例;从发动机和/或马达接收输入扭矩并随后以不同的传动比将扭矩提供至输出轴的任何多传动比齿轮箱用于于本公开的实施例都是是可以接受的。例如,齿轮箱24可由包括沿换挡导轨平移/旋转换挡拨叉以选择期望的传动比的一个或更多个伺服马达的自动机械式(或手动)变速器(AMT)实现。如本领域普通技术人员通常理解的,例如,在扭矩需求较高的应用中可以使用AMT。如图1的代表性实施例中示出的,输出轴36连接至差速器40。差速器40经由连接至差速器40的各个轴44驱动一对车轮42。差速器向每个车轮42传递大约相等的扭矩,同时(诸如当车辆转弯时)允许轻微的速度差异。可以使用不同类型的差速器或类似装置将扭矩从动力传动系分配至一个或更多个车轮。在一些应用中,例如,取决于具体的运转模式或状况,扭矩分配可变化。动力传动系统12还包括诸如动力传动系统控制单元(PCU)的相关联的控制器50。虽然被示出为一个控制器,但是控制器30可以是较大控制系统的一部分并可由遍布HEV10的各种其它控制器(诸如车辆系统控制器(VSC))来控制,。因此应该理解所述动力传动系统控制单元50以及一个或更多个其它控制器可统称为“控制器”,“控制器”响应于来自各种传感器的信号控制各种致动器以控制诸如启/停发动机14、操作马达/发电机18以提供车轮扭矩或给电池20充电、选择或调度变速器换挡等的多个功能。控制器50可包括与各种类型计算机可读存储装置和介质通信的微处理器或中央处理器(CPU)。计算机可读存储装置或介质可包括例如只读存储器(ROM)、随机存取存储器(RAM)和磨损修正系数存储器(keep-alivememory,KAM)形式的易失性和非易失性存储装置。KAM是当CPU断电时可用于存储各种操作变量的永久或非易失性存储器。计算机可读存储装置或介质可使用任何数量的已知存储装置来实现,例如PROM(可编程只读存储器)、EPROM(电可编程只读存储器)、EEPROM(电可擦除可编程只读存储器)、闪存或能够存储数据的任何其它电存储装置、磁存储装置、光学存储装置、或其组合的存储装置,这些数据中的一些表达由控制器在控制发动机或车辆时所使用的可执行指令。控制器30可经输入/输出(I/O)接口与各种发动机/车辆的传感器和致动器通信,该输入/输出(I/O)接口可作为提供对各种原始数据或信号进行调节、处理和/或转换、短路保护等的单一集成接口。或者,在具体信号被提供给CPU之前,可以使用一个或更多个专用硬件或固件芯片调节或处理该信号。通常如图1的代表性实施例中所示出的,控制器50可将信号传输至发动机14、分离离合器26、M/G18、电池20、起步离合器34、齿轮箱24和电力电子装置56,和/或从发动机14、分离离合器26、M/G18、电池20、起步离合器34、齿轮箱24和电力电子装置56接收信号。尽管未明确示出,本领域技术人员知道在上述确定的每个子系统中可由各种控制器50控制的各种功能或组件。使用由控制器执行的控制逻辑可直接或间接地激活的参数、系统和/或组件的代表性例子包括燃油喷射正时、速率和持续时间,节气门位置,火花塞点火正时(对于火花点燃式发动机来说),吸气/排气门的正时和持续时间,诸如交流发电机的前端附件驱动系统(FEAD)组件,空调压缩机,电池充电或放电(包括确定最大充电和放电功率限制),再生制动,M/G操作,用于分离离合器26的离合器压力,起步离合器34,齿轮箱24等。经由I/O接口的传感器通信输入可用于指示涡轮增压器的增压,曲柄轴位置(PIP),发动机转速(RPM),车轮转速(WS1,WS2),车辆速度(VSS),冷却液温度(ECT),进气歧管压力(MAP),加速踏板位置(PPS),点火开关位置(IGN),节气门位置(TP),空气温度(TMP),排气含氧量(EGO)或其它排气组分浓度或存在与否,进气气流(MAF),变速器挡位、传动比或模式,变速器油温(TOT),变速器涡轮转速(TS),变矩器旁通离合器34状态(TCC),减速或换挡模式(MDE),电池温度、电压、电流或荷电状态(SOC)。