用于延长电动车辆电池寿命的智能能量管理的制作方法

文档序号:10481085阅读:404来源:国知局
用于延长电动车辆电池寿命的智能能量管理的制作方法
【专利摘要】本公开涉及用于延长电动车辆电池寿命的智能能量管理。一种电池充电系统,包括:充电器,被配置为对所述电池进行充电和放电。所述电池系统还包括控制器,被配置为基于所述电池的荷电状态来操作所述充电器,以在存放持续时间期间将所述荷电状态保持在部分荷电水平。所述充电器可被操作为:在所述存放持续时间期间对所述电池进行充电和放电。当所述存放持续时间届满时,所述控制器操作所述充电器以将所述荷电状态保持在操作荷电水平。部分荷电水平被选择以在相同的持续时间内相对于所述操作荷电水平减少所述电池的退化量。电池充电系统包括远程连接,使得所述存放持续时间可在所述存放持续时间期间由远程装置进行修改。
【专利说明】
用于延长电动车辆电池寿命的智能能量管理
技术领域
[0001]本申请总体上涉及为基于锂离子的牵引电池进行充电。
【背景技术】
[0002]用于电动车辆和插电式混合动力车辆的电池在使用之间进行充电,来为电池恢复能量以用于下一个使用周期。车辆可连接至充电器,充电器连接至电源。控制充电器以向电池提供电压和电流来为电池恢复能量。利用不同的充电策略来为车辆中的电池充电。现有的充电策略在充电器被连接的情况下将电池充电至满荷电水平。一些充电策略可将充电的开始延迟至电价更便宜的时候。

【发明内容】

[0003]—种电池充电系统包括:充电器,连接至车辆的电池,并被配置为对所述电池进行充电和放电;控制器,被配置为基于所述电池的荷电状态来操作所述充电器,以在存放持续时间期间将所述荷电状态保持在部分荷电水平,并当所述存放持续时间届满时,将所述荷电状态保持在操作荷电水平。操作所述充电器的步骤可包括对所述电池进行充电和放电。所述控制器还可被配置为通过通信网络与远离所述充电器的装置通信,其中,所述控制器通过所述通信网络从所述装置接收所述存放持续时间。所述控制器还可被配置为接收指示下一使用时间的输入,其中,所述存放持续时间是从所述下一使用时间推导出的。所述部分荷电水平可低于所述操作荷电水平。所述存放持续时间可以是基于所述车辆的历史驾驶周期数据的。所述部分荷电水平可以是在相同的持续时间内,相对于所述操作荷电水平减少所述电池的退化量的荷电水平。所述操作荷电水平可以是基于所述车辆的历史驾驶周期数据的。所述操作荷电水平可与百分之百的电池荷电状态相对应。
[0004]—种车辆包括牵引电池和控制器,所述控制器被配置为响应于连接至充电器,输出部分荷电水平、牵引电池的荷电状态(SOC)以及基于历史驾驶周期数据的存放持续时间,用于操作所述充电器以在所述存放持续时间内将所述牵引电池的SOC保持在所述部分荷电水平。所述控制器还可被配置为输出操作荷电水平,用于操作所述充电器以当所述存放持续时间届满时将所述SOC保持在所述操作荷电水平。所述操作荷电水平可以是基于所述历史驾驶周期数据的。所述部分荷电水平可低于所述操作荷电水平。所述存放持续时间可以是基于下次行程的预期时间和充电时间的。所述部分荷电水平可以是在相同的持续时间内,相对于所述操作荷电水平减少所述电池的退化量的荷电水平。
[0005]—种为车辆的电池充电的方法包括:经由控制器通过对所述电池进行充电和放电以在存放持续时间内将所述电池的荷电状态保持在部分荷电水平。所述方法还包括:经由所述控制器通过对所述电池进行充电,使得当所述存放持续时间届满时将所述电池的荷电状态提升至操作荷电水平。所述操作荷电水平和所述存放持续时间可以是基于所述车辆的历史驾驶周期数据的。所述方法还可包括:通过所述控制器从外部网络接收所述存放持续时间。所述方法还可包括:当所述控制器连接至所述车辆时,通过所述控制器从所述车辆接收所述存放持续时间、所述部分荷电水平和所述操作荷电水平。所述部分荷电水平可以是在相同的持续时间内,相对于所述操作荷电水平减少所述电池的退化量的荷电水平。
