用于电动车辆的控制装置的制作方法

文档序号:12443507阅读:284来源:国知局
用于电动车辆的控制装置的制作方法

本发明涉及一种从行驶马达上获取驱动力的用于电动车辆的控制装置。



背景技术:

近年来,由行驶马达驱动驱动轮的车辆(EV)或者由行驶马达和引擎的组合获取车辆的驱动力的混合动力车辆被开发并投入使用。作为混合动力车辆,被开发并投入使用的有通过由引擎驱动的发电机产生的电力为将电力供应至行驶马达的电池充电的车辆(HEV),还有可以由外部商用电源为电池充电的车辆(PHEV)。

在现有技术中,可利用一种技术,使电动车辆在限定行驶状态下行驶,在该限定行驶状态下,当电动从动系统发生异常,比如电气装置(例如:行驶马达或者电池、控制装置、通讯装置等)或者通讯系统发生异常时,电动车辆可以以预定的车辆速度或者扭矩行驶(例如:JP-A-2013-5590)。在专利JP-A-2013-5590中公开的技术是这样的技术:当无法从控制单元接收驱动指令时,扭矩限制将逐步增强以停止车辆。因此,即使无法从控制单元接收驱动指令,仍然可以使车辆进入安全状态,从而避免危险。

根据JP-A-2013-5590公开的技术,由于扭矩限制是逐步增强的,车辆的扭矩可以被限制,而不会带给驾驶员不舒服的感觉。然而,对于某种异常或类似情况,扭矩限制必须在短时间内被加强。在异常发生之前的某些行驶情形下,扭矩限制的加强不是行驶所必须的。在另一种情形下,即使扭矩被限制到预定的限制状态,也不会带给驾驶员不舒服的感觉。在发生异常之前的其他行驶情况下,当检测到故障时,施加扭矩限制可能会带给驾驶员不舒服的感觉。



技术实现要素:

本发明考虑了上述情形而做出进一步开发。本发明的目的是提供一种用于电动车辆的控制装置,该控制装置在发生异常时能够根据电动系统异常发生之前的行驶情形控制车辆的行驶状态量。

为了实现上述目的,根据本发明,提供了一种用于电动车辆的控制装置,该电动车辆包括行驶马达,该行驶马达被构造成将驱动力传输至驱动轮,该控制装置包括:控制单元,该控制单元具有抑制模式功能,该抑制模式功能用于在车辆的电动系统发生异常时抑制车辆的行驶状态量;其中抑制模式功能包括第一抑制状态和第二抑制状态,并且第二抑制状态中的抑制程度小于第一抑制状态中的抑制程度;并且根据电动系统的异常的类型,控制单元被构造成使车辆处于第一抑制状态或者被构造成在使车辆处于第二抑制状态之后使车辆处于第一抑制状态。

附图说明

图1是安装有根据本发明的实施例的控制装置的电动车辆的整体结构示意图;

图2是控制单元的结构框图;

图3是说明抑制车辆速度的图表;

图4是说明抑制扭矩的图表;

图5是说明当发生异常时显示的实例的视图;

图6是抑制行驶状态量的控制流程图。

具体实施方式

现在将参考图1描述电动车辆的整体构造。图1显示了安装有根据本发明的实施例的控制装置的电动车辆的整体示意结构。图1所示的电动车辆是本发明应用在同时使用电动马达和引擎的混合动力车辆的实例。

如图1所示,电动车辆(混合动力车辆或者车辆)1设置有向驱动轮2传输动力的行驶马达3和引擎4。行驶马达3的驱动力通过变速机构5被传输到驱动轮2。电池7经由电路6,比如逆变器,连接到行驶马达3。对应于驾驶员的脚踏操作的电力经由电路6从电池7供应至行驶马达3。

发电机9经由输出系统8连接至引擎4。发电机9经由电路6连接至电池7(和行驶马达3)。连接至发电机9的输出系统8也经由离合器10连接至变速机构5。

当引擎4根据车辆1的驱动状态而被驱动时,引擎4的驱动力经由输出系统8被传输至发电机9。发电机9通过引擎4的驱动而旋转(被驱动)以产生电力。发电机9产生的电力被供应至电池7和行驶马达3。当输出系统8和变速机构5根据车辆1的驱动状态由离合器10连接时,引擎4的驱动力被传输至发电机9和驱动轮2。