由控制器50所执行的控制逻辑或功能可由一个或更多个附图中的流程图或类似图表表达。这些附图提供代表性的控制策略和/或逻辑,这些控制策略和/或逻辑可利用诸如事件驱动、中断驱动、多任务、多线程等等的一个或更多个处理策略来实现。这样,所示出的各种步骤或功能可以按示出的顺序、以并列的方式或在某些情况下省略地执行。尽管不总是明确示出,本领域技术人员应该认识到,一个或更多个示出的步骤或功能可反复执行,这取决于所使用的处理策略。类似地,进程的顺序对于实现本文中所描述的特点和优点不一定是必须的,而是为了示出和描述的方便而被提供。控制逻辑可在由基于微处理器的车辆、发动机和/或动力传动系统控制器(如控制器50)执行的软件中实施。当然,控制逻辑可取决于具体应用而在一个或更多个控制器内以软件、硬件或软件和硬件的组合的形式实施。当逻辑控制以软件实施时,可在一个或更多个计算机可读的存储装置中或媒介(存储有表达由计算机执行以控制车辆或车辆的子系统的代码或指令的数据)中提供控制逻辑。计算机可读的存储装置或媒介可包括一个或更多个一定数量的已知的物理装置,这些物理装置运用电、磁和/或光存储以保持可执行的指令和相关的校准信息、运行变量等等。加速踏板52被车辆驾驶者用来提供所需的扭矩、功率或驱动命令以推进车辆。通常,压下或松开加速踏板52生成加速踏板位置信号,该位置信号可分别由控制器50解释为对增加功率或降低功率的需求。至少基于来自踏板的输入,控制器命令来自发动机14和/或M/G18的扭矩。控制器50还控制齿轮箱24内换挡的定时以及分离离合器26和变矩器旁通离合器34的接合和脱开。同分离离合器26一样,变矩器旁通离合器34可在接合位置和脱开位置之间的范围内调节。除由泵轮和涡轮之间的液力耦合产生的可变滑动之外,上述调节也在变矩器22中产生可变的滑动。或者,取决于具体应用,变矩器旁通离合器34可被操作为锁止或打开,而不使用调节运行模式。为使用发动机14驱动车辆,分离离合器26至少部分接合以经过分离离合器26将至少一部分的发动机扭矩传递到M/G18。然后从M/G18经过变矩器22和齿轮箱24传递。M/G18可通过提供用于转动轴30的额外的功率来协助发动机14。可以称这种运行模式为“混合动力模式”或“电辅助模式”。以M/G18作为单独的能量源驱动车辆,除分离离合器26将发动机14与动力传动系统12的其余部分隔离外,功率流保持不变。在该时间内,发动机14内的燃烧可被禁用或者以其它方式关闭以节约燃料。牵引电池将所储存的电能通过接线54传输到可包括例如逆变器的电子电力装置56。电子电力装置56将来自电池20的DC电压转化为能够由M/G18使用的AC电压。控制器50命令电子电力装置56将来自电池20的DC电压转换为提供给M/G18的AC电压以将正扭矩或负扭矩提供给轴30。这种运行模式可被称为“纯电”运行模式。在任何运行模式中,M/G18可作为马达并为动力传动系统12提供驱动力。或者,M/G18可作为发电机并将来自动力传动系统12的动能转化为将要被存储在电池20内的电能。例如,当发动机14正在为车辆10提供推进力时,M/G18可作为发电机。此外,在再生制动期间(在此期间来自于转动车轮42的转动能量通过齿轮箱24被传递回来并被转化为存储在电池20中的电能),M/G18可作为发电机。应当理解,附图1中所示出的示意图仅为示例性的并且不意图限制。可考虑其它运用发动机和马达两者的选择性地接合来通过变速器传递功率的配置。例如,可以相对于曲柄轴28偏置M/G18,可提供额外的马达来启动发动机14,并且/或者可在变矩器22和齿轮箱24之间设置M/G18。