[0006]在此描述的系统和方法延长了电池寿命,并可使电池的维修和/或更换之间的时间间隔变长。针对车辆存放时间间隔的电池荷电状态被选择以使电池的寿命最大化。由于在车辆使用之前电池已被充电至操作荷电水平,因此在不影响车辆可行驶里程和驾驶性能的情况下延长了电池寿命。在一些配置中,系统包括与充电系统远程通信的功能以修改存放持续时间和接收状态信息。
【附图说明】
[0007]图1是示出典型的动力传动系统和能量存储组件的混合动力车辆的示图。
[0008]图2是包括多个电池单元的、由电池能量控制模块监测和控制的可行的电池组布置的示图。
[0009]图3是示例性电池充电系统的示图。
[0010]图4是用于实现电池充电系统的示例性操作序列的流程图。
【具体实施方式】
[0011 ]在此描述本公开的实施例。然而,应理解的是,所公开的实施例仅为示例,并且其它实施例可采用各种可替代形式。附图不必按比例绘制;可夸大或最小化一些特征以示出特定部件的细节。因此,在此公开的特定结构和功能细节不应被解释为限制,而仅为用于教导本领域技术人员以多种形式采用本发明的代表性基础。如本领域普通技术人员将理解的,参考任一【附图说明】和描述的各种特征可与在一个或更多个其它附图中说明的特征组合以产生未明确说明或描述的实施例。说明的特征的组合提供用于典型应用的代表实施例。然而,与本公开的教导一致的特征的多种组合和变型可被期望用于特定应用或实施方式。
[0012]图1描述了典型的插电式混合动力电动车辆(PHEV)。插电式混合动力电动车辆12可包括机械地连接至混合动力传动装置16的一个或更多个电机14。电机14能够作为马达或发电机运转。此外,混合动力传动装置16机械地连接至发动机18 ο混合动力传动装置16还被机械地连接至驱动轴20,驱动轴20机械地连接至车轮22。电机14能在发动机18开启或关闭时提供推进和减速能力。电机14还可用作发电机,并且能够通过回收在摩擦制动系统中通常作为热损失掉的能量来提供燃料经济效益。电机14还可通过允许发动机18以更有效的速度运行并允许混合动力电动车辆12在特定状况下以发动机18关闭的电动模式运行来减少车辆排放。
[0013]牵引电池或电池组24储存可被电机14使用的能量。车辆电池组24通常提供高电压DC输出。牵引电池24电连接至一个或更多个电力电子模块26。一个或更多个接触器42可在断开时将牵引电池24与其它组件隔离,并且在闭合时将牵引电池24连接到其它组件。电力电子模块26还电连接至电机14,并提供在牵引电池24和电机14之间双向传输能量的能力。例如,典型的牵引电池24可提供DC电压,而电机14可使用三相AC电来运转。电力电子模块26可将DC电压转换为三相AC电来操作电机14。在再生模式下,电力电子模块26可将来自用作发电机的电机14的三相AC电转换为牵引电池24的DC电压。这里的描述同样适用于纯电动车辆。对于纯电动车辆,混合动力传动装置16可以是连接至电机14的齿轮箱,并且发动机18可以不存在。
[0014]除了提供用于推进的能量之外,牵引电池24还可为其它车辆电力系统提供能量。车辆12可包括DC/DC转换器模块28,DC/DC转换器模块28将牵引电池24的高电压DC输出转换成与低电压车辆负载兼容的低电压DC供应。DC/DC转换器模块28的输出可连接至辅助电池30(例如,12V电池)。低电压系统可被电连接至辅助电池30。其它高电压负载46(诸如,压缩机和电加热器)可直接连接至电池24的高电压输出。