用于控制各种装置的控制装置11通常设置在车辆1中。引擎4的转速信息和车辆速度传感器12的信息被输入至控制装置11。电池7设置有用于检测电池7的温度状态的温度传感器15。温度传感器15的信息被输入至控制装置11。此外,加速器位置传感器(APS)13设置在车辆1中。加速器位置传感器13的检测信息(所需扭矩信息)被输入至控制装置11。此外,离合器10的信息、电路6的信息、行驶马达3的信息以及用于行驶马达3、电路6和发电机9的冷却系统的信息被输入至控制装置11。

控制装置11包括所谓的ECU(电子控制单元),ECU形成作为由CPU(微处理器)、ROM、RAM等集成的LSI装置,或者作为嵌入式电子装置。ECU设置有作为软件的控制程序,以便执行包括马达控制的各种控制并且执行各种控制以使得车辆安全地且平稳地运行。

如此构造的车辆1具有将行驶马达3用作驱动车辆的动力源的EV模式以及将行驶马达3用作驱动车辆的动力源并且将引擎4用作发电机9的动力源的串联模式。车辆1还具有将行驶马达3和所述引擎4用作驱动车辆的动力源的并联模式。根据车辆1的行驶状态,这些运行模式可以适当地从一个转换至另一个。

根据本发明的实施例的用于电动车辆的控制装置具有抑制模式功能,该抑制模式功能用于在驱动车辆1的同时在基于温度传感器15的信息、离合器10的信息、电路6的信息、行驶马达3的信息和冷却系统的信息判定电动系统中出现异常时,抑制车辆1的行驶状态量(限制车辆速度和扭矩增益中的至少一个)。

本发明中所控制的车辆1的行驶状态量是与车辆1的行驶相关的至少一个参数。

具体地,控制装置具有抑制模式功能,该抑制模制功能包括跛行模式(limp home mode)和预跛行模式(pre-limp home mode)。在跛行模式中,车辆1的行驶状态量被抑制(车辆速度和扭矩增益中的至少一个被限制),使车辆1处于第一抑制状态。在预跛行模式中,车辆1的行驶状态量被抑制(车辆速度和扭矩增益中的至少一个被限制),使车辆1处于第二抑制状态,在第二抑制状态中行驶状态量的抑制相比于第一抑制状态中变得缓和。即,车辆1在跛行模式中的行驶状态量的抑制大于车辆1在预跛行模式中的行驶状态量的抑制。作为抑制模式功能,根据电动系统中的各种异常设定了多个功能。行驶状态量的抑制意味着减少车辆速度或者扭矩增益。行驶状态量的抑制越大,车辆速度或者扭矩增益越小。

稍后将详细描述的是,当电动系统中发生异常时,目标车辆速度(要被限制的车辆速度)设定为跛行模式中的车辆速度(例如:50千米/小时)。当实际的车辆速度是为例如100千米/小时时,实际的车辆速度和目标车辆速度的差值是50千米/小时。在这种情况下,由于车辆速度的巨大差异,如果车辆速度被限制在跛行模式中,车辆速度将在短时间内突然从100千米/小时减小到50千米/小时。因此,将带给驾驶员不舒服的感觉。因此,在电动系统的某些异常中,在车辆速度被限制在跛行模式中之前,车辆速度被限制在预跛行模式中。

预跛行模式中的车辆速度例如设定为70千米/小时。车辆速度先从100千米/小时减小到70千米/小时,然后再减小到50千米/小时,也就是跛行模式中的车辆速度。此外,扭矩可以被应用于行驶状态量。在预跛行模式中,根据扭矩增益的差异,扭矩增益设定为比跛行模式中的扭矩增益(例:0.3)缓和的扭矩增益(例:0.6)。

例如,当实际车辆速度为60千米/小时,略微快于目标车辆速度时,实际车辆速度和目标车辆速度之间的差值是10千米/小时。在这种情况下,车辆速度不会突然减小,即便车辆速度短时间内从60千米/小时减小至50千米/小时。不用害怕带给驾驶员不舒服的感觉。因此,车辆速度被限制在跛行模式中,而不用执行预跛行模式。

用这样的方式,在电动系统发生异常之前,可以基于车辆1的行驶状况(包括车辆速度和扭矩中的至少一个的行驶状态量)限制车辆1的车辆速度或者扭矩增益。因此,行驶的抑制可以被适当地控制,而不会使控制时间变长。