在不脱离本公开范围的情况下,可考虑其它配置。参考图2,描绘了包括起步离合器23的替代实施例。起步离合器23与分离离合器26相似并设置在M/G18和齿轮箱24之间,用于不包括变矩器22或变矩器旁通离合器34的应用。起步离合器23上的功率由τLCωLC表示,其中τLC是起步离合器23的扭矩而ωLC是起步离合器23的转速。用于替代实施例中的起步离合器23和变矩器22,二者都被配置为从发动机14和M/G18传递功率到变速器24(或齿轮箱)。起步离合器23或变矩器22连同能够从发动机14和M/G18传递功率到变速器24的其它装置可被称为变速器输入或变速器输入装置。参考图3,示出了说明变速器24降挡方法100的流程图。方法100不应被解释为对图3中所示配置的限制,而应包括某些步骤可以被重新排列的变型以及某些步骤可以被完全去除的变型。方法100可使用包含在控制器50之内的软件代码来实施。在其它实施例中,方法100可在其它控制器中实施,或在多个控制器之间分配。方法100在开始框102启动。当车辆开始以M/G18单独给车轮42提供扭矩和功率的电动模式运行时,该步骤可实现。在步骤104中确定是否在变速器24的齿轮装置(gearing)中拟定(proposed)降挡。降挡可从储存在控制器50中的换挡计划中推导出来,或者如果变速器包括到自动操作的手动超驰,且变速器正在在手动超驰模式下运行时,降挡也可来自于驾驶员的手动请求。在步骤104,如果在变速器24的齿轮装置中拟定降挡,方法100移动至步骤106。在步骤106,确定拟定更低挡位的预测变速器输入转速。在包括变矩器的应用中,预测变速器输入转速可指变矩器22的预测泵轮转速ωpi,或者在起步离合器23用于代替变矩器22的应用中,预测变速器输入转速可指预测起步离合器转速ωpLC。在包括起步离合器23的应用中,起步离合器的预测转速ωpLC可基于车辆速度或动力传动系统的输出转速ωout。考虑到在给定的车辆速度下车轮42的旋转速度以及通过包括变速器24中的挡位选择的动力传动系统的传动比,起步离合器转速ωLC可与车辆速度或动力传动系统输出转速ωout成正比。表达起步离合器转速ωLC与车辆速度或动力传动系统的输出转速ωout之间关系的值或算法可以存储在控制器50内。在包括变矩器22的应用中,变矩器22的预测泵轮转速ωpi可以基于车辆速度或动力传动系统的输出转速ωout。变矩器的预测泵轮转速ωpi相对于车辆速度或动力传动系统输出转速ωout的关系可以基于拟定降挡之后变矩器22的预测涡轮转速ωpt。取决于变矩器22的固有特性,泵轮转速ωi将与涡轮转速ωt具有直接关系。表达泵轮转速ωi和涡轮转速ωt之间的关系的值或算法可储存在控制器50内。考虑到在给定的车辆速度下的车轮42的旋转速度以及通过包括变速器24中的挡位选择的动力传动系统的传动比,变矩器22的涡轮转速ωt可与车辆速度或动力传动系统的输出转速ωout成正比。变矩器的预测泵轮转速ωpi还可考虑变矩器旁通离合器34上的期望滑动量以及驾驶员改变当前车辆速度的需求。驾驶员的需要在下文中进一步讨论。接下来在步骤108中,确定降挡之后预测的所需变速器输入扭矩。在包括变矩器的应用中,预测的所需变速器输入扭矩可指变矩器22的预测的所需泵轮扭矩τpdi,或在起步离合器23用于取代变矩器22的应用中,预测的所需变速器输入扭矩可指预测的所需起步离合器扭矩τpdLC。在包括起步离合器23的应用中,确定降挡之后预测的所需起步离合器扭矩τpdLC。预测的所需起步离合器扭矩τpdLC可以基于当前车辆状况和变速器24的拟定更低挡位。当前车辆状况可包括应用在车轮处的扭矩量、车轮处的输出功率、动力传动系统输出扭矩τout、动力传动系统输出功率τoutωout和变速器24中的当前挡位选择。