抗颤动方法与流程

文档序号:11718091阅读:285来源:国知局
抗颤动方法与流程

本发明涉及一种用于阻尼车辆传动系中的抖动的方法,该车辆传动系具有作为驱动电机的电动机。本发明还涉及一种包括闭环控制系统的车辆,其中所述闭环控制系统设计为执行这种用于阻尼抖动的方法。



背景技术:

在所有车辆中,在起动时或者在驱动期间如果传动系被突然激励,则存在传动系的特定振荡行为。在具有作为驱动电机的电动机的车辆中,该振荡特别在起动期间是非常显著的。其原因在于,整个传动系可以简化地理解为弹簧-质量系统或杆弹簧,其由于相应的激励而倾向于振荡。在具有电动机驱动器的车辆中,特别地,由于电动机的机械设计、转速传感器以及由于转换器中的启动效应和闭环控制效应,可能出现驱动器的转矩的不规则性。这种干扰取决于旋转速度和负载,意味着可能产生非常宽的干扰谱。因此,在某些转速下,下游机械系统,特别是传动系可以激励固有频率,并且可能发生共振。

特别地,传动系的这种振荡在较低速度范围中和当在上坡梯度(gradient)上起动时特别明显。用于防止所述传动系振荡或抖动的解决方案的常规方法基于机械阻尼,特别是通过借助于离合器的分离的振荡阻尼。当使用内燃机时,该振荡可以通过主动调节点火角来抵消。可用于电驱动器中的解决方案的另一方法是基于在转矩积聚期间对梯度的强烈限制以及对弹簧系统的相关较低激励,但是相对地使车辆的动态性变差。

de102013112419a1公开了例如一种用于没有变矩器的混合动力车辆的抗颤动控制的方法,包括:确定是否通过混合动力车辆的变速器控制装置输出变速命令;如果确定输出变速命令,则确认被分成至少三相并对应于变速命令的变速范围;确定相应分割的变速范围是否是抗颤动允许的变速范围;以及如果确定相应的变速范围是抗颤动允许的变速范围,则通过预定值对混合动力车辆的驱动电机进行相位反转控制,以减小或阻尼在相应变速范围中产生的振动和冲击。

de102012224294a1公开了一种对使用电机功率的车辆的抗颤动控制的方法,其中该方法包括以下步骤:通过控制器输出电机的实际转速;通过控制器输出电机的模拟转速;基于通过控制器输出的电机的模拟转速和实际转速之间的差别,输出振动分量;通过控制器对振动分量进行高通滤波,以便消除振动分量中的故障分量;通过控制器使经滤波的振动分量的相位延迟一预设时间,以便补偿在高通滤波期间发生的相位误差;以及通过控制器将预设放大率施加到经滤波的振动分量,在放大期间,相位被延迟所述预设时间,以便产生抗颤动补偿转矩。

us2011112709a1公开了一种用于混合动力车辆的抗颤动控制器,其包括在不存在传动系的振动的状态下计算电机的模拟速度,并且计算模拟速度和当前速度之间的差别。

根据本发明的用于抑制传动系的机械振荡的解决方案旨在减少或防止传动系的振荡,而不必参与传动系的机械结构。作为背景,车辆的加速度也不会明显恶化,并且对于驾驶员尽可能少地不利地影响主观驾驶感觉,特别是对加速踏板的响应行为。



技术实现要素:

本发明的目的是电子地阻尼可能发生的、经历为破坏性的振荡或抖动,特别是当起动具有电机的车辆时,并且同时避免对车辆的驾驶舒适性具有过度不利的影响,特别是避免车辆对加速器踏板的响应行为的不利影响。另一目的是详细说明具有这样的抖动阻尼的车辆。

该目的通过一种用于阻尼车辆的传动系中的抖动的方法来实现,车辆的传动系具有作为驱动电机的电动机,其中用于致动电动机的电动机设定转矩从电动机请求转矩和校正转矩中计算出,该电动机请求转矩对应于对转矩的当前请求,其中该校正转矩作为电动机请求转矩和校正因子的函数来确定,其中校正因子由电动机的转速形成。