通过根据本发明的实施例所述的控制装置对车辆速度和扭矩增益中的至少一个(行驶状态量)进行的控制将参考图2至图6具体描述。

图2显示了根据本发明的实施例的控制单元的结构框图。图3显示了用于说明目标车辆速度与实际车辆速度的差值和要被限制的车辆速度之间的关系的图表。图4显示了用于说明目标扭矩增益与实际扭矩增益的差值和要被限制的扭矩增益的关系的图表。图5显示了当发生异常时显示的实例。图6显示了抑制车辆速度和扭矩中的至少一个(行驶状态量)的控制流程图。

如图2所示,温度传感器15的信息、离合器10的信息、电路6的信息、行驶马达3的信息和冷却系统的信息被输入至控制装置11。控制装置11中设置有异常判定功能21,用于基于输入的信息判定电动系统的异常。当执行对异常的判定时,该判定根据电动系统的异常的类型被划分成多个组。例如,在本实施例的情况下,根据电动系统的异常的类型,该判定被划分成:a组异常,对此,限制应当逐步加强;b组异常,对此,限制应当在短时间内被加强;和c组异常,对此,限制应当被立即加强。

此外,控制装置11中设置有抑制模式执行功能22。抑制模式执行功能22具有如下功能:当属于a组的异常发生时满足预定条件时,第一预跛行模式被执行第一预定时间T1,然后执行跛行模式。抑制模式执行功能22具有如下功能:当属于b组的异常发生时满足预定条件时,第二预跛行模式被执行第二预定时间T2,然后执行跛行模式,其中该第二预定时间T2比第一预定时间T1短。抑制模式执行功能22具有如下功能:当属于a组或者b组的异常发生时不满足预定条件时,或者当属于c组的异常发生时,跛行模式被执行,而不执行任何预跛行模式。

如上所述,抑制模式功能包括分别用于a组、b组和c组的功能,以便第一预跛行模式和跛行模式,第二预跛行模式和跛行模式,以及跛行模式可以分别被设定用于属于a组的异常、属于b组的异常和属于c组的异常。也就是说,作为抑制模式功能,根据电动系统的异常的类型,设定多个功能。

例如,每组可以包括以下类型的异常。

a组:离合器10的异常和电池7的异常

b组:电路6(高压电路)的异常和行驶马达3的异常

c组:用于电池和电力系统(行驶马达3、电路6和发电机9)的冷却系统的异常

此外,车辆速度传感器12的信息和APS 13的信息被输入至控制装置11。控制装置11中设置有车辆速度判定功能23和扭矩判定功能24。车辆速度判定功能23具有识别实际车辆速度、目标车辆速度以及实际车辆速度和目标车辆速度的差值并设定要被限制的车辆速度的功能。扭矩判定功能24具有识别实际扭矩增益、目标扭矩增益以及实际扭矩增益和目标扭矩增益的差值并设定要被限制的扭矩增益的功能。

指令从控制装置11输出至行驶马达3(电池7和电路6)以便将车辆速度和扭矩限制在跛行模式或者预跛行模式中的车辆速度和扭矩,从而抑制车辆1的行驶。此外,用于显示的指令被输出至显示单元31(参见将在稍后描述的图5)。

如图3所示,当电动系统发生异常时,跛行模式中的车辆速度h1被设定为例如50千米/小时。目标车辆速度被设定为h1(例如,50千米/小时),即跛行模式中的车辆速度。当实际车辆速度和目标车辆速度的差值超过预定值hs1时,预跛行模式中的车辆速度根据实际车辆速度和目标车辆速度的差值而设定。也就是说,当实际车辆速度为例如100千米/小时时,实际车辆速度和目标车辆速度的差值为hS(50千米/小时)。当实际车辆速度和目标车辆速度的差值为hS时,预跛行模式中的车辆速度被设定为h2(例如,70千米/小时),高于h1(用于缓和上述抑制)。

在电动系统发生异常的情形下,当实际车辆速度和目标车辆速度的差值超过预定值hs1时,预跛行模式被执行。另一方面,当实际车辆速度和目标车辆速度的差值不高于预定值hs1时,要被限制的扭矩增益根据加速器开度而设定,如图4所示。附带地,即使当实际车辆速度和目标车辆速度的差值超过预定值hs1,要被限制的扭矩增益也可以根据加速器开度而设定。