基于当前状况,通过将当前状况应用于变速器24中的拟定更低挡位,考虑到通过动力传动系统的传动比的算法可用以预测在降挡之后所需起步离合器扭矩τdLC。在替代方案中,包括所需起步离合器扭矩τdLC、车轮处的期望扭矩或与当前车辆状况和变速器24挡位选择相关的动力传动系统期望输出扭矩τdout的查找表可被运用于预测所述预测的所需起步离合器扭矩τpdLC。在包括变矩器22的应用中,确定降挡之后变矩器22的预测的所需泵轮扭矩τpdi。预测的所需泵轮扭矩τpdi可基于车辆的当前状况和变速器24中的拟定更低挡位。车辆的当前状况可包括应用于车轮处的扭矩的量、车轮处的输出功率、动力传动系统输出扭矩τout、动力传动系统输出功率τoutωout、当前涡轮扭矩τt、当前涡轮功率τtωt、当前泵轮扭矩τi、当前泵轮功率τiωi和变速器24中的当前挡位选择。基于当前状况,通过将当前状况应用于变速器24中的拟定更低挡位,考虑到通过动力传动系统的传动比的算法可用以预测在降挡之后所需泵轮扭矩τpdi。在替代方案中,包括所需泵轮扭矩τdi、车轮处的期望扭矩或与当前车辆状况和变速器24挡位选择相关的动力传动系统的期望输出扭矩τdout的查找表可被运用于预测所述预测的所需泵轮扭矩τpdi。在确定起步离合器的预测的所需扭矩τpdLC或泵轮的预测的所需扭矩τpdi时,除了车辆的当前状况和变速器24的拟定更低挡位,来自于巡航控制的期望加速度和驾驶员的功率、扭矩或速度需求也可以被利用。驾驶员的功率、扭矩或速度需求可等同于车辆的功率、扭矩和速度,或动力传动系统输出端的功率τoutωout、扭矩τout和转速ωout。驾驶员的功率、扭矩或速度需求基于加速踏板52的当前位置加上加速踏板52随时间的位置改变率。将驾驶员的功率、扭矩或速度需求考虑进去,允许对在变速器24中出现降挡之后驾驶员的功率、扭矩或速度需求将会是多少进行预测。一旦在步骤106中确定预测的变速器输入转速并在步骤108中确定预测的所需变速器输入扭矩,方法100移动至步骤110。在步骤110中确定是否预测的变速器输入转速在预定范围内,以使能量损失最小化。预测的变速器输入转速的预定范围可在500到6500rpms之间,但是在800到2500rpms之间更佳。如果预期变速器输入转速不在预定范围内,则方法100移动至步骤112,在该步骤中延迟变速器24的降挡直到分离离合器26闭合并且发动机14已经启动,或者延迟变速器24的降挡直到时间延迟限制过期。发动机可以用电起动器或通过闭合分离离合器26来启动。如果预期的变速器输入转速在预定范围内,方法100移动至步骤114。在步骤114中确定在降挡发生后M/G18(电机)是否能够供应预测的所需变速器输入扭矩和预测的变速器功率需求(在包括变矩器22的应用中,该功率需求为预测的所需泵轮扭矩乘以预测泵轮转速τpdiωpi,在包括起步离合器23的应用中,该功率需求为预测的所需起步离合器扭矩乘以起步离合器的预测转速τpdLCωpLC)。M/G18供应预测的所需变速器输入扭矩和预测的变速器功率需求的能力可考虑M/G18的最大扭矩容量和可从电池20吸取的可用能量(即电池电荷)。如果M/G18的容量低于预测的所需变速器输入扭矩和/或预测的变速器功率需求,方法100移动至步骤112,在该步骤中变速器24的降挡延迟直到分离离合器26闭合并且发动机14已经启动,或者变速器24的降挡延迟直到时间延迟限制过期。如果M/G18的容量不低于预测的所需变速器输入扭矩和/或预测的变速器功率需求,则方法100移动至步骤116,在该步骤允许在闭合分离离合器26并启动发动机14之前发生降挡。返回到步骤104,如果未在步骤104中拟定变速器24的齿轮装置中的降挡,方法100移动至步骤118。