根据本发明,例如当车辆起动或上坡行驶时,基于通常通过由驾驶员启动加速器踏板和/或车辆的环境情况预定的转矩的先前设定值(电动机请求转矩),计算出用于电驱动电机的转矩的新设定值(电动机设定转矩),其被传递到电动机或电动机的闭环转矩控制器。在这种情况下,电动机请求转矩通常仍然没有对抖动的阻尼,而电动机设定转矩具有抖动阻尼校正。

根据本发明,电动机设定转矩由至少两个分量计算出,具体地,一方面根据电动机请求转矩,另一方面根据校正转矩,该校正转矩本身也取决于电动机请求转矩。此外,校正转矩取决于从电动机的当前转速确定的校正因子。

通过电动机请求转矩的这种校正,可以特别地补偿当车辆起动时发生在传动系中的振荡。

根据本发明的车辆包括具有作为驱动电机的电动机的传动系以及闭环控制系统,其中闭环控制系统被设计为执行根据本发明的方法。

在根据本发明的方法中,电动机设定转矩优选地至少在车辆速度的特定范围内形成为电动机请求转矩和校正转矩之和。

校正转矩优选地形成为请求校正转矩和校正因子之积,请求校正转矩由电动机请求转矩形成。

在这种情况下,可以通过特性曲线图,特别是通过值表,从电动机请求转矩中计算出请求校正转矩。

校正因子可以是正的并且可以是负的,但也可以是零。校正因子优选地可以仅具有三个离散值,特别是0、-1和+1。

校正因子优选地通过三点闭环控制器根据转速干扰信号来确定。转速干扰信号本身由电动机的转速确定。

转速干扰信号优选地通过信号滤波,特别是通过带通滤波器从电动机的转速中形成。

在根据本发明的方法中,当前车辆速度还优选地与所定义的极限速度比较,并且仅当当前车辆速度的绝对值低于极限速度时,才将电动机设定转矩计算为电动机请求转矩和校正转矩之和。如果当前车辆速度的绝对值高于极限速度,则电动机请求转矩不被校正,并且电动机设定转矩对应于电动机请求转矩。

电动机请求转矩对应于通常由车辆的驾驶员进行的对转矩的当前请求。该请求优选地通过加速器踏板的请求产生和/或可以由上游车辆控制系统预定义或改变,优选地仍然没有抗抖动校正。

附图说明

下面将参考附图通过示例描述本发明。

图1是根据本发明的用于阻尼车辆的传动系中的抖动的方法的示意图。

图2是根据本发明的用于阻尼车辆的传动系中的抖动的方法的流程图的图示。

图3是在根据本发明的方法中用于确定校正因子y的三点闭环控制器的图示。

图4示出了在根据本发明的方法中用于确定作为电动机请求转矩mem_setp的函数的请求校正转矩k的特性图。

具体实施方式

图1通过示例示出了根据本发明的抗抖动方法的示意性设计。该方法被分为三个部分功能或模块(图1),具体是信号滤波1、信号分析2和闭环控制系统3。

相同方法的流程图如图2所示,其中,该方案的所有不与信号滤波1或信号分析2相关联的部件都被认为是闭环控制系统3的一部分。该方法在图1和图2中示出的细节在图3和图4中更详细地表示。

关于信号滤波1:传动系的振荡通过电动机的转速n诊断并且作为该值的函数来控制。为此,在根据本发明的方法中,电动机的转速n的控制变量从电驱动电机m读出并通过过滤系统进行处理。在本文中,电动机的转速n首先通过带通滤波器滤波。为了释放转速干扰信号x的目的,滤波器的配置包括窄带滤波,其具有在大约5-50hz的低频范围中的中频。在本文中,带通滤波器例如通过可参数化的低通滤波器和高通滤波器的串联电路实现。截止频率被设定成使得仅车辆的特定振荡可以通过滤波器。该经滤波的转速干扰信号x被传送到信号分析2,特别是信号分析模块。