如图4所示,当电动系统发生异常时,跛行模式中的扭矩增益Tq1被设定为例如0.3。目标扭矩增益被设定为跛行模式中的扭矩增益Tq1(例如,0.3)。当实际扭矩增益为1.0时,实际扭矩增益和目标扭矩增益的差值(扭矩增益差值)为TqS(0.7)。在预跛行模式中,当扭矩增益差值是TqS时,扭矩增益被设定为Tq2(例如,0.6),以缓和上述抑制。

附带地,扭矩增益差值和要被限制的扭矩增益之间的关系根据加速器开度而设定。例如,当加速器开度大(加速器被深深地向下踩)时,表示扭矩增益差值和要被限制的扭矩增益之间的关系的线被设定成向上偏移。也就是说,该线被设定在加速器开度的预定范围的幅度内。也就是说,虽然具有相同扭矩增益差值,但是要被限制的扭矩增益根据加速器开度被设定为不同值。

如图3和图4所示,当车辆速度或者扭矩增益的差值较小时,预跛行模式中的车辆速度或者扭矩增益被设定为逐渐接近于跛行模式中的车辆速度或者扭矩增益。

当电动系统发生异常时,异常的发生被显示在显示单元31上,例如,在设置计量器的部分中。也就是说,如图5所示,当发生异常时,检查时间的显示部32被显示在显示单元31上的车辆符号的位置。表示最高速度h1千米/小时的显示部33被显示在车辆设计的位置的下方,作为要被限制的车辆速度的信息。用这样的方式,驾驶员可以直观地识别出行驶速度已经由于异常而被限制。因此,可以抑制驾驶员不舒服的感觉。

当发生异常时限制车辆速度或者扭矩的操作将参考图6具体描述。

如图6所示,当发生异常时,在步骤S1中判定该异常。在步骤S2中,跛行模式中的车辆速度被显示在显示单元31上。在步骤S3中,判定电动系统中的异常的类型是否为属于a组的异常或者属于b组的异常。当步骤S3中判定所述异常不是属于a组的异常或者不是属于b组的异常时,也就是说,当判定所述异常是属于c组的异常时,例如,当冷却系统发生异常时,立即执行跛行模式,而不执行预跛行模式。然后,该过程终止。也就是说,该过程移动至步骤S4以执行跛行模式,然后终止。

在跛行模式中,车辆速度被设定为例如50千米/小时,而扭矩增益被设定为例如0.3。车辆1的行驶被抑制以达到要被限制的车辆速度和要被限制的扭矩增益。因此,虽然发生属于c组的异常,但是车辆1可以安全地移动和停止。

当步骤S3中判定所述异常为属于a组的异常或者属于b组的异常时,在步骤S5中判定电动系统的异常的类型是否为属于a组的异常。当在步骤S5中判定所述异常为属于a组的异常时,例如,当离合器10发生异常或者电池7发生低温异常而判定为属于a组的异常时,该过程移动至在步骤S6中执行第一预跛行模式的程序(将在稍后详细描述)。

在步骤S6中执行第一预跛行模式之后,在步骤S7中判定执行第一预跛行模式的时间T是否等于或者长于第一预定时间T1。当在步骤S7中判定执行第一预跛行模式的时间T小于第一预定时间T1时,该过程返回至步骤S6以便继续执行第一预跛行模式。

当在步骤S5中判定电动系统的异常的类型不是属于a组的异常时,也就是说,当判定电动系统的异常的类型为属于b组的异常时,例如,当电路6(高压电路)发生异常或者行驶马达3发生异常而判定为属于b组的异常,该过程移动至在步骤S8中执行第二预跛行模式的程序(将在稍后详细描述)。在步骤S8中执行第二预跛行模式的程序具有与在步骤S6中执行第一预跛行模式的程序相同的过程内容。

在步骤S8中执行第二预跛行模式之后,在步骤S9中判定执行第二预跛行模式的时间T是否等于或者长于第二预定时间T2,其中该第二预定之间T2短于第一预设时间T1。当在步骤S9中判定执行第二预跛行模式的时间T小于第二预定时间T2时,该过程返回至步骤S8以便继续执行第二预跛行模式。