[0015]车辆12可以是电动车辆或插电式混合动力车辆,其中,牵引电池24可由外部电源36进行再充电。外部电源36可以连接到电器插座。外部电源36可电连接至充电器或电动车辆供电设备(EVSE)38。外部电源36可以是由公共电力公司提供的电力配电网络或输电网。EVES 38可提供电路和控制以调节和管理电源36与车辆12之间的能量传输。外部电源36可向EVSE 38提供DC或AC电力。EVSE 38可具有充电连接器40,充电连接器40用于插入车辆12的充电端口34。充电端口34可以是被配置为从EVSE 38向车辆12传输电力的任意类型的端口。充电端口34可被电连接至车载电力转换模块32。电力转换模块32可对从EVSE 38供应的电力进行调节,以向牵引电池24提供合适的电压水平和电流水平。电力转换模块32可与EVSE 38进行接口连接,以协调对车辆12的电力传输。EVSE连接器40可具有与充电端口 34的相应凹处匹配的插脚。可选地,被描述为被电连接的各种组件可使用无线感应耦合传输电力。
[0016]可提供一个或更多个车轮制动器44,以使车辆12减速并阻止车辆12的运动。车轮制动器44可以是液压致动的、电力致动的或者它们的一些组合。车轮制动器44可以是制动系统50的一部分。制动系统50可包括其它组件以操作车轮制动器44。为简单起见,附图中描绘了制动系统50和一个车轮制动器44之间的单个连接。暗含了制动系统50和其它车轮制动器44之间的连接。制动系统50可包括控制器,以监测和协调制动系统50 ο制动系统50可监测制动组件,并控制车轮制动器44以使车辆减速。制动系统50可响应于驾驶员命令,并且也可以自主操作以实现诸如稳定性控制的功能。当被另一控制器或子功能请求时,制动系统50的控制器可实现施加被请求的制动力的方法。
[0017]一个或更多个电力负载46可被连接至高电压总线。电力负载46可具有相关联的控制器,所述控制器适时地操作和控制电力负载46。电力负载46的示例可以是加热模块或空调丰吴块。
[0018]所讨论的各种组件可具有一个或更多个相关联的控制器,以控制和监控相关组件的操作。所述控制器可通过串行总线(例如控制器局域网(CAN))或通过离散导体进行通信。此外,可存在系统控制器48以协调各个组件的操作。
[0019]牵引电池24可由多种化学配方构造而成。典型的电池组化学成分可以是铅酸、镍金属氢化物(NIMH)或锂离子。图2示出了使用N个电池单元72的简单串联构造的典型牵引电池组24。然而,其它构造可由以串联或并联或者其一些组合形式连接的任意数量的单个电池单元组成。电池系统可具有一个或更多个控制器,诸如监测和控制牵引电池24的性能的电池能量控制模块(BECM) 76 ο电池组24可包括传感器以测量多个电池组水平特征。电池组24可包括一个或更多个电池组电流测量传感器78、电池组电压传感器80和电池组温度测量传感器82 AECM76可包括电路以与电池组电流测量传感器78、电池组电压传感器80和电池组温度传感器82连接。BECM76可包括非易失性存储器,使得当BECM76处于关闭状况时可保留数据。保留的数据在下次钥匙循环时可以是可用的。
[0020]除了电池组水平特征,还可测量和监测电池单元72的水平特征。例如,可测量每个电池单元72的端电压、电流和温度。系统可使用传感器模块74来测量电池单元72的特征。根据性能,传感器模块74可测量一个或多个电池单元72的特征。电池组24可利用多达N。个传感器模块74来测量所有电池单元72的特征。每个传感器模块74可将测量结果传输至BECM76用以进一步处理和协调。传感器模块74可将模拟或数字形式的信号传输至BECM76。在一些实施例中,传感器模块74的功能可被并入BECM76内部。即,传感器模块74的硬件可被集成为BECM76中的电路的一部分,并且BECM76可控制对原始信号的处理。BECM76还可包括电路,用于与一个或更多个接触器42连接以断开或闭合接触器42。