在步骤118中,基于车辆当前状况确定所需变速器输入扭矩。在包括起步离合器23的应用中,所需变速器输入扭矩可由所需起步离合器τdLC代表,在包括变矩器22的应用中,所需变速器输入扭矩可由所需泵轮扭矩τdi代表。步骤118中,在包括起步离合器23的应用中,当前车辆状况可包括应用于车轮处的扭矩量、车轮处的输出功率、动力传动系统的输出扭矩τout、动力传动系统的输出功率τoutωout、当前起步离合器扭矩τLC、当前起步离合器转速ωLC、当前起步离合器功率τLCωLC和当前挡位选择。考虑到通过动力传动系统(包括变速器24中的挡位选择)的传动比的算法,可用于确定所需起步离合器扭矩τdLC。在替代方案中,包括所需起步离合器扭矩τdLC、车轮处的期望扭矩或与当前车辆状况和变速器24挡位选择相关的动力传动系统期望输出扭矩τdout的查找表可被用于确定所需起步离合器τdLC。在包括变矩器22的应用中,在步骤118中当前车辆状况可包括应用于车轮的扭矩的量、车轮处的输出功率、动力传动系统的输出扭矩τout、动力传动系统的输出功率τoutωout、当前涡轮扭矩τt、当前涡轮功率τtωt、当前泵轮扭矩τi、当前泵轮功率τiωi和当前挡位选择。考虑到通过动力传动系统(包括变速器24中的挡位选择)的传动比的算法可用以确定所需泵轮扭矩τdi。在替代方案中,包括所需泵轮扭矩τdi、车轮处期望扭矩或与当前车辆状况和变速器24中挡位选择有关的动力传动系统期望输出扭矩τdout的查找表可被用于确定所需泵轮扭矩τdi。除了车辆的当前状况,在确定所需起步离合器扭矩τdLC或所需泵轮扭矩τdi时,也可以运用源自巡航控制的期望加速度和驾驶员的功率、扭矩或速度需求。驾驶员的功率、扭矩或速度需求可等同于车轮处的功率、扭矩和转速或动力传动系统输出端的功率τoutωout、扭矩τout和转速ωout。驾驶员的功率、扭矩或速度需求基于加速踏板52的当前位置加上加速踏板52随时间的位置改变率。一旦在步骤118中确定了所需泵轮扭矩τdi,方法100移动至步骤120,在步骤120中确定是否M/G18(电机)能够供应所需变速器输入扭矩和所需变速器功率需求(该需求在包括变矩器22的应用中是所需泵轮扭矩乘以所需泵轮转速τdiωdi,而在包括起步离合器23的应用中是所需起步离合器扭矩乘以起步离合器的所需转速τdLCωdLC)。M/G18供应所需变速器输入扭矩和所需变速器输入功率的能力可考虑到M/G18的最大扭矩容量和可从电池20吸取的可用能量(即电池电荷)。如果M/G18的容量低于所需变速器输入扭矩和/或所需变速器输入功率,则方法100移动至步骤122,在步骤122中闭合分离离合器26并启动发动机14。发动机可以用电起动器或通过闭合分离离合器26来启动。如果M/G18的容量不低于所需变速器输入扭矩和/或所需变速器输入功率,则方法100返回到步骤104。说明书中使用的词语为描述性词语而非限定,并且应理解不脱离本公开的精神和范围可以作出各种改变。如上所述,可以组合多个实施例的特征以形成本发明的没有明确描述或说明的进一步的实施例。尽管已经将多个实施例描述成就一个或更多个期望特性来说提供了优点或相较于其它实施例或现有技术的实施更为优选,但是本领域技术人员应该认识到,取决于具体应用和实施,为了达到期望的整体系统属性可以对一个或多个特点或特性进行折衷。这些属性可包括但不限于:成本、强度、耐用性、生命周期成本、可销售性、外观、包装、尺寸、可维护性、重量、可维护性、重量、可制造性、易于装配等。因此,被描述为在一个或多个特性上相对于其它实施例或现有技术应用不令人满意的实施例也未超出本公开的范围,并且这些实施例对于特定应用可能是令人满意的。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1