当在步骤S7中判定执行第一预跛行模式的时间T等于或者长于第一预定时间T1时,或者当在步骤S9中判定执行第二预跛行模式的时间T等于或者长于第二预定时间T2时,该过程移动至步骤S4以便执行跛行模式。然后,该过程终止。

用这样的方式,当发生属于a组的异常或者属于b组的异常时,第一预跛行模式或者第二预跛行模式被执行预定时间T1或者预定时间T2(T1>T2),然后经过预定时间之后执行跛行模式。因此,第一或者第二预跛行模式可以根据异常的类型被执行适当时间。

判定执行第一预跛行模式还是第二预跛行模式的程序将被具体地描述。

当所述异常属于a组或者b组时,在步骤S10和步骤S13中判定实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3之间的差值是否超过预定值hs1或者预定值hs2。当在步骤S10和步骤S13中判定实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3之间的差值超过所述预定值hs1或者预定值hs2时,在步骤S6或者步骤S8中执行第一预跛行模式或者第二预跛行模式。也就是说,要被限制的车辆速度基于图3所示的图表中实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值而设定。第一或者第二预跛行模式被执行,其中车辆的行驶通过设定的车辆速度来抑制。

当在步骤S10或者S13中判定实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值不超过预定值hs1或者预定值hs2时,也就是说,当判定所述差值不高于预定值hs1或者预定值hs2时,在步骤S11或者步骤S14中判定APS的检测值(加速器开度)是否超过预定值。当在步骤S11或者S14中判定加速器开度超过预定值时,判定实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值小,但是加速器已经被向下踩。因此,在步骤S6或者步骤S8中执行第一预跛行模式或者第二预跛行模式。也就是说,扭矩增益基于图4所示的图表中实际扭矩增益和目标扭矩增益的差值而设定。第一或者第二预跛行模式被执行,其中车辆1的行驶通过设定的扭矩增益来抑制。

假设在步骤S11或者步骤S14中判定APS的检测值(加速器开度)没有超过预定值。也就是说,当出现必须执行第一预跛行模式或者第二预跛行模式的异常时,假设判定实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值小,但是加速器没有被向下踩。在这种情况下,例如,在步骤S12或者步骤S15中判定车辆1是否牵引另一车辆。车辆1是否牵引另一车辆的判定通过例如来自开关的机械信号来实现。

当在步骤S12或者步骤S15中判定车辆1牵引另一车辆时,在步骤S6或者步骤S8中执行第一预跛行模式或者第二预跛行模式。当在步骤S12或者步骤S15中判定车辆1没有牵引另一车辆时,不执行第一预跛行模式或者第二预跛行模式,但是跛行模式被立即执行。然后,该过程终止。

因此,根据实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值,或者根据对应于加速器开度的目标扭矩增益和实际扭矩增益的差值,执行第一预跛行模式或者第二预跛行模式。由此,第一预跛行模式或者第二预跛行模式可以根据发生异常之前的行驶情形在适当的限制条件(车辆速度或扭矩增益)下被执行。

此外,当出现应当执行第一预跛行模式或者第二预跛行模式的异常时,实际车辆速度ha和目标车辆速度h1或者目标车辆速度h3的差值,或者对应于加速器开度的目标扭矩增益和实际扭矩增益的差值足够小以便满足该模式应当被转移至跛行模式的条件。即使在这种情况下,如果车辆1牵引另一车辆,例如,也可以执行第一预跛行模式或者第二预跛行模式。

如上所述,在根据本实施例的用于电动车辆的控制装置中,当电动系统发生异常时,基于电动系统发生异常之前的车辆的行驶状况(车辆速度或者扭矩)设定车辆速度或者扭矩增益,以便抑制车辆1的行驶。因此,当电动系统发生异常时,车辆1的行驶可以被适当地限制,而不使控制时间变长。

在本发明中,提供了一种用于电动车辆的控制装置,该电动车辆包括行驶马达,该行驶马达被构造成将驱动力传输至驱动轮,该控制装置包括具有抑制模式功能的控制单元,该抑制模式功能用于当车辆的电动系统发生异常时抑制车辆的行驶状态量,其中抑制模式功能包括第一抑制状态和第二抑制状态,并且第二抑制状态中的抑制程度小于第一抑制状态中的抑制程度;并且根据电动系统的异常的类型,该控制单元被构造成使车辆处于第一抑制状态或者被构造成在使车辆处于第二抑制状态之后使车辆处于第一抑制状态。