[0021]计算电池组的多个特征可能是有用的。诸如电池电力容量和电池荷电状态的量对于控制电池组以及从电池组接收电力的电力负载的操作可能是有用的。电池电力容量是电池可提供的最大电量或电池可接收的最大电量的测量值。知晓电池电力容量允许电力负载被管理使得请求的电力在电池可处理的限制之内。
[0022 ]电池组荷电状态(SOC)给出了在电池组中剩余多少电荷的指示。SOC可被表示为在电池组中剩余的总电荷量的百分比。类似于燃料量表,电池组SOC可被输出以通知驾驶员在电池组中剩余多少电荷。电池组SOC还可用于控制电动车辆或混合动力电动车辆的操作。电池组SOC的计算可通过多种方法完成。一种计算电池SOC的可行的方法是执行电池组电流随时间的积分。在本领域中该方法公知为安培-小时积分。
[0023]锂离子电池在保持在相对高的SOC时,可能经历加速退化。即,保持SOC在近乎满荷电水平(例如,近乎100%)的锂离子电池可能经历电池寿命的缩短。当车辆在保持相对高的电池SOC的同时长时间闲置时,电池衰退可能发生。这种情况的示例可能是电池驱动车辆被停在机场而操作者在旅行中的情况。在该旅途期间,电池驱动车辆可被置于充电器38上,并且电池SOC可被保持在高水平。在这种情况下,由于在这段时期车辆不被使用,因此发生了不必要的电池退化。可选地,如果在旅途期间,车辆没有被置于充电器上,则存在风险使得电池可能放电至过低的SOC水平并且当操作者返回时车辆可能没有被适当地充电。使用在此描述的系统和方法,可将对于满荷电的电池的需求和对于增加电池寿命的期望进行平衡。
[0024]图3描绘了电池充电系统的示例性结构的示图。EVSE38可包括双向AC/DC转换器142。转换器142可电连接至电源36。转换器142可选择性地电连接至电力负载152。转换器可通过一个或更多个电力线150将电力传导至电池24或从电池24传导出。EVSE 38可包括EVSE控制器140以用于管理EVSE 38的操作。EVSE控制器140可通过一个或更多个转换器控制线144与转换器142连接。EVSE控制器140还可通过一个或更多个网络接口 154连接至外部网络156。网络接口 154可以是有线的或无线的。EVSE 38和车辆12可包括收发器或其它接口,以用于连接至通信网络156(例如W1-F1、蜂窝电话数据网络)。
[0025]EVSE 38可具有不同的操作模式。第一模式可以是将电池24充电至部分荷电水平以用于存放的操作模式。第二模式可以是将电池24放电至部分荷电水平以用于存放的操作模式。第三模式可以是将电池SOC保持在部分荷电水平的操作模式。第四模式可以是将电池24充电至操作荷电水平以用于使用的操作模式。第五操作模式可以是在等待即将发生的操作者使用的同时将电池SOC保持在操作荷电水平的操作模式。
[0026]EVSE 38可通过使电池能量返回至输电网或者电源36来使电池24放电。在一些配置中,EVSE 38可包括与外部装置的连接,以驱动外部负载152。例如,当在家中连接至充电器38时,家中的装置可通过来自电池24的能量被驱动。在一些配置中,EVSE 38可与车辆12中的其它电力负载46连接以从电池24释放能量。例如,可将能量提供至加热和制冷模块来将电池24或其它车辆组件保持在预定温度。
[0027]EVSE控制器140还可通过一个或更多个电池连接线148与BECM76通信。EVSE控制器140和BECM76可通过电池连接线148交换数据和控制信息。