关于信号分析2:该模块由具有滞后的三点闭环控制器(在图3中更详细地示出)来实现。该方法基于示出的传动系统是非线性系统的事实,其可以在非线性控制部分的问题上建模。在这种情况下,转速干扰信号x是闭环控制器的输入变量。输出信号,具体为闭环控制器的校正因子y,可以根据转速干扰信号x的轮廓和振幅呈现三种不同状态(参见图3)。这些是:

a)如果转速干扰信号x位于零交叉区域中并且没有达到可参数化的接通阈值中的任一个(闭环控制器的正接通阈值es_p或负接通阈值es_n),则校正因子y=0。

b)如果转速干扰信号x超过可参数化的正接通阈值es_p并且没有低于正第一切断阈值as1_p(正振荡)以及没有超过正第二切断阈值as2_p,则校正因子y=-1。两个切断阈值as1_p,as2_p是可参数化的。如果转速干扰信号x变得低于参数值as1_p,则正第一关断阈值as1_p根据振幅值来切换闭环控制器输出,具体地校正因子y=0。如果转速干扰信号x变得高于相关参数值as2_p,则正第二切断阈值as2_p将闭环控制器输出尤其是校正因子y重设为0。

c)如果负转速干扰信号x的绝对值高于负接通阈值es_n并且没有低于负第一切断阈值as1_n以及没有超过负第二切断阈值as2_n,则校正因子y=1。

两个切断阈值as1_n、as2_n也是可参数化的。如果负转速干扰信号x的绝对值变得低于参数值as1_n,则负第一切断阈值as1_n根据振幅值切换闭环控制器输出,校正因子y=0。如果转速干扰信号x的绝对值变得高于相关参数值as2_n,则负第二切断阈值as2_n将闭环控制器输出尤其是校正因子y重设为0。

引入用于正负干扰信号的切断阈值as1_p、as2_p、as1_n、as2_n,以便允许更精确地调节闭环控制算法。闭环控制器输出信号y被传递到下游的闭环控制系统模块3(参见图1)。

关于闭环控制系统3:闭环控制系统功能参与电动机的转换器的闭环转矩控制系统。为了允许这样,电动机请求转矩mem_setp或者从其计算出的并且已经从机动车辆的加速器踏板(驾驶员的请求)导出的或已经由车辆中的其它电子控制系统(参与驾驶员的请求)计算出和/或预定的请求校正转矩k用作该子模块(控制系统3)的输入变量-还参见图2和图4。

请求校正转矩k可以根据来自一表(查找表)中的当前电动机请求转矩mem_setp来确定,所述表例如存储在闭环控制功能或闭环控制器或一些其它电子控制单元中。例如,参见图4中作为电动机请求转矩mem_setp的函数的请求校正转矩k的特性图。

然后,请求校正转矩k乘以来自信号分析2的校正因子y。校正转矩s=k*y(参见图2)。也就是说,请求校正转矩k乘以校正因子y=1或y=-1,或当y=0时,没有校正因子,则s=0。

然后,根据当前车辆速度vfzg,判定电动机请求转矩mem_setp是否附加有或添加有校正转矩s。因此,需要车辆速度vfzg作为另一输入信号-——所述车辆速度vfzg用于在特定速度范围中启动整个抗抖动功能。仅当车辆速度vfzg的绝对值低于参数化的极限速度g时才进行该启动。否则,电动机设定转矩mem_new等于电动机请求转矩mem_setp;不添加任何校正转矩s。

然后,如此确定的电动机设定转矩mem_new被传递到传动系的电动机m或电动机m的闭环转矩控制系统。

根据车辆的传动系的配置,在负载变化时,例如在起动时,可以发生以不同的方式表现的传动系振荡。根据本发明的方法具有进一步的优点,即其可以通过简单的参数化适配于改变的条件和传动系配置。

根据本发明的方法对车辆速度和电动机驱动转矩的依赖性可以例如通过极限速度g和用于确定请求校正转矩k的特性曲线图或表来参数化。因此,还能容易地适配各种各样的驾驶状况。例如,在上坡梯度起动车辆的情况下,相对大的请求校正转矩k通常提供更好的结果。

根据本发明的方法使得可以主动地阻尼传动系中的振荡,特别是传动系中的抖动。

附图标记列表

m电动机

mem_new电动机设定转矩

mem_setp电动机请求转矩

n电动机转速

x转速干扰信号

y校正因子

s校正转矩

k请求校正转矩

vfzg车辆速度

g极限速度

es_p正接通阈值

es_n负接通阈值

as2_p正第一切断阈值

as2_n负第一切断阈值

as2_p正第二切断阈值

as2_n负第二切断阈值

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1