根据上述配置,第二抑制状态中的抑制(预跛行模式中的抑制)可以在第一抑制状态中的抑制(跛行模式中的抑制)之前被执行。第二抑制状态中对行驶状态量的抑制程度相比第一抑制状态中对行驶状态量的抑制程度缓和。对于电动系统的某些类型的异常,在使车辆处于第二抑制状态之后,使车辆处于第一抑制状态。对于另一类型的异常,仅使车辆处于第一抑制状态。通过这种方式,车辆的行驶状态量可以基于异常发生之前的行驶状态量而被抑制。因此,行驶限制可以被适当地控制,而不会使控制时间变长。

控制单元可以被构造成根据第一抑制状态中的行驶状态量和车辆的当前行驶状态量的差值设定第二抑制状态中的行驶状态量。

在上述情况下,第二抑制状态中的行驶状态量根据第一抑制状态中的行驶状态量和当前行驶状态量的差值而设定。因此,当车辆以比第一抑制状态中的行驶状态量缓和的行驶状态量行驶时,第二抑制状态中的行驶状态量根据行驶状态量的差值而设定,从而可以在抑制行驶状态量,而不会大大地偏离当前行驶状态量。

例如,如稍后描述的,当车辆速度应用于行驶状态量时,第一抑制状态中的行驶状态量被设定为第一抑制状态中的车辆速度(例如:50千米/小时)。当实际车辆速度是100千米/小时时,行驶状态量的差值为50千米/小时。在第二抑制状态中的速度被设定为例如70千米/小时。因此,车辆的行驶被抑制在车辆速度限制到70千米/小时的状态。之后,车辆的行驶被抑制在车辆速度限制到50千米/小时的状态,其为第一抑制状态中的车辆速度。如稍后描述,当扭矩应用于行驶状态量时,根据扭矩增益的差值设定扭矩增益。在第二抑制状态中,扭矩增益被设定为相比第一抑制状态中的扭矩增益(例如:0.3)更缓和的扭矩增益(例如:0.6)。

控制单元可以被构造成当第一抑制状态中的行驶状态量和当前行驶状态量的差值较小时,使第二抑制状态中的行驶状态量更接近于第一抑制状态中的行驶状态量。

在上述情形下,当行驶状态量的差值较小时,第二抑制状态中的行驶状态量可以逐步接近第一抑制状态中的行驶状态量。

控制单元可以被构造成当控制单元使车辆处于第二抑制状态的时间等于或者长于预定时间时,使车辆处于第一抑制状态。

在上述情形下,由于控制单元使车辆处于第二抑制状态的时间等于或者大于预定时间时,使车辆处于第一抑制状态,因此所述抑制可以被适当地执行,而不会产生任何不舒服的感觉。

第二抑制状态可以包括多种模式,该多种模式的抑制时间根据电动系统的异常的类型而彼此不同。

在上述情形下,作为第二抑制状态,根据电动系统中的异常的类型设定多个模式,且多个模式的抑制时间彼此不同。因此,车辆的行驶可以根据每种异常被更适当地抑制。

车辆的行驶状态量可以包括车辆的行驶速度和车辆的扭矩中的至少一个。

在上述情形下,可以通过限制车辆的行驶速度(车辆速度)和车辆的扭矩(扭矩增益)中的至少一个来抑制车辆的行驶。

当异常的类型为用于电池和电力系统的冷却系统中的至少一个发生的异常时,控制单元可以被构造成使车辆处于第一抑制状态,并且当异常的类型不是冷却系统中的至少一个发生的异常时,该控制单元可以被构造成在使车辆处于第二抑制状态之后使车辆处于第一抑制状态。

当异常的类型为用于电池和电力系统的冷却系统中的至少一个发生的异常时,行驶状态量被抑制从而使车辆处于第一抑制状态,并且当异常的类型不是冷却系统中的至少一个发生的异常时,行驶状态量被抑制从而在使车辆处于第二抑制状态之后使车辆处于第一抑制状态。因此,当冷却系统发生异常时,车辆的行驶状态量可以被适当地抑制。

在根据本发明的用于电动车辆的控制装置中,当电动系统发生异常时,可以根据异常发生之前的行驶状况抑制车辆的行驶状态量。

本发明可以被用在用于电动车辆的控制装置的工业领域。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1