[0028]电池24可在闲置期间被保持在部分荷电水平,并且在使用之前即时地进入操作荷电水平。部分荷电水平在存放或非使用期间被优化以延长电池寿命。部分荷电水平可根据特定的电池化学成分和结构而改变。例如,对于锂离子电池,可选择大约50%的部分荷电水平。进一步地,操作荷电水平可以是适合于预期使用的SOC水平。即,操作荷电水平不必是满荷电水平。
[0029]BECM76可存储包括部分荷电水平和操作荷电水平的信息。当牵引电池24连接至EVSE 38时,所述信息可被传送至EVSE控制器140。
[0030]在一些配置中,电池充电系统可基于历史驾驶周期数据学习操作者驾驶模式。车辆12可包括导航系统158,其中,导航系统158包括车辆定位功能。导航系统158可将路线信息提供给操作者。导航系统158可周期性地存储车辆位置、日期/时间和路线数据以用于以后分析。导航系统可包括车辆位置传感器(例如全球定位系统(GPS)接收器)。导航系统158可将车辆位置、日期/时间和路线数据传送至BECM76和/或EVSE控制器140 AVSE控制器140可将车辆位置数据存储为开始点和结束点,以针对预期使用确定操作荷电水平。
[0031 ]历史驾驶周期数据可包括开始位置和目的地位置。历史驾驶数据可包括位置之间的行驶时间和位置之间的距离。历史驾驶周期数据还可包括针对位置之间的行程的开始时间和结束时间。历史驾驶周期数据可被分析以确定未来的驾驶模式。例如,操作者可能在工作日的相同时间沿着相同的路线驾驶去工作。这种模式可被电池充电系统识别。电池充电系统保存的数据可以是行程(单程或往返)所必需的电量以及要完成充电的时间。操作者可在充电位置将车辆12置于充电器38上。
[0032 ]电池充电系统可监测电池24的SOC水平并在存放期间开始将电池24充电或放电至部分荷电水平。部分荷电水平可以是电池特定的,并可被选择以延长电池寿命。在存放期间,电池充电系统可将SOC保持在部分荷电水平。电池充电系统可确定将车辆从部分荷电水平充电至用于预期使用的操作荷电水平所需的时间量。电池充电系统可在预期使用时间之前的预定时间开始为电池充电,以确保在预期使用时间时,电池被充电至操作荷电水平。
[0033]电池充电系统可确定车辆12的存放持续时间。存放持续时间可以是车辆12将依然不被使用并且优选地被充电至部分荷电水平的时间量。可从操作者输入或者从历史驾驶周期数据推导存放持续时间。
[0034]在一些配置中,用户界面可被提供使得操作者可输入例如存放持续时间和预期使用时间的量。用户界面可被配置为允许操作者输入部分荷电水平和操作荷电水平。用户界面可包括显示器。显示器可以是被配置为允许操作者输入数据的触摸屏。用户界面还可包括键盘、小键盘、按钮和旋钮。用户界面可被包括作为导航系统158的一部分。在一些配置中,用户界面可被包括在通过网络156通信的外部装置160上。
[0035]例如,操作者可与用户界面进行交互并直接输入作为保持部分荷电水平的时间量的存放持续时间。实际的输入形式可以是绝对时间或相对时间。当存放持续时间届满时,电池充电系统可将电池24充电至操作荷电水平。
[0036]在一些配置中,操作者可输入预期操作车辆的时间(例如预期使用时间),可从所述预期操作车辆的时间间接获得存放持续时间。存放持续时间可被确定为预期使用时间和将电池从部分荷电水平充电至操作荷电水平的时间量之间的时间差。
[0037]也可从历史驾驶模式推导预期使用时间和存放持续时间。从第一位置至第二位置的重复行程可随着时间被学习。例如,每个工作日,操作者可能在早晨的几乎相同的时间从家驾驶至工作地点。在该情形之后,可能在一天中的一致的时间从工作地点驾驶至家。当回到家时,操作者可为车辆充电。这种模式可被学习和识别。电池充电系统可获知用于完成往返行程的操作荷电水平,使得车辆以可接受的电池荷电水平返回到家。可接受的电池荷电水平可以是部分荷电水平。
[0038]例如,电池充电系统可获知完成往返行程需要大约30%的S0C。假设部分荷电水平为50%,操作荷电水平可设置为80%。当完成往返行程时,车辆到达家中并具有50%的荷电水平。当被置于充电器上时,电池充电系统可将充电时间确定为将电池从50%充电至80%所需的时间量。电池充电系统可从历史驾驶周期数据或者用户输入确定下次使用时间。从插入充电器起直到充电时间,电池SOC可保持在50%。在充电时间,电池可充电至80%。如果预测的时间是准确的,则操作者在车辆充电至80%之后不久可驾驶车辆。电池充电系统可包括额外的SOC增量和充电时间,以顾及到操作者日程的变化。本领域技术人员可确定其它类似的情况并配置电池充电系统以相应地做出响应。
[0039]可能有操作者想改变先前输入的值的情况。例如,操作者可能延误了取回停在机场的车辆。在这种情况下,操作者可能期望向电池充电系统发送更新的返回时间以使电池寿命最大化。除了延误之外,系统可被配置以处理早返回的情况。操作者可能预期在更早的时间返回或者忽然需要使用车辆。在这些情况下,操作者可能期望立刻开始充电。操作者可通过用户界面发送超驰(override)命令以立刻开始充电。
[0040]EVSE 38可通过通信网络156接收或发送数据。操作者可通过网络156与电池充电系统通信。操作者可利用远程装置160与网络156交互。远程装置160可以是执行用于与充电系统连接的应用的蜂窝电话或平板电脑。在一些配置中,在计算装置上执行的基于网络的应用可被利用以向充电系统提供连接。例如,远程装置界面可允许操作者向电池充电系统发送更新的预期使用时间。预期使用时间可以是操作者预期断开与充电器的连接并执行驾驶周期的预期的日期和时间。电池充电系统可通过网络156将当前的电池SOC发送至远程装置160。此外,操作者可在包括电池充电系统用户界面的远程装置160中保存日历或日程。充电系统应用可链接至日历,以确定使用时间和预期目的地,所述使用时间和预期目的地可通过网络156与电池充电系统进行通信。
[0041]图4描绘了用于实现在此描述的电池充电系统的可能的操作的流程图。可在EVSE控制器140和BECM 76的一个或更多个中执行操作。序列可以以操作200开始,在操作200,驾驶员将EVSE 38连接至车辆12。在操作202,驾驶员可通过用户界面选择智能存放选项。在操作204中,驾驶员可输入离开时间和返回时间。离开时间和返回时间可与航班或其它出行模式相对应。可预期的是,车辆从离开时间直到返回时间不需要被使用。
[0042]在操作206,电池充电系统可比较当前时间和离开时间以确定是否到达离开时间。如果没有到达离开时间,可执行操作208,在操作208,电池充电系统在再次检查之前等待预定义的间隔。如果到达了离开时间,则可执行操作210,以检查电池SOC是否高于部分荷电水平(例如最佳的存放SOC)。如果电池SOC高于部分荷电水平,则可执行操作212以将电池放电至部分荷电水平。电池可通过将能量从车辆提供至输电网36(V2G)或者通过将能量从车辆提供至基于家庭的电力负载152(V2H)来放电。如果电池SOC不高于部分荷电水平,则可执行操作214,以检查电池SOC是否低于部分荷电水平。如果电池SOC低于部分荷电水平,则可执行操作216以将电池充电至部分荷电水平。
[0043]在操作218,可计算从当前SOC充电至操作荷电水平的估计时间。在操作220,可计算用于开始充电以在返回时间时达到操作荷电水平的时间。在操作222,执行检查以确定是否到达充电开始时间。如果已到达充电开始时间,则可执行操作224,在操作224,电池被充电至操作荷电水平。如果没有到达充电开始时间,则执行可返回到操作210以继续监测电池S0C。执行可在操作226结束,在操作226,电池被充电至操作荷电水平并为驾驶员的到达做好准备。注意,流程图描绘了 100%的操作荷电水平,但可选择其它荷电水平。
[0044]在此公开的处理、方法或算法可被传送到处理装置、控制器或计算机,或者通过所述处理装置、控制器或计算机实现,其中,所述处理装置、控制器或计算机可包括任意的现有可编程电子控制单元或专用电子控制单元。类似地,所述处理、方法或算法可被存储为可由控制器或计算机以多种形式执行的数据或指令,其中,所述多种形式包括但不限于被永久地存储于不可写存储介质(诸如,ROM装置)中的信息,以及被可变地存储于可写存储介质(诸如,软盘、磁带、CD、RAM装置以及其它磁介质和光学介质)中的信息。所述处理、方法或算法也可以以软件可执行对象的形式来实现。可选地,可使用合适的硬件组件(诸如专用集成电路(ASIC)、现场可编程门阵列
[0045](FPGA)、状态机、控制器、或其它硬件组件或装置)或硬件、软件和固件组件的组合来整体或部分地实现所述处理、方法或算法。
[0046]虽然以上描述了示例性实施例,但这些实施例并不意在描述权利要求所涵盖的所有可能形式。说明书中所使用的词语是描述性词语而非限制性词语,并且应理解的是,可在不脱离本公开的精神和范围的情况下做出各种改变。如前所述,可将各个实施例的特征进行组合以形成本发明的可能未被明确描述或示出的进一步的实施例。尽管针对一个或更多个期望特性,各个实施例已经被描述为提供在其它实施例或现有技术实施方式之上的优点或优于其它实施例或现有技术实施方式,但是本领域的普通技术人员应认识到,根据特定应用和实施方式,一个或更多个特征或特性可被折衷以实现期望的整体系统属性。这些属性可包括但不限于成本、强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、维护保养方便性、重量、可制造性、装配的容易性等。因此,被描述为在一个或更多个特性方面不如其它实施例或现有技术实施方式满足期望的实施例并非在本公开的范围之外,并可被期望用于特定应用。
【主权项】
1.一种电池充电系统,包括: 充电器,连接至车辆的电池,并被配置为对所述电池进行充电和放电; 控制器,被配置为基于所述电池的荷电状态来操作所述充电器,以在存放持续时间期间将所述荷电状态保持在部分荷电水平,并当所述存放持续时间届满时,将所述荷电状态保持在操作荷电水平。2.如权利要求1所述的电池充电系统,其中,操作所述充电器的步骤包括对所述电池进行充电和放电。3.如权利要求1所述的电池充电系统,其中,所述控制器还被配置为通过通信网络与远离所述充电器的装置通信,其中,所述控制器通过所述通信网络从所述装置接收所述存放持续时间。4.如权利要求1所述的电池充电系统,其中,所述控制器还被配置为接收指示下一使用时间的输入,其中,所述存放持续时间是从所述下一使用时间推导出的。5.如权利要求1所述的电池充电系统,其中,所述部分荷电水平低于所述操作荷电水平。6.如权利要求1所述的电池充电系统,其中,所述存放持续时间是基于所述车辆的历史驾驶周期数据的。7.如权利要求1所述的电池充电系统,其中,所述部分荷电水平是在相同的持续时间内相对于所述操作荷电水平减少所述电池的退化量的荷电水平。8.如权利要求1所述的电池充电系统,其中,所述操作荷电水平是基于所述车辆的历史驾驶周期数据的。9.如权利要求1所述的电池充电系统,其中,所述操作荷电水平与百分之百的电池荷电状态相对应。
【文档编号】B60L11/18GK105835710SQ201610069576
【公开日】2016年8月10日
【申请日】2016年2月1日
【发明人】凯文·詹姆斯·洛兹, 安德鲁·罗伯特·德鲁斯
【申请